Math 422/501: Problem set 7 (due 28/9/09)

Splitting fields and normal closures

1. Construct subfields of \mathbb{C} which are splitting fields over \mathbb{Q} for the following polynomials:
(a) $t^{3}-1$;
(b) $t^{4}+5 t^{2}+6$;
(c) $t^{4}+7 t^{2}+6$;
(d) $t^{6}-8$.

Find the degrees of the splitting fields as extensions of \mathbb{Q}.
2. Construct a splitting field for the following polynomials over \mathbb{F}_{3} :
(a) $t^{3}+2 t+1$;
(b) $t^{3}+t^{2}+t+2$.
(c) Are the two fields isomorphic?
3. Let $f \in K[x]$ and let $\Sigma: K$ be a splitting field for f over K. Let $K \subset M \subset \Sigma$ be an intermediate field. Show that Σ is a splitting field for f over M.
4. Let $f \in K[x]$ have degree n and let $\Sigma: K$ be a splitting field for f over K. Show that $[\Sigma: K] \leq n!$.

Algebraic closures

Definition. A field extension $K \hookrightarrow \bar{K}$ is called an algebraic closure if it is algebraic, and if polynomial in $K[x]$ splits in $L[x]$. We also say informally that \bar{K} is an algebraic closure of K.
5. Let $K \hookrightarrow L$ be an algebraic extension.
(a) If K is finite, show that $|L| \leq \mathfrak{\aleph}_{0}$.
(b) If K is infinite, show that $|L|=|K|$.
6. Let $K \hookrightarrow \bar{K}$ be an algebraic closure. Show that every algebraic extension of \bar{K} is isomorphic to \bar{K}.
7. (Existence of algebraic closures) Let K be a field, X an infinite set containing K with $|X|>|K|$. Let 0,1 denote these elements of $K \subset X$. Let

$$
\mathscr{F}=\{(L,+, \cdot) \mid K \subset L \subset X,(L, 0,1,+, \cdot) \text { is a field with } K \subset L \text { an algebraic extension }\} .
$$

Note that we are assuming that restricting,$+ \cdot$ to K gives the field operations of K.
(OPT) Show that \mathscr{F} is a set.
(a) Show that every algebraic extension of K is isomorphic to an element of \mathscr{F}.
(b) Given $(L,+, \cdot)$ and $\left(L^{\prime},+^{\prime}, .^{\prime}\right) \in \mathscr{F}$ say that $(L,+, \cdot) \leq\left(L^{\prime},+^{\prime}, .^{\prime}\right)$ if $L \subseteq L^{\prime},+\subseteq+^{\prime}, \cdot \subseteq \prime^{\prime}$. Show that this is a transitive relation.
(c) Let $\bar{K} \in \mathscr{F}$ be maximal with respect to this order. Show that \bar{K} is an algebraic closure of K.
(d) Show that K has algebraic closures.
8. (Uniqueness of algebraic closures) Let $K \hookrightarrow \bar{K}$ and $K \hookrightarrow L$ be two algebraic closures of K. Show that the two extensions are isomorphic.
Hint: Let \mathscr{G} be the set of K-embeddings intermediate subfields $K \subset M \subset L$ into \bar{K}, ordered by inclusion.

Symmetric polynomials

Let R be a ring. Then S_{n} acts on the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$ by permuting the variables, and we write $R[\underline{x}]^{S_{n}}$ for the set of fixed points.
9. (Basic structure)
(a) Show that $R[\underline{x}]^{S_{n}}$ is a subring of $R[\underline{x}]$, the ring of symmetric polynomials.
(b) For $\alpha \subset[n]$ write \underline{x}^{α} for the monomial $\prod_{i \in \alpha} x^{i}$. For $1 \leq r \leq n$ let

$$
s_{r}(\underline{x})=\sum_{\alpha \in\left(\begin{array}{c}
{\left[\begin{array}{l}
n] \\
r
\end{array}\right)}
\end{array}\right.} \underline{x}^{\alpha} \in R[\underline{x}] .
$$

