Math 422/501: Problem set 5 (due 14/9/09)

Ideals in Rings

Let *R* be a ring. Recall that an *ideal* $I \triangleleft R$ is an additive subgroup $I \subset R$ so that $rI \subset I$ for all $r \in R$.

- 1. (Working with ideals)
 - (a) Let \mathscr{I} be a set of ideals in *R*. Show that $\bigcap \mathscr{I}$ is an ideal.
 - (b) Given a non-empty $S \subset R$ show that $(S) \stackrel{\text{def}}{=} \bigcap \{I \mid S \subset I \lhd R\}$ is the smallest ideal of R containing S.
 - (c) Show that $(S) = \{\sum_{i=1}^{n} r_i s_i \mid n \ge 0, r_i \in R, s_i \in S\}.$
 - (d) Let $a \in R^{\times}$. Show that *a* is not contained in any proper ideal. *Hint*: Show that $a \in I$ implies $1 \in I$.
- 2. (Prime and maximal ideals) Call $I \triangleleft R$ prime if whenever $a, b \in R$ satisfy $ab \in I$, we have $a \in I$ or $b \in I$. Call *I* maximal if it is not contained in any proper ideal of *R*.
 - (a) Show that *R* is an integral domain iff $(0) = \{0\} \triangleleft R$ is prime.
 - (b) Show that $I \triangleleft R$ is prime iff R/I is an integral domain.
 - (c) Show that R is a field iff (0) is its unique ideal (equivalently, a maximal ideal).
 - (d) Use the correspondence theorem to show that I is maximal iff R/I is a field.
 - (e) Show that every maximal ideal is prime. *Hint:* Every field is an integral domain.
- 3. (Polynomials and maps of fields) Let $\varphi \colon F \to K$ be a map of fields, and let $\alpha \in K$.
 - (a) Show that φ is injective. *Hint:* consider the kernel of the map.
 - (b) Show that there is a unique homomorphism of rings ("evaluation at α ") $\tilde{\varphi}_{\alpha} \colon F[x] \to K$ compatible with the embedding $F \hookrightarrow F[x]$ so that $\tilde{\varphi}_{\alpha}(x) = \alpha$. For $f \in F[x]$ we usually write $f(\alpha)$ for $\tilde{\varphi}_{\alpha}(f)$.

Hint: Write $\tilde{\varphi}_{\alpha}$ as the composition of a map $F[x] \to K[x]$ and a map $K[x] \to K$.

- (c) Show that $\tilde{\varphi}_{\alpha}$ is not injective iff there exists $f \in F[x]$ (or $f \in K[x]$ with coefficients in the image of φ) so that $f(\alpha) = 0$.
- OPTIONAL If $\tilde{\varphi}$ is not injective, show that its kernel is of the form (f) for an irreducible polynomial $f \in F[x]$ and its image is a subfield of *K*.
- 4. (The field of rational functions) Let F be a field.
 - (a) For $f, g, h, k \in F[x]$ with $g, k \neq 0$ say $\frac{f}{g} \sim \frac{h}{k}$ if fk = gh. Show that \sim is an equivalence relation.
 - (b) Show that $F(x) = \left\{ \frac{f}{g} \mid f, g \in F[x], g \neq 0 \right\} / \sim$ is a field, and that the natural map $\iota : F[x] \to F(x)$ given by $f \mapsto \frac{f}{1}$ is an embedding.
 - (c) $\varphi: F \to K$ be an embedding of fields, and let $\alpha \in K$. Assume that $f(\alpha) \neq 0$ for all non-zero $f \in F[x]$, and show that φ extends uniquely to a map $\tilde{\varphi}_{\alpha}: F(x) \to K$ so that $\tilde{\varphi}_{\alpha}(x) = \alpha$.

DEFINITION. Call $\alpha \in K$ algebraic over *F* if the situation of 3(c) holds, *transcendental over F* if the situation of 4(c) holds.

