Math 422/501: Problem set 5 (due 14/9/09)

Ideals in Rings

Let R be a ring. Recall that an ideal $I \triangleleft R$ is an additive subgroup $I \subset R$ so that $r I \subset I$ for all $r \in R$.

1. (Working with ideals)
(a) Let \mathscr{I} be a set of ideals in R. Show that $\bigcap \mathscr{I}$ is an ideal.
(b) Given a non-empty $S \subset R$ show that $(S) \stackrel{\text { def }}{=} \bigcap\{I \mid S \subset I \triangleleft R\}$ is the smallest ideal of R containing S.
(c) Show that $(S)=\left\{\sum_{i=1}^{n} r_{i} s_{i} \mid n \geq 0, r_{i} \in R, s_{i} \in S\right\}$.
(d) Let $a \in R^{\times}$. Show that a is not contained in any proper ideal.

Hint: Show that $a \in I$ implies $1 \in I$.
2. (Prime and maximal ideals) Call $I \triangleleft R$ prime if whenever $a, b \in R$ satisfy $a b \in I$, we have $a \in I$ or $b \in I$. Call I maximal if it is not contained in any proper ideal of R.
(a) Show that R is an integral domain iff $(0)=\{0\} \triangleleft R$ is prime.
(b) Show that $I \triangleleft R$ is prime iff R / I is an integral domain.
(c) Show that R is a field iff (0) is its unique ideal (equivalently, a maximal ideal).
(d) Use the correspondence theorem to show that I is maximal iff R / I is a field.
(e) Show that every maximal ideal is prime.

Hint: Every field is an integral domain.
3. (Polynomials and maps of fields) Let $\varphi: F \rightarrow K$ be a map of fields, and let $\alpha \in K$.
(a) Show that φ is injective.

Hint: consider the kernel of the map.
(b) Show that there is a unique homomorphism of rings ("evaluation at α ") $\tilde{\varphi}_{\alpha}: F[x] \rightarrow K$ compatible with the embedding $F \hookrightarrow F[x]$ so that $\tilde{\varphi}_{\alpha}(x)=\alpha$. For $f \in F[x]$ we usually write $f(\alpha)$ for $\tilde{\varphi}_{\alpha}(f)$.
Hint: Write $\tilde{\varphi}_{\alpha}$ as the composition of a map $F[x] \rightarrow K[x]$ and a map $K[x] \rightarrow K$.
(c) Show that $\tilde{\varphi}_{\alpha}$ is not injective iff there exists $f \in F[x]$ (or $f \in K[x]$ with coefficients in the image of φ) so that $f(\alpha)=0$.
OPTIONAL If $\tilde{\varphi}$ is not injective, show that its kernel is of the form (f) for an irreducible polynomial $f \in F[x]$ and its image is a subfield of K.
4. (The field of rational functions) Let F be a field.
(a) For $f, g, h, k \in F[x]$ with $g, k \neq 0$ say $\frac{f}{g} \sim \frac{h}{k}$ if $f k=g h$. Show that \sim is an equivalence relation.
(b) Show that $F(x)=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in F[x], g \neq 0\right\} / \sim$ is a field, and that the natural map $t: F[x] \rightarrow$ $F(x)$ given by $f \mapsto \frac{f}{1}$ is an embedding.
(c) $\varphi: F \rightarrow K$ be an embedding of fields, and let $\alpha \in K$. Assume that $f(\alpha) \neq 0$ for all non-zero $f \in F[x]$, and show that φ extends uniquely to a map $\tilde{\varphi}_{\alpha}: F(x) \rightarrow K$ so that $\tilde{\varphi}_{\alpha}(x)=\alpha$.

Definition. Call $\alpha \in K$ algebraic over F if the situation of 3(c) holds, transcendental over F if the situation of 4(c) holds.

Irreducible polynomials and zeroes

5. Let $f \in \mathbb{Z}[x]$ be non-zero and let $\frac{a}{b} \in \mathbb{Q}$ be a zero of f with $(a, b)=1$. Show that constant coefficient of f is divisible by a and that the leading coefficient is divisible by b. Conclude that if f is monic then any rational zero of f is in fact an integer.
6. Decide while the following polynomials are irreducible:
(a) $t^{4}+1$ over \mathbb{R}.
(b) $t^{4}+1$ over \mathbb{Q}.
(c) $t^{3}-7 t^{2} 5+3 t+3$ over \mathbb{Q}.
7. Show that $t^{4}+15 t^{3}+7$ is reducible in $\mathbb{Z} / 3 \mathbb{Z}$ but irreducible in $\mathbb{Z} / 5 \mathbb{Z}$. Conclude that it is irreducible in $\mathbb{Q}[x]$.
8. Let \mathbb{R} be the field of real numbers. Let $\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}$, and define $(a+b i)+(c+d i) \stackrel{\text { def }}{=}$ $(a+b)+(c+d) i,(a+b i)(c+d i) \stackrel{\text { def }}{=}(a c-b d)+(a d+b c) i$.
(a) Show that the definition makes \mathbb{C} into a ring.
(b) Show that $\{a+0 i \mid a \in \mathbb{R}\}$ is a subfield of \mathbb{C} isomorphic to \mathbb{R}.
(c) Show that the complex conjugation map $\tau(a+b i)=a-b i$ is a field isomorphism $\tau: \mathbb{C} \rightarrow$ \mathbb{C} which restricts to the identity map on the image of \mathbb{R} from part (b).
(d) Show that for $z \in \mathbb{C}$ the condition $z \in \mathbb{R}$ and $\tau z=z$ are equivalent. Conclude that $N z=$ $N_{\mathbb{R}}^{\mathbb{C}} z=\frac{\text { def }}{=} z \cdot \tau z$ is a multiplicative map $\mathbb{C} \rightarrow \mathbb{R}$.
(e) Show that \mathbb{C} is a field.

