Math 422/501: Problem set 9 (due 13/11/09)

Galois theory

1. Let L / K be a finite Galois extension. Let $K \subset M_{1}, M_{2} \subset L$ be two intermediate fields. Show that the following are equivalent:
(1) M_{1} / K and M_{2} / K are isomorphic extensions.
(2) There exists $\sigma \in \operatorname{Gal}(L: K)$ such that $\sigma\left(M_{1}\right)=M_{2}$.
(3) $\operatorname{Gal}\left(L: M_{i}\right)$ are conjugate subgroups of $\operatorname{Gal}(L: K)$.
2. (V-extensions) Let K have characteristic different from 2 .
(a) Suppose L / K is normal, separable, with Galois group $C_{2} \times C_{2}$. Show that $L=K(\alpha, \beta)$ with $\alpha^{2}, \beta^{2} \in K$.
(b) Suppose $a, b \in K$ are such that none of $a, b, a b$ is a square in K. Show that $\operatorname{Gal}(K(\sqrt{a}, \sqrt{b})$: $K) \simeq C_{2} \times C_{2}$.

The fundamental theorem of algebra

3. (Preliminaries)
(a) Show that every simple extension of \mathbb{R} has even order.
(b) Show that every quadratic extension of \mathbb{R} is isomorphic to \mathbb{C}.
4. (Punch-line)
(a) Let $F: \mathbb{R}$ be a finite extension. Show that $[F: \mathbb{R}]$ is a power of 2 .

Hint: Consider the 2-Sylow subgroup of the Galois group of the normal closure.
(b) Show that every proper algebraic extension of \mathbb{R} contains \mathbb{C}.
(c) Show that every proper extension of \mathbb{C} contains a quadratic extension of \mathbb{C}.
(d) Show that $\mathbb{C}: \mathbb{R}$ is an algebraic closure.

Example: Cyclotomic fields

$\mu_{n} \subset \mathbb{C}^{\times}$will denote the group of nth roots of unity, $S_{n} \subset \mu_{n}$ the primitive nth roots of unity.
5. (prime order) Let p be an odd prime, and recall the proof from class that $\Phi_{p}(x)=\frac{x^{p}-1}{x-1}$ is irreducible in $\mathbb{Q}[x]$.
(a) Let ζ_{p} be a root of Φ_{p}. Show that $\mathbb{Q}\left(\zeta_{p}\right)$ is a splitting field for Φ_{p}. What is its degree?
(b) Show that $G=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right): \mathbb{Q}\right)$ is cyclic.
(c) Show that $\mathbb{Q}\left(\zeta_{p}\right)$ has a unique subfield K so that $[K: \mathbb{Q}]=2$.
(d) Show that there is a unique non-trivial homomorphism $\chi: G \rightarrow\{ \pm 1\}$.
(e) Let $g=\sum_{\sigma \in G} \chi(\sigma) \sigma(\zeta)$ ("Gauss sum"). Show that $g \in K$ and that $g^{2} \in \mathbb{Q}$.

OPT Show that $g^{2}=(-1)^{\frac{p-1}{2}} p$, hence that $K=\mathbb{Q}(g)$.
6. Let $\zeta_{n} \in \mathbb{C}$ be a primitive nth root of unity.
(a) Show that $\mathbb{Q}\left(\zeta_{n}\right)$ is normal over \mathbb{Q}.

Hint: Show that every embedding of $\mathbb{Q}\left(\zeta_{n}\right)$ in \mathbb{C} is an automorphism.
(b) Let $G=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\right)$. Show for every $\sigma \in G$ there is $j \in(\mathbb{Z} / n \mathbb{Z})^{\times}$so that $\sigma\left(\zeta_{n}\right)=\zeta_{n}^{j(\sigma)}$ and that $j: G \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$is an injective homomorphism.
(c) Let $\Phi_{n}(x)=\prod_{\zeta \in S_{n}}(x-\zeta)$. Show that $\Phi_{n}(x) \in \mathbb{Q}[x]$ (in fact, $\Phi_{n}(x) \in \mathbb{Z}[x]$). Show that the degree of Φ_{n} is exactly $\phi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}$.
(d) Show that the definitions of $\Phi_{p}(x)$ in problems 5 and 6(c) agree.
7. (prime power order) Let p be prime, $r \geq 1$ and let $n=p^{r}$.
(a) Show that $\Phi_{n}(x)=\frac{x^{p^{p}}-1}{x^{p^{r-1}}-1}$.
(b) Show that Φ_{n} is irreducible.

