Math 422/501: Problem set 9 (due 13/11/09)

Galois theory

- 1. Let L/K be a finite Galois extension. Let $K \subset M_1, M_2 \subset L$ be two intermediate fields. Show that the following are equivalent:
 - (1) M_1/K and M_2/K are isomorphic extensions.
 - (2) There exists $\sigma \in \text{Gal}(L:K)$ such that $\sigma(M_1) = M_2$.
 - (3) $Gal(L: M_i)$ are conjugate subgroups of Gal(L: K).
- 2. (V-extensions) Let K have characteristic different from 2.
 - (a) Suppose L/K is normal, separable, with Galois group $C_2 \times C_2$. Show that $L = K(\alpha, \beta)$ with $\alpha^2, \beta^2 \in K$.
 - (b) Suppose $a, b \in K$ are such that none of a, b, ab is a square in K. Show that $Gal(K(\sqrt{a}, \sqrt{b}))$: $(K) \simeq C_2 \times C_2.$

The fundamental theorem of algebra

- 3. (Preliminaries)
 - (a) Show that every simple extension of \mathbb{R} has even order.
 - (b) Show that every quadratic extension of \mathbb{R} is isomorphic to \mathbb{C} .
- 4. (Punch-line)
 - (a) Let $F : \mathbb{R}$ be a finite extension. Show that $[F : \mathbb{R}]$ is a power of 2. Hint: Consider the 2-Sylow subgroup of the Galois group of the normal closure.
 - (b) Show that every proper algebraic extension of \mathbb{R} contains \mathbb{C} .
 - (c) Show that every proper extension of \mathbb{C} contains a quadratic extension of \mathbb{C} .
 - (d) Show that $\mathbb{C} : \mathbb{R}$ is an algebraic closure.

Example: Cyclotomic fields

 $\mu_n \subset \mathbb{C}^{\times}$ will denote the group of *n*th roots of unity, $S_n \subset \mu_n$ the primitive *n*th roots of unity.

- 5. (prime order) Let p be an odd prime, and recall the proof from class that $\Phi_p(x) = \frac{x^p 1}{x 1}$ is irreducible in $\mathbb{Q}[x]$.
 - (a) Let ζ_p be a root of Φ_p . Show that $\mathbb{Q}(\zeta_p)$ is a splitting field for Φ_p . What is its degree?
 - (b) Show that $G = \text{Gal}(\hat{\mathbb{Q}}(\zeta_p) : \mathbb{Q})$ is cyclic.
 - (c) Show that $\mathbb{Q}(\zeta_p)$ has a unique subfield *K* so that $[K : \mathbb{Q}] = 2$.
 - (d) Show that there is a unique non-trivial homomorphism $\chi: G \to \{\pm 1\}$.
 - (e) Let $g = \sum_{\sigma \in G} \chi(\sigma) \sigma(\zeta)$ ("Gauss sum"). Show that $g \in K$ and that $g^2 \in \mathbb{Q}$. OPT Show that $g^2 = (-1)^{\frac{p-1}{2}} p$, hence that $K = \mathbb{Q}(g)$.