Hint: Show first that if $z \in \mathbb{C}$ is non-zero then $N z$ is non-zero.
9. (Quadratic equations in \mathbb{C}).
(a) Let $d \in \mathbb{C}$. Show that there exist $z \in \mathbb{C}$ such that $z^{2}=d$.
(b) Let $a, b, c \in \mathbb{C}$ with $a \neq 0$, and let $d=b^{2}-4 a c$. Show that the equation $a z^{2}+b z+c=0$ has two solutions in \mathbb{C} when $d \neq 0$, and one solution when $d=0$.

Optional - The field of Laurent series

DEFINITION. Let R be a ring. A formal Laurent series over R is a formal sum $f(x)=\sum_{i \geq i_{0}} a_{i} x^{i}$, in other words a function $a: \mathbb{Z} \rightarrow R$ for which there exists $i_{0} \in \mathbb{Z}$ so that $a_{i}=0$ for all $i \leq i_{0}$. We define addition and multiplication in the obvious way and write $R((x))$ for the set of Laurent series. For non-zero $f \in R((x))$ let $v(f)=\min \left\{i \mid a_{i} \neq 0\right\}$ ("order of vanishing at 0 "; also set $v(0)=\infty$). Then set $|f|=q^{-v(f)}(|0|=0)$ where $q>1$ is a fixed real number.
A. Show that $R((x))$ is a ring, and that $R[[x]]$ is a subring.
B. (Invertibility)
(a) Show that $1-x$ is invertible in $R[[x]]$.

Hint: Find a candidate series for $\frac{1}{1-x}$ and calculate the product.
(b) Show that $R[[x]]^{\times}=\left\{a+x f \mid a \in R^{\times}, f \in R[[x]]\right\}$.
(c) Show that $f \in R((x))$ is invertible iff it is non-zero, and
(d) Show that $F((x))$ is a field for any field F.
C. (Locality) Let F be a field.
(a) Let $I \triangleleft F[[x]]$ be a non-zero ideal. Show that $I=x^{n} F[[x]]$ for some $n \geq 1$. Hint: Show that $f \in F[[x]]$ can be written in the form $x^{v(f)} g(x)$ where $g \in F[[x]] \times$.
(b) Show that the natural map $F[x] / x^{n} F[x] \rightarrow F[[x]] / x^{n} F[[x]]$ is an isomorphism.
C. (Completeness)
(a) Show that $v(f g)=v(f)+v(g)$, equivalently that $|f g|=|f||g|$ for all $f, g \in R((x))$.
(b) Prove the ultrametric inequality $v(f+g) \geq \min \{v(f), v(g)\} \Longleftrightarrow|f+g| \leq \max \{|f|,|g|\}$ and conclude that $d(f, g)=|f-g|$ defines a metric on f.
(c) Show that $\left\{f_{n}\right\}_{n=1}^{\infty} \subset R((x))$ is a Cauchy sequence iff there exists i_{0} such that $v\left(f_{n}\right) \geq i_{0}$ for all n, and if for each i there exists $N=N(i)$ and $r \in R$ so that for $n \geq N$ the coefficient of x^{i} in f_{n} is r.
(d) Show that $(R((x)), d)$ is complete metric space.
(e) Show that $R[[x]]$ is closed in $R((x))$.
(f) Show that $R[[x]]$ is compact iff R is finite.
D. (Ultrametric Analysis) Let $\left\{a_{n}\right\}_{n=1}^{\infty} \subset R((x))$. Show that $\sum_{n=1}^{\infty} a_{n}$ converges in $R((x))$ iff $\lim _{n \rightarrow \infty} a_{n}=0$.
Hint: Assume first that $a_{n} \in R[[x]]$ for all n, and for each k consider the projection of $\sum_{n=1}^{N} a_{n}$ to $R[[x]] / x^{k} R[[x]]$.
E. (The degree valuation) Let F be a field.
(a) For $f \in F[x]$ set $v_{\infty}(f)=-\operatorname{deg}(f)$ (and set $v_{\infty}(0)=\infty$). Show that $v_{\infty}(f g)=v_{\infty}(f)+$ $v_{\infty}(g)$. Show that $v_{\infty}(f+g) \geq \min \left\{v_{\infty}(f), v_{\infty}(g)\right\}$.
(b) Extend v_{∞} to the field $F(x)$ of rational functions and show that it retains the properties above. For a rational function f you can think of $v_{\infty}(f)$ as "the order of f at ∞ ", just like $v(f)$ measures the order of f at zero.
(c) Show that the completion of $F(x)$ w.r.t. the metric coming from v_{∞} is exactly $R\left(\left(\frac{1}{x}\right)\right)$.

