Math 422/501: Problem set 6 (due 21/9/09)

$$
\mathbb{Q}(\sqrt[3]{2})
$$

1. Let $K=\mathbb{Q}(\alpha)$ where $\alpha^{3}=2$. By Eisenstein's criterion $(p=2), x^{3}-2 \in \mathbb{Q}[x]$ is irreducible. Without using the tools from abstract algebra:
(a) Show by hand that $\left\{1, \alpha, \alpha^{2}\right\} \subset K$ is linearly independent over \mathbb{Q}.

Hint: You may use the irreducibility of $x^{3}-2$.
(b) Show by hand that $\left\{1, \alpha, \alpha^{2}\right\}$ is a basis for K.

Hint: It is enough to show that $\left\{a+b \alpha+c \alpha^{2}\right\} \subset K$ is closed under addition and multiplication, and that each element has an inverse.

- Conclude that $[K: \mathbb{Q}]=3$.

2. (The hard way) Let $\beta \in K$ satisfy $\beta^{3}=2$.
(a) Write $\beta=a+b \alpha+c \alpha^{2}$, and convert the equation $\beta^{3}=2=2+0 \alpha+0 \alpha^{2}$ to a system of three non-linear equations in the three variables a, b, c.
Hint: You need to use the fact that $\left\{1, \alpha, \alpha^{2}\right\}$ is a basis at some point.
(b) Taking a clever linear combination of two of the equations, show that $a=0$.
(c) Now show that $b=1, c=0$, that is that $\beta=\alpha$.
3. (The easy way) Let $\beta \in K$ satisfy $\beta^{3}=2$ and assume that $\beta \neq \alpha$.
(a) Let $\gamma=\beta / \alpha$ and show that $\gamma^{3}=1$.
(b) Let $m(x) \in \mathbb{Q}[x]$ be the minimal polynomial of γ over \mathbb{Q}. Show that $\operatorname{deg} m=2$.

Hint: Start by showing that m is an irreducible factor of $x^{3}-1$.
(c) Consider the field $\mathbb{Q}(\gamma) \subset K$. Show that $[\mathbb{Q}(\gamma): \mathbb{Q}]=2$ and obtain a contradiction. Hint: $[K: \mathbb{Q}]=[K: \mathbb{Q}(\gamma)] \cdot[\mathbb{Q}(\gamma): \mathbb{Q}]$.

Prime fields and the characteristic

4. Let K be a field.
(a) Show that there is a unique ring homomorphism $\varphi: \mathbb{Z} \rightarrow K$.
(b) Let $p \geq 0$ be such that $\operatorname{Ker}(\varphi)=(p)$. Show that either $p=0$ or p is prime.

Definition. We call p the characteristic of K.
(c) Let K be a field of characteristic $p>0$. Show that the image of φ is the intersection of all subfields of K, and that it isomorphic to the field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$.
(d) Let K be a field of characteristic zero. Show that there is a unique homomorphism $\mathbb{Q} \hookrightarrow K$ and conclude that the minimal subfield of K is isomorphic to \mathbb{Q}.
5. (Finite fields)
(a) Let K be a finite field. Show that there exists a prime p and a natural number n so $|K|=p^{n}$.
(b) Show that there exists a field of order 4.

Hint: Construct an irreducible quadratic polynomial in $\mathbb{F}_{2}[x]$.
(c) Show that there is a unique field of order 4.

REMARK. We will see that for each prime power there is a field of that order, unique up to isomorphism.

Quadratic fields

Let K be a field of characteristic not equal to 2 . Write K^{\times}for the multiplicative group of K, $\left(K^{\times}\right)^{2}$ for its subgroup of squares.
6. (Reduction to squares) Let L / K be an extension of degree 2 .
(a) Show that there exists $\alpha \in L$ such that $K(\alpha)=L$. What is the degree of the minimal polynomial of α ?
(b) Show that there exist $d \in K^{\times}$such that $L: K$ is isomorphic to $K(\sqrt{d}): K$.

Hint: Complete the square.
7. (Classifying the extensions)
(a) Assume that $d \in K^{\times}$is not a square. Using the representation $K(\sqrt{d})=\{a+b \sqrt{d} \mid a, b \in K\}$ show that $e \in K$ is a square in $K(\sqrt{d})$ iff $e=d f^{2}$ for some $f \in K$. Where did you use the assumption about the characteristic?
(b) Show that the extensions $K(\sqrt{d})$ and $K(\sqrt{e})$ are isomorphic iff $\frac{d}{e} \in\left(K^{\times}\right)^{2}$ (in general, the isomorphism will not make \sqrt{d} to $\sqrt{e})$.
Hint: Construct a K-homomorphism $K(\sqrt{e}) \rightarrow K(\sqrt{d})$. Why is it surjective? Injective?
(c) Show that quadratic extensions of K are in bijection with non-trivial elements of the group $K^{\times} /\left(K^{\times}\right)^{2}$.
8. (Applications)
(a) Show that \mathbb{R} has a unique quadratic extension.
(b) Show that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Hint: Show that $\sqrt{6} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$ but that $\sqrt{2}+\sqrt{3} \neq a+b \sqrt{6}$ for any $a, b \in \mathbb{Q}$.

Simple extensions

9. Let $K(\alpha): K$ be a simple extension.
(a) If α is algebraic, show that there are finitely many subfields L of $K(\alpha)$ containing K.

Hint: consider the minimal polynomial of α over L.
(b) If α is transcendental, show that there are infinitely many intermediate fields L.
10. Let $L: K$ be an extension of fields with finitely many intermediate subfields.
(a) Show that the extension is algebraic.
(b) Show that the extension is finitely generated: there exists a finite subset $S \subset L$ so that $K=K(S)$.
(c) Show that $L: K$ is finite.
11. Let $L: K$ be an extension of infinite fields with finitely many intermediate fields.
(a) Given $\alpha, \beta \in L$ find $\gamma \in L$ so that $K(\alpha, \beta)=K(\gamma)$.

Hint: Consider elements of the form $\gamma=\alpha+k \beta$ where $k \in K$.
(d) Show that $L: K$ is a simple algebraic extension.

Algebraicity

12. Let $M: L$ and $L: K$ be algebraic extensions of fields. Show that $M: L$ is algebraic.