- 6. Let $\zeta_n \in \mathbb{C}$ be a primitive *n*th root of unity.
 - (a) Show that Q(ζ_n) is normal over Q.
 Hint: Show that every embedding of Q(ζ_n) in C is an automorphism.
 - (b) Let $G = \text{Gal}(\mathbb{Q}(\zeta_n) : \mathbb{Q})$. Show for every $\sigma \in G$ there is $j \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ so that $\sigma(\zeta_n) = \zeta_n^{j(\sigma)}$ and that $j: G \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ is an injective homomorphism.
 - (c) Let $\Phi_n(x) = \prod_{\zeta \in S_n} (x \zeta)$. Show that $\Phi_n(x) \in \mathbb{Q}[x]$ (in fact, $\Phi_n(x) \in \mathbb{Z}[x]$). Show that the degree of Φ_n is exactly $\phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$.
 - (d) Show that the definitions of $\Phi_p(x)$ in problems 5 and 6(c) agree.
- 7. (prime power order) Let p be prime, $r \ge 1$ and let $n = p^r$.
 - (a) Show that $\Phi_n(x) = \frac{x^{p^r} 1}{x^{p^r 1} 1}$.
 - (b) Show that Φ_n is irreducible. *Hint*: Change variables to $\Phi_n(1+y)$ and reduce mod *p*.
 - (c) Conclude that $\operatorname{Gal}(\Phi_{p^r}) \simeq (\mathbb{Z}/p^r\mathbb{Z})^{\times}$.
- 8. (general order) Let $n = \prod_{i=1}^{s} p_i^{r_i}$ with p_i distinct primes. Let G, j be as in 6(b).
 - (a) Show that $\mathbb{Q}(\zeta_n) = \mathbb{Q}\left(\zeta_{p_1^{r_1}}, \ldots, \zeta_{p_s^{r_s}}\right)$.
 - (b) For each *i* let $\pi_i: (\mathbb{Z}/n\mathbb{Z})^{\times} \to (\mathbb{Z}/p_i^{r_i}\mathbb{Z})^{\times}$ be the natural quotient map. Show that the maps $\pi_i \circ j: G \to (\mathbb{Z}/p_i^{r_i}\mathbb{Z})^{\times}$ are surjective.
 - (c) [deferred]

Example: Cubic extensions

- 9. Let *K* be a field, $f \in K[x]$ of degree *n*, and let $\{\alpha_i\}_{i=1}^n \subset \Sigma$ be the roots of *f* in a splitting field Σ , counted with multiplicity.
 - (a) Let {s_r}ⁿ_{r=1} be the elementary symmetric polynomials in *n* variables, thought of as elements of K[y₁,...,y_n]. Show that s_r(α₁,...,α_n) ∈ K. *Hint*: Consider the factorization of f in Σ.
 - (b) Let $t \in K[y]^{S_n}$ be any symmetric polynomial. Show that $t(\alpha_1, \ldots, \alpha_n) \in K$.
- 10. Let *K* be a field of characteristic zero, and let $f \in K[x]$ be an irreducible cubic. Let Σ be a splitting field for *f*, and let $\{\alpha_i\}_{i=1}^3$ be the roots.
 - (a) Show that $[\Sigma : K] \in \{3, 6\}$ and that $Gal(\Sigma : K)$ is isomorphic to C_3 or S_3 . *Hint*: The Galois group acts transitively on the roots.
 - (b) Let $\delta = (\alpha_1 \alpha_2)(\alpha_2 \alpha_3)(\alpha_3 \alpha_1)$, and let $\Delta = \delta^2$. Show that $\Delta \in K^{\times}$.
 - (c) Let $M = K(\delta)$. Show that $[\Sigma : M] = 3$ and hence that $[\Sigma : K] = 3$ iff $\delta \in K$. Conclude that *f* is still irreducible in M[x].
 - (d) Assume that $K \subset \mathbb{R}$ and that $\Sigma \subset \mathbb{C}$. Show that $\Sigma \subset \mathbb{R}$ iff $M \subset \mathbb{R}$ iff $\delta \in \mathbb{R}$ iff $\Delta > 0$.
 - We now adjoin ω so that $\omega^3 = 1$.
 - (e) Show that $[\Sigma(\omega): M(\omega)] \in \{1,3\}$, and in the first case that Σ is contained in a radical extension.
 - (f) Assuming $[\Sigma(\omega) : M(\omega)] = 3$ show that this extension is still normal.
 - (g) Let $y = \alpha_1 + \omega \alpha_2 + \omega^2 \alpha_3 \in \Sigma(\omega)$. Show that for any $\sigma \in \text{Gal}(\Sigma(\omega) : M(\omega))$ there is *j* so that $\sigma y = \omega^j y$. Conclude that $y^3 \in M(\omega)$.