Show that $s_{r}(\underline{x}) \in R[\underline{x}]^{S_{n}}$. These are called the elementary symmetric polynomials.
10. (Generation) Define the height of a monomial $\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$ to be $\sum_{i=1}^{n} i \alpha_{i}$. Define the height of $p \in R[\underline{x}]$ to be the maximal height of a monomial appearing in p.
(a) Given $p \in R[\underline{x}]^{S_{n}}$ find $\underline{\beta} \in \mathbb{Z}_{\geq 0}^{n}$ and $r \in R$ so that $q=r \prod_{r=1}^{n} s_{r}^{\beta_{r}}$ has the same highest term as p.
(b) Show that $p-q$ has smaller height than p.
(c) Show that every symmetric polynomial can be written as a polynomial of equal or smaller degree in the elementary symmetric polynomials.

Derivatives, derivations and separability

11. For a Laurent series $f=\sum_{i \geq i_{0}} a_{i} x^{i} \in R((x))$ over a ring R define its formal derivative to be the Laurent series $D f=\sum_{i \geq i_{0}} i a_{i} x^{i-1}$.
(a) Show that D is R-linear: that $D(\alpha f+\beta g)=\alpha D f+\beta D g$ for $\alpha, \beta \in R$ and $f, g \in R((x))$.
(b) Show that D is a derivation: that $D(f g)=D f \cdot g+f \cdot D g$ (this is called the Leibnitz rule).
(c) Show that $D\left(f^{k}\right)=k \cdot f^{k-1} \cdot D f$ for all $k \geq 0$.
(d) Show that if f is a polynomial then $D f$ is a polynomial as well, that is that D restricts to a map $R[x] \rightarrow R[x]$.
12. (Derivative criterion for separability) Let K be a field.
(a) Let $\alpha \in K$ be a zero of $f \in K[x]$. Show that $(x-\alpha)^{2} \mid f$ iff $D f(\alpha)=0$ iff $(x-\alpha) \mid D f$.
(b) Let $\varphi: K \rightarrow L$ be an extension of fields, and let $f, g \in K[x]$. Let $(f, g)=(h)$ as ideals of $K[x],(\varphi(f), \varphi(g))=\left(h^{\prime}\right)$ as ideals of $L[x]$. Taking h, h^{\prime} monic show that $h=\varphi\left(h^{\prime}\right)$.
(c) Show that $f \in K[x]$ is has no repeated roots in any extension (is separable) iff $(f, D f)=1$.
(d) Show that an irreducible $f \in K[x]$ is separable iff $D f=0$.

Optional problems

A. Construct an embedding $K(x) \hookrightarrow K((x))$ and show that D restricts to a map $K(x) \rightarrow K(x)$.

For the rest fix a ring R.
B. Let A be an R-algebra, and consider the map $A \times A \rightarrow A$ given by the commutator bracket $[a, b]=a b-b a$,
(a) Show $(A,[\cdot, \cdot])$ is a Lie algebra, that is that the commutator is R-bi-linear and anti-symmetric, and satisfies the Jacobi identity $[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0$.
(c) Show that for a fixed $a \in A$ the map $b \mapsto[a, b]$ is an element $\operatorname{ad}(a) \in \operatorname{End}_{R}(A)$.
(d) Show that $\operatorname{ad}(a)$ is a derivation: $(\operatorname{ad}(a))(b c)=[(\operatorname{ad}(a))(b)] c+b[(\operatorname{ad}(a))(c)]$.
C. Let A be an R-algebra. Let $\operatorname{Der}_{R}(A)=\left\{D \in \operatorname{End}_{R}(A) \mid D\right.$ is a derivation $\}$.
(a) Show that $\operatorname{Der}_{R}(A) \subset \operatorname{End}_{R}(A)$ is an R-submodule.
(b) Give an example showing that $\operatorname{Der}_{R}(A)$ need not be an R-subalgebra (that is, closed under multiplication=composition).
(c) Show that $\operatorname{Der}_{R}(A)$ is closed under the commutator bracket of $\operatorname{End}_{R}(A)$.
D. Let A an R-algebra. Show that the map ad: $A \rightarrow \operatorname{Der}_{R}(A)$ is a map of Lie algebras, that is a map of R-modules respecting the brackets.

