Math 422/501: Problem set 6 (due 21/9/09)

 $\mathbb{Q}(\sqrt[3]{2})$

- 1. Let $K = \mathbb{Q}(\alpha)$ where $\alpha^3 = 2$. By Eisenstein's criterion $(p = 2), x^3 2 \in \mathbb{Q}[x]$ is irreducible. Without using the tools from abstract algebra:
 - (a) Show by hand that $\{1, \alpha, \alpha^2\} \subset K$ is linearly independent over \mathbb{Q} . *Hint*: You may use the irreducibility of $x^3 - 2$.
 - (b) Show by hand that $\{1, \alpha, \alpha^2\}$ is a basis for *K*. *Hint*: It is enough to show that $\{a + b\alpha + c\alpha^2\} \subset K$ is closed under addition and multiplication, and that each element has an inverse.
 - _ Conclude that $[K : \mathbb{Q}] = 3$.
- 2. (The hard way) Let $\beta \in K$ satisfy $\beta^3 = 2$.
 - (a) Write $\beta = a + b\alpha + c\alpha^2$, and convert the equation $\beta^3 = 2 = 2 + 0\alpha + 0\alpha^2$ to a system of three non-linear equations in the three variables a, b, c. *Hint*: You need to use the fact that $\{1, \alpha, \alpha^2\}$ is a basis at some point.
 - (b) Taking a clever linear combination of two of the equations, show that a = 0.
 - (c) Now show that b = 1, c = 0, that is that $\beta = \alpha$.
- 3. (The easy way) Let $\beta \in K$ satisfy $\beta^3 = 2$ and assume that $\beta \neq \alpha$. (a) Let $\gamma = \beta / \alpha$ and show that $\gamma^3 = 1$.

 - (b) Let $m(x) \in \mathbb{Q}[x]$ be the minimal polynomial of γ over \mathbb{Q} . Show that deg m = 2. *Hint*: Start by showing that *m* is an irreducible factor of $x^3 - 1$.
 - (c) Consider the field $\mathbb{Q}(\gamma) \subset K$. Show that $[\mathbb{Q}(\gamma) : \mathbb{Q}] = 2$ and obtain a contradiction. *Hint*: $[K : \mathbb{Q}] = [K : \mathbb{Q}(\gamma)] \cdot [\mathbb{Q}(\gamma) : \mathbb{Q}].$

Prime fields and the characteristic

- 4. Let *K* be a field.
 - (a) Show that there is a unique ring homomorphism $\varphi \colon \mathbb{Z} \to K$.
 - (b) Let $p \ge 0$ be such that $\text{Ker}(\varphi) = (p)$. Show that either p = 0 or p is prime.

DEFINITION. We call *p* the *characteristic* of *K*.

- (c) Let K be a field of characteristic p > 0. Show that the image of φ is the intersection of all subfields of *K*, and that it isomorphic to the field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.
- (d) Let K be a field of characteristic zero. Show that there is a unique homomorphism $\mathbb{Q} \hookrightarrow K$ and conclude that the minimal subfield of K is isomorphic to \mathbb{Q} .
- 5. (Finite fields)
 - (a) Let K be a finite field. Show that there exists a prime p and a natural number n so $|K| = p^n$.
 - (b) Show that there exists a field of order 4. *Hint*: Construct an irreducible quadratic polynomial in $\mathbb{F}_2[x]$.
 - (c) Show that there is a unique field of order 4.

REMARK. We will see that for each prime power there is a field of that order, unique up to isomorphism.

Quadratic fields

Let *K* be a field of characteristic not equal to 2. Write K^{\times} for the multiplicative group of *K*, $(K^{\times})^2$ for its subgroup of squares.

- 6. (Reduction to squares) Let L/K be an extension of degree 2.
 - (a) Show that there exists $\alpha \in L$ such that $K(\alpha) = L$. What is the degree of the minimal polynomial of α ?
 - (b) Show that there exist $d \in K^{\times}$ such that L : K is isomorphic to $K(\sqrt{d}) : K$. *Hint:* Complete the square.
- 7. (Classifying the extensions)
 - (a) Assume that $d \in K^{\times}$ is not a square. Using the representation $K(\sqrt{d}) = \left\{a + b\sqrt{d} \mid a, b \in K\right\}$ show that $e \in K$ is a square in $K(\sqrt{d})$ iff $e = df^2$ for some $f \in K$. Where did you use the assumption about the characteristic?
 - (b) Show that the extensions $K(\sqrt{d})$ and $K(\sqrt{e})$ are isomorphic iff $\frac{d}{e} \in (K^{\times})^2$ (in general, the isomorphism will not make \sqrt{d} to \sqrt{e}).

Hint: Construct a *K*-homomorphism $K(\sqrt{e}) \rightarrow K(\sqrt{d})$. Why is it surjective? Injective?

- (c) Show that quadratic extensions of *K* are in bijection with non-trivial elements of the group $K^{\times}/(K^{\times})^2$.
- 8. (Applications)
 - (a) Show that \mathbb{R} has a unique quadratic extension.
 - (b) Show that $\mathbb{Q}(\sqrt{2}+\sqrt{3}) = \mathbb{Q}(\sqrt{2},\sqrt{3})$. *Hint*: Show that $\sqrt{6} \in \mathbb{Q}(\sqrt{2},\sqrt{3})$ but that $\sqrt{2}+\sqrt{3} \neq a+b\sqrt{6}$ for any $a,b \in \mathbb{Q}$.

Simple extensions

- 9. Let $K(\alpha)$: *K* be a simple extension.
 - (a) If α is algebraic, show that there are finitely many subfields *L* of *K*(α) containing *K*. *Hint:* consider the minimal polynomial of α over *L*.
 - (b) If α is transcendental, show that there are infinitely many intermediate fields L.
- 10. Let L: K be an extension of fields with finitely many intermediate subfields.
 - (a) Show that the extension is algebraic.
 - (b) Show that the extension is *finitely generated*: there exists a finite subset $S \subset L$ so that K = K(S).
 - (c) Show that L: K is finite.
- 11. Let L: K be an extension of infinite fields with finitely many intermediate fields.
 - (a) Given $\alpha, \beta \in L$ find $\gamma \in L$ so that $K(\alpha, \beta) = K(\gamma)$. *Hint*: Consider elements of the form $\gamma = \alpha + k\beta$ where $k \in K$.
 - (d) Show that L: K is a simple algebraic extension.

Algebraicity

12. Let M : L and L : K be algebraic extensions of fields. Show that M : L is algebraic.