Math 422/501: Problem set 2 (due 23/9/09)

Direct and semidirect products

- 1. Let *G* be a group, and let *A*, *B* be subgroups of *G* so that *B* is normal and $A \cap B = \{e\}$.
 - (a) Show that $A \ltimes B = \{a \cdot b \mid a \in A, b \in B\}$ is a subgroup of *G*; and that every element of it can be uniquely written as a product $a \cdot b$. We call this subgroup the *internal semidirect product* of *A*, *B*.
 - (b) Assuming that A is normal as well show that ab = ba for all $a \in A, b \in B$. In that case we say that the subgroup AB is the *internal direct product* of A, B.
- 2. Let G, H be groups. Let $G \times H = \{(g,h) \mid g \in G, h \in H\}$ and give it the group structure $(g,h) \cdot (g',h') = (gg',hh')$. Show that this makes $G \times H$ into a group (called the *direct product* of G, H) and find normal subgroups $\overline{G}, \overline{H} < G \times H$ isomorphic to G, H respectively so that $G \times H$ is the internal direct product of \overline{G} and \overline{H} .
- 3. Let *G*, *H* be groups and let *G* act on *H* by automorphisms (in other words, for each $g \in G$ you are given a group isomorphism $\alpha_g \colon H \to H$ such that $\alpha_{gh} = \alpha_g \circ \alpha_h$). Give the set $G \times H$ the group structure $(g', h') \cdot (g, h) = (g'g, \alpha_{g^{-1}}(h')h)$. Show that this gives a group structure called the *semidirect product* $G \ltimes H$. Show that the semidirect product contains subgroups $\overline{G}, \overline{H}$ with \overline{H} normal such that $G \ltimes H$ is the internal semidirect product of *G*, *H*.

p-Groups

4. Let G be a non-abelian group of order p^3 , p a prime. Show that Z(G) has order p and that $G/Z(G) \simeq C_p \times C_p$.

Cyclic group actions and cycle decompositions

- 5. Let *G* be a group acting on a set *X*, and let $g \in G$. Show that a subset $Y \subset X$ is invariant under the action of the subgroup $\langle g \rangle$ of *G* iff gY = Y. When *Y* is finite show that assuming $gY \subset Y$ is enough.
- 6. For $\alpha \in S_n$ write supp (α) for the set $\{i \in [n] \mid \alpha(i) \neq i\}$.
 - (a) Show that supp(α) is invariant under the action of $\langle \alpha \rangle$.
 - (b) Show that if $\operatorname{supp}(\alpha) \cap \operatorname{supp}(\beta) = \emptyset$ then $\alpha\beta = \beta\alpha$.

- 7. (Cycle decomposition) Call $\sigma \in S_n$ a *cycle* if its support is a single orbit of $\langle \sigma \rangle$, in which case we call the size of the support the *length* of the cycle.
 - (a) Let $\alpha \in S_n$, and let $O \subset [n]$ be an orbit of $\langle \alpha \rangle$ of length at least 2. Show that there exists a unique cycle $\beta \in S_n$ supported on O so that $\alpha \upharpoonright_O = \beta \upharpoonright_O$ (that is, the restrictions of the functions α, β to the set O are equal).
 - (b) Let $\alpha \in S_n$ and let $\{\beta_O \mid O \text{ an orbit of } \langle \alpha \rangle\}$ be the set of cycles obtained in part (a). Show that they all commute and that their product is α .
 - (c) Show that every element of S_n can be written uniquely as a product of cycles of disjoint support.
 - (d) Consider the action of $[4]_{35} = 4 + 35\mathbb{Z} \in \mathbb{Z}/35\mathbb{Z}$ by multiplication on $\mathbb{Z}/35\mathbb{Z}$. Decompose this permutation into a product of cycles.
- 8. (The conjugacy classes of S_n)
 - (a) Let $\alpha, \beta \in S_n$ with α a cycle. Show that $\beta \alpha \beta^{-1}$ is a cycle as well.
 - (b) Show that α, β ∈ S_n are conjugate iff for each 2 ≤ l ≤ n the number of cycles of length l in their cycle decomposition is the same.
 Hint: Constructs a bijection from [n] to [n] that converts one partition into orbits into the other.