Hint: Change variables to $\Phi_{n}(1+y)$ and reduce $\bmod p$.
(c) Conclude that $\operatorname{Gal}\left(\Phi_{p^{r}}\right) \simeq\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$.
8. (general order) Let $n=\prod_{i=1}^{s} p_{i}^{r_{i}}$ with p_{i} distinct primes. Let G, j be as in 6(b).
(a) Show that $\mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}\left(\zeta_{p_{1}^{r_{1}}}, \ldots, \zeta_{p_{s}^{r_{s}}}\right)$.
(b) For each i let $\pi_{i}:(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow\left(\mathbb{Z} / p_{i}^{r_{i}} \mathbb{Z}\right)^{\times}$be the natural quotient map. Show that the maps $\pi_{i} \circ j: G \rightarrow\left(\mathbb{Z} / p_{i}^{r_{i}} \mathbb{Z}\right)^{\times}$are surjective.
(c) [deferred]

Example: Cubic extensions

9. Let K be a field, $f \in K[x]$ of degree n, and let $\left\{\alpha_{i}\right\}_{i=1}^{n} \subset \Sigma$ be the roots of f in a splitting field Σ, counted with multiplicity.
(a) Let $\left\{s_{r}\right\}_{r=1}^{n}$ be the elementary symmetric polynomials in n variables, thought of as elements of $K\left[y_{1}, \ldots, y_{n}\right]$. Show that $s_{r}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in K$.
Hint: Consider the factorization of f in Σ.
(b) Let $t \in K[\underline{y}]^{S_{n}}$ be any symmetric polynomial. Show that $t\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in K$.
10. Let K be a field of characteristic zero, and let $f \in K[x]$ be an irreducible cubic. Let Σ be a splitting field for f, and let $\left\{\alpha_{i}\right\}_{i=1}^{3}$ be the roots.
(a) Show that $[\Sigma: K] \in\{3,6\}$ and that $\operatorname{Gal}(\Sigma: K)$ is isomorphic to C_{3} or S_{3}.

Hint: The Galois group acts transitively on the roots.
(b) Let $\delta=\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{3}-\alpha_{1}\right)$, and let $\Delta=\delta^{2}$. Show that $\Delta \in K^{\times}$.
(c) Let $M=K(\delta)$. Show that $[\Sigma: M]=3$ and hence that $[\Sigma: K]=3$ iff $\delta \in K$. Conclude that f is still irreducible in $M[x]$.
(d) Assume that $K \subset \mathbb{R}$ and that $\Sigma \subset \mathbb{C}$. Show that $\Sigma \subset \mathbb{R}$ iff $M \subset \mathbb{R}$ iff $\delta \in \mathbb{R}$ iff $\Delta>0$.

- We now adjoin ω so that $\omega^{3}=1$.
(e) Show that $[\Sigma(\omega): M(\omega)] \in\{1,3\}$, and in the first case that Σ is contained in a radical extension.
(f) Assuming $[\Sigma(\omega): M(\omega)]=3$ show that this extension is still normal.
(g) Let $y=\alpha_{1}+\omega \alpha_{2}+\omega^{2} \alpha_{3} \in \Sigma(\omega)$. Show that for any $\sigma \in \operatorname{Gal}(\Sigma(\omega): M(\omega))$ there is j so that $\sigma y=\omega^{j} y$. Conclude that $y^{3} \in M(\omega)$.

