Math 422/501: Problem set 4 (due 7/10/09)

Solvable groups

1. Show the following are equivalent:
(a) Every finite group of odd order is solvable.
(b) Every non-abelian finite simple group is of even order.

Aside: That (a) holds is a famous Theorem of Feit and Thompson (1963).
2. Let F be a field. Let $G=\mathrm{GL}_{n}(F)$, let $B<G$ be the subgroup of upper-triangular matrices, $N<B$ the subgroup of matrices with 1 s on the diagonal. Next, for $0 \leq j \leq n-1$ write N_{j} for the matrices with $1 s$ on the main diagonal and 0 s on the next j diagonals. When $n=4$ we have:

$$
N=N_{0}=\left\{\left(\begin{array}{cccc}
1 & * & * & * \\
& 1 & * & * \\
& & 1 & * \\
& & & 1
\end{array}\right)\right\}, N_{1}=\left\{\left(\begin{array}{cccc}
1 & 0 & * & * \\
& 1 & 0 & * \\
& & 1 & 0 \\
& & & 1
\end{array}\right)\right\}, N_{2}=\left\{\left(\begin{array}{cccc}
1 & 0 & 0 & * \\
& 1 & 0 & 0 \\
& & 1 & 0 \\
& & & 1
\end{array}\right)\right\} \text { etc }
$$

(a) Show that $N \triangleleft B$ and that $B / N \simeq\left(F^{\times}\right)^{n}$ (direct product of n copies).
(b) For each $0 \leq j<n-1, N_{j+1} \triangleleft N_{j}$ and $N_{j} / N_{j+1} \simeq F^{n-j-1}$ (direct products of copies of the additive group of F).
(c) Conclude that B is solvable.

Definition. Let G be a group. The derived series of G is the sequence of subgroups defined by $G^{(0)}=G$ and $G^{(i+1)}=\left(G^{(i)}\right)^{\prime}$ (commutator subgroups).
3. Let G be a group and assume $G^{(k)}=\{e\}$. Show that G is solvable.
4. Let G be a solvable group, say with normal series $G=G_{0} \triangleright G_{1} \triangleright G_{2} \triangleright \cdots \triangleright G_{k}=\{e\}$. Show that $G^{(i)}<G_{i}$ for all i. Conclude that G is solvable iff the derived series terminates.

OPTIONAL Let $S_{\infty} \subset S_{\mathbb{N}}$ denote the set of permutations of finite support.
(a) Show that $S_{\infty}=\bigcup_{n} S_{n}$ with respect to the natural inclusion of $S_{n}=S_{[n]}$ in S_{∞}.
(b) Let $A_{\infty}=\bigcup_{n} A_{n}$ with respect to the same inclusion. Show that A_{∞} is a subgroup of S_{∞} of index 2.
(c) Show that A_{∞} is simple.