Affine algebra

DEFINITION 66. Let *F* be a field, V/F a vector space. An *affine combination* is a formal sum $\sum_{i=1}^{n} t_i \underline{v}_i$ where $t_i \in F$, $\underline{v}_i \in V$ and $\sum_{i=1}^{n} t_i = 1$. If *V*, *W* are vector spaces then a map $f: V \to W$ is called an *affine map* if for every affine combination in *V* we have

$$f\left(\sum_{i=1}^{n} t_i \underline{\nu}_i\right) = \sum_{i=1}^{n} t_i f\left(\underline{\nu}_i\right) \,.$$

- 9. (The affine group) Let U, V, W be vector spaces over $F, f: U \to V, g: V \to W$ affine maps.
 - (a) Show that $g \circ f \colon U \to W$ is affine.
 - (b) Assume that f is bijective. Show that its set-theoretic inverse $f^{-1}: V \to U$ is an affine map as well.
 - (c) Let Aff(V) denote the set of invertible affine maps from V to V. Show that Aff(V) is a group, and that it has a natural action on V.
 - (d) Assume that $f(\underline{0}_U) = \underline{0}_V$. Show that f is a linear map.
- 10. (Elements of the affine group)
 - (a) Given $\underline{a} \in V$ show that $T_{\underline{a}\underline{x}} = \underline{x} + \underline{a}$ ("translation by \underline{a} ") is an affine map.
 - (b) Show that the map $\underline{a} \mapsto T_{\underline{a}}$ is a group homomorphism from the additive group of V to Aff(V). Write $\mathbb{T}(V)$ for the image.
 - (c) Show that $\mathbb{T}(V)$ acts transitively on *V*. Show that the action is *simple*: for any $\underline{x} \in V$, $\operatorname{Stab}_{\mathbb{T}(V)}(\underline{x}) = \{T_0\}$.
 - (d) Fixing a basepoint $\underline{0} \in V$, show that every $A \in Aff(V)$ can be uniquely written in the form $A = T_a B$ where $\underline{a} \in V$ and $B \in GL(V)$. Conclude that $Aff(V) = \mathbb{T}(V) \cdot GL(V)$ setwise.
 - (e) Show that $\mathbb{T}(V) \cap GL(V) = \{1\}$ and that $\mathbb{T}(V)$ is a normal subgroup of Aff(*V*). Show that Aff(*V*) is isomorphic to the semidirect product $GL(V) \ltimes (V, +)$.

Additional (not for credit)

- A. Let *F* be a finite field with *q* elements, V/F a vector space of dimension *n*. Find a formula for the *Gaussian binomial coefficient* $\binom{n}{k}_q$, the number of *k*-dimensional subspaces of *V* of dimension *k*. Show that this is a polynomial in *q* and that its limit as $q \to 1$ is the usual binomial coefficient $\binom{n}{k}$.
- 10. Let *F* be a field, *V* a finite-dimensional *F*-vector space. A *flag* in *V* is a nested sequence $\{0\} = W_0 \subsetneq W_1 \subsetneq \cdots \subsetneq W_k \subsetneq W_{k+1} = V$ of subspaces of *V*.
 - (a) Show that G = GL(V) acts on the space for flags.
 - (b) Find the orbits of the action and show that no two are isomorphic as *G*-sets. Orbit stabilizers are called *parabolic subgroups*.
 - (c) Let *F* be finite (say with *q* elements). Find the size of each orbit. *Hint:* The set of subspaces of *V* containing *W* is in bijection with the set of subspaces of the quotient vector space V/W.
 - (d) Let B < G be the stabilizer of a maximal flag ("Borel subgroup"). Find the order of B, hence the order of G.