
Math 422/501: Problem set 7 (due 28/9/09)

Splitting fields and normal closures

1. Construct subfields of C which are splitting fields over Q for the following polynomials:
(a) t3−1;
(b) t4 +5t2 +6;
(c) t4 +7t2 +6;
(d) t6−8.

Find the degrees of the splitting fields as extensions of Q.

2. Construct a splitting field for the following polynomials over F3:
(a) t3 +2t +1;
(b) t3 + t2 + t +2.
(c) Are the two fields isomorphic?

3. Let f ∈ K[x] and let Σ : K be a splitting field for f over K. Let K ⊂M ⊂ Σ be an intermediate
field. Show that Σ is a splitting field for f over M.

4. Let f ∈K[x] have degree n and let Σ : K be a splitting field for f over K. Show that [Σ : K]≤ n!.

Algebraic closures

DEFINITION. A field extension K ↪→ K̄ is called an algebraic closure if it is algebraic, and if
polynomial in K[x] splits in L[x]. We also say informally that K̄ is an algebraic closure of K.

5. Let K ↪→ L be an algebraic extension.
(a) If K is finite, show that |L| ≤ℵ0.
(b) If K is infinite, show that |L|= |K|.

6. Let K ↪→ K̄ be an algebraic closure. Show that every algebraic extension of K̄ is isomorphic to
K̄.

7. (Existence of algebraic closures) Let K be a field, X an infinite set containing K with |X |> |K|.
Let 0,1 denote these elements of K ⊂ X . Let

F = {(L,+, ·) | K ⊂ L⊂ X , (L,0,1,+, ·) is a field with K ⊂ L an algebraic extension} .

Note that we are assuming that restricting +, · to K gives the field operations of K.

(OPT) Show that F is a set.
(a) Show that every algebraic extension of K is isomorphic to an element of F .
(b) Given (L,+, ·) and (L′,+′, ·′) ∈F say that (L,+, ·)≤ (L′,+′, ·′) if L⊆ L′, +⊆+′, · ⊆ ·′.

Show that this is a transitive relation.
(c) Let K̄ ∈F be maximal with respect to this order. Show that K̄ is an algebraic closure of

K.
(d) Show that K has algebraic closures.
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8. (Uniqueness of algebraic closures) Let K ↪→ K̄ and K ↪→ L be two algebraic closures of K.
Show that the two extensions are isomorphic.
Hint: Let G be the set of K-embeddings intermediate subfields K ⊂M ⊂ L into K̄, ordered by
inclusion.

Symmetric polynomials

Let R be a ring. Then Sn acts on the polynomial ring R[x1, . . . ,xn] by permuting the variables,
and we write R[x]Sn for the set of fixed points.
9. (Basic structure)

(a) Show that R[x]Sn is a subring of R[x], the ring of symmetric polynomials.
(b) For α ⊂ [n] write xα for the monomial ∏i∈α xi. For 1≤ r ≤ n let

sr(x) = ∑
α∈([n]

r )
xα ∈ R[x] .

Show that sr(x) ∈ R[x]Sn . These are called the elementary symmetric polynomials.

10. (Generation) Define the height of a monomial ∏
n
i=1 xαi

i to be ∑
n
i=1 iαi. Define the height of

p ∈ R[x] to be the maximal height of a monomial appearing in p.
(a) Given p ∈ R[x]Sn find β ∈ Zn

≥0 and r ∈ R so that q = r ∏
n
r=1 sβr

r has the same highest term
as p.

(b) Show that p−q has smaller height than p.
(c) Show that every symmetric polynomial can be written as a polynomial of equal or smaller

degree in the elementary symmetric polynomials.

Derivatives, derivations and separability

11. For a Laurent series f = ∑i≥i0 aixi ∈ R((x)) over a ring R define its formal derivative to be the
Laurent series D f = ∑i≥i0 iaixi−1.
(a) Show that D is R-linear: that D(α f +βg) = αD f +βDg for α,β ∈ R and f ,g ∈ R((x)).
(b) Show that D is a derivation: that D( f g) = D f ·g+ f ·Dg (this is called the Leibnitz rule).
(c) Show that D( f k) = k · f k−1 ·D f for all k ≥ 0.
(d) Show that if f is a polynomial then D f is a polynomial as well, that is that D restricts to a

map R[x]→ R[x].

12. (Derivative criterion for separability) Let K be a field.
(a) Let α ∈ K be a zero of f ∈ K[x]. Show that (x−α)2| f iff D f (α) = 0 iff (x−α)|D f .
(b) Let ϕ : K→ L be an extension of fields, and let f ,g ∈ K[x]. Let ( f ,g) = (h) as ideals of

K[x], (ϕ( f ),ϕ(g)) = (h′) as ideals of L[x]. Taking h,h′ monic show that h = ϕ(h′).
(c) Show that f ∈K[x] is has no repeated roots in any extension (is separable) iff ( f ,D f ) = 1.
(d) Show that an irreducible f ∈ K[x] is separable iff D f = 0.
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Optional problems

A. Construct an embedding K(x) ↪→ K((x)) and show that D restricts to a map K(x)→ K(x).

For the rest fix a ring R.
B. Let A be an R-algebra, and consider the map A×A→ A given by the commutator bracket

[a,b] = ab−ba, .
(a) Show (A, [·, ·]) is a Lie algebra, that is that the commutator is R-bi-linear and anti-symmetric,

and satisfies the Jacobi identity [a, [b,c]]+ [b, [c,a]]+ [c, [a,b]] = 0.
(c) Show that for a fixed a ∈ A the map b 7→ [a,b] is an element ad(a) ∈ EndR(A).
(d) Show that ad(a) is a derivation: (ad(a))(bc) = [(ad(a))(b)]c+b [(ad(a))(c)].

C. Let A be an R-algebra. Let DerR(A) = {D ∈ EndR(A) | D is a derivation}.
(a) Show that DerR(A)⊂ EndR(A) is an R-submodule.
(b) Give an example showing that DerR(A) need not be an R-subalgebra (that is, closed under

multiplication=composition).
(c) Show that DerR(A) is closed under the commutator bracket of EndR(A).

D. Let A an R-algebra. Show that the map ad: A→ DerR(A) is a map of Lie algebras, that is a
map of R-modules respecting the brackets.
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