Irreducible polynomials and zeroes

- 5. Let $f \in \mathbb{Z}[x]$ be non-zero and let $\frac{a}{b} \in \mathbb{Q}$ be a zero of f with (a,b) = 1. Show that constant coefficient of f is divisible by a and that the leading coefficient is divisible by b. Conclude that if f is monic then any rational zero of f is in fact an integer.
- 6. Decide while the following polynomials are irreducible:
 - (a) $t^4 + 1$ over \mathbb{R} .
 - (b) $t^4 + 1$ over \mathbb{Q} .
 - (c) $t^3 7t^25 + 3t + 3$ over \mathbb{Q} .
- 7. Show that $t^4 + 15t^3 + 7$ is reducible in $\mathbb{Z}/3\mathbb{Z}$ but irreducible in $\mathbb{Z}/5\mathbb{Z}$. Conclude that it is irreducible in $\mathbb{Q}[x]$.
- 8. Let \mathbb{R} be the field of real numbers. Let $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$, and define $(a + bi) + (c + di) \stackrel{\text{def}}{=} (a + b) + (c + d)i$, $(a + bi)(c + di) \stackrel{\text{def}}{=} (ac bd) + (ad + bc)i$.
 - (a) Show that the definition makes \mathbb{C} into a ring.
 - (b) Show that $\{a + 0i \mid a \in \mathbb{R}\}$ is a subfield of \mathbb{C} isomorphic to \mathbb{R} .
 - (c) Show that the *complex conjugation* map $\tau(a+bi) = a-bi$ is a field isomorphism $\tau \colon \mathbb{C} \to \mathbb{C}$ which restricts to the identity map on the image of \mathbb{R} from part (b).
 - (d) Show that for $z \in \mathbb{C}$ the condition $z \in \mathbb{R}$ and $\tau z = z$ are equivalent. Conclude that $Nz = N_{\mathbb{R}}^{\mathbb{C}} z \stackrel{\text{def}}{=} z \cdot \tau z$ is a multiplicative map $\mathbb{C} \to \mathbb{R}$.
 - (e) Show that \mathbb{C} is a field. *Hint*: Show first that if $z \in \mathbb{C}$ is non-zero then Nz is non-zero.
- 9. (Quadratic equations in \mathbb{C}).
 - (a) Let $d \in \mathbb{C}$. Show that there exist $z \in \mathbb{C}$ such that $z^2 = d$.
 - (b) Let $a, b, c \in \mathbb{C}$ with $a \neq 0$, and let $d = b^2 4ac$. Show that the equation $az^2 + bz + c = 0$ has two solutions in \mathbb{C} when $d \neq 0$, and one solution when d = 0.

Optional - The field of Laurent series

DEFINITION. Let *R* be a ring. A *formal Laurent series* over *R* is a formal sum $f(x) = \sum_{i \ge i_0} a_i x^i$, in other words a function $a: \mathbb{Z} \to R$ for which there exists $i_0 \in \mathbb{Z}$ so that $a_i = 0$ for all $i \le i_0$. We define addition and multiplication in the obvious way and write R((x)) for the set of Laurent series. For non-zero $f \in R((x))$ let $v(f) = \min\{i \mid a_i \ne 0\}$ ("order of vanishing at 0"; also set $v(0) = \infty$). Then set $|f| = q^{-v(f)}$ (|0| = 0) where q > 1 is a fixed real number.

- A. Show that R((x)) is a ring, and that R[[x]] is a subring.
- B. (Invertibility)
 - (a) Show that 1 x is invertible in R[[x]].

Hint: Find a candidate series for $\frac{1}{1-x}$ and calculate the product.

- (b) Show that $R[[x]]^{\times} = \{a + xf \mid a \in \mathbb{R}^{\times}, f \in \mathbb{R}[[x]]\}.$
- (c) Show that $f \in R((x))$ is invertible iff it is non-zero, and
- (d) Show that F((x)) is a field for any field *F*.
- C. (Locality) Let F be a field.
 - (a) Let $I \triangleleft F[[x]]$ be a non-zero ideal. Show that $I = x^n F[[x]]$ for some $n \ge 1$. *Hint*: Show that $f \in F[[x]]$ can be written in the form $x^{v(f)}g(x)$ where $g \in F[[x]]^{\times}$.
 - (b) Show that the natural map $F[x]/x^n F[x] \to F[[x]]/x^n F[[x]]$ is an isomorphism.
- C. (Completeness)

to $R[[x]]/x^k R[[x]]$.

- (a) Show that v(fg) = v(f) + v(g), equivalently that |fg| = |f||g| for all $f, g \in R((x))$.
- (b) Prove the *ultrametric inequality* $v(f+g) \ge \min \{v(f), v(g)\} \iff |f+g| \le \max \{|f|, |g|\}$ and conclude that d(f,g) = |f-g| defines a metric on f.
- (c) Show that $\{f_n\}_{n=1}^{\infty} \subset R((x))$ is a Cauchy sequence iff there exists i_0 such that $v(f_n) \ge i_0$ for all n, and if for each i there exists N = N(i) and $r \in R$ so that for $n \ge N$ the coefficient of x^i in f_n is r.
- (d) Show that (R((x)), d) is complete metric space.
- (e) Show that R[[x]] is closed in R((x)).
- (f) Show that R[[x]] is compact iff *R* is finite.
- D. (Ultrametric Analysis) Let $\{a_n\}_{n=1}^{\infty} \subset R((x))$. Show that $\sum_{n=1}^{\infty} a_n$ converges in R((x)) iff $\lim_{n\to\infty} a_n = 0$. *Hint*: Assume first that $a_n \in R[[x]]$ for all *n*, and for each *k* consider the projection of $\sum_{n=1}^{N} a_n$
- E. (The degree valuation) Let *F* be a field.
 - (a) For $f \in F[x]$ set $v_{\infty}(f) = -\deg(f)$ (and set $v_{\infty}(0) = \infty$). Show that $v_{\infty}(fg) = v_{\infty}(f) + v_{\infty}(g)$. Show that $v_{\infty}(f+g) \ge \min\{v_{\infty}(f), v_{\infty}(g)\}$.
 - (b) Extend v_∞ to the field F(x) of rational functions and show that it retains the properties above. For a rational function f you can think of v_∞(f) as "the order of f at ∞", just like v(f) measures the order of f at zero.
 - (c) Show that the completion of F(x) w.r.t. the metric coming from v_{∞} is exactly $R((\frac{1}{x}))$.