HYPERBOLIC GEOMETRY

1. The hyperbolic plane

The manifold.

- $\mathbb{H}=\{x+i y \mid y>0\}, d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}, d A(z)=\frac{d x d y}{y^{2}}$.
- $\mathbb{D}=\{(r, \theta) \mid r<1\}, d s^{2}=4 \frac{d r^{2}+r^{2} d \theta^{2}}{\left(1-r^{2}\right)^{2}}$.
- $z \mapsto \frac{z-i}{z+i} ; w \mapsto-i \frac{w+1}{w-1}$

Isometries (upper halfplane model).

- Obvious isometries
$-z \mapsto z+x ; N=\left(\begin{array}{cc}1 & x \\ & 1\end{array}\right)$
$-z \mapsto a z ; A=\left(\begin{array}{cc}\sqrt{a} & \\ & 1 / \sqrt{a}\end{array}\right)$.
- Together act simply transitively. Thus $\operatorname{Isom}(\mathbb{H})=N A \times K$ where $K=$ $\operatorname{Stab}(i)$.
- By the disc model, $K=O(2)$. Thus $\operatorname{Isom}(\mathbb{H})=\mathrm{PGL}_{2}(\mathbb{R})$ (elements of negative determinant act via $z \mapsto \frac{a \bar{z}+b}{c \bar{z}+d}$) and K acts transitively on each sphere.
- Set $G=\mathrm{PGL}_{2}^{+}(\mathbb{R})=\mathrm{PSL}_{2}(\mathbb{R})$ (elements of positive determinant).

Geodesics \& the boundary.

- Clearly there is a unique shortest curve connecting $i, i y$: the vertical line. It has length $|\log y|$. Thus the space is uniquely geodesic.
- Well-known: G maps circles and lines to circles and lines; preserves angles and boundary. Thus geodesics are lines or circles and meet boundary at right angles. This means vertical lines and semicircular arcs with endpoints on \mathbb{R}.
- Every geodesic segment can be infinitely extended in either direction in a unique fashion. For every distinct $x, y \in \mathbb{H}$ there is a unique geodesic connecting them.
- Fix a point $i \infty \in \partial \mathbb{H}$. Then for every $z, z^{\prime} \in \mathbb{H}$ the associated geodesic rays $\gamma(t), \gamma^{\prime}(t)$ have $\lim _{t \rightarrow \infty} d\left(\gamma(t), \gamma^{\prime}(t)\right)$ exists. Define an equivalence relation by having the limit equal zero. A horosphere is an equivalence relation, clearly the set $\left\{z^{\prime} \mid \Im(z)=\Im(z)\right\}$. This is an N-orbit. For the boundary point $g \cdot(i \infty)$ this is an orbit of $g N g^{-1}$. The horosphere is the limit of spheres of radius t around $\gamma(t)$. The region bounded by a horosphere is called a horoball.
Classification of isometries.
- Stablizers:
$-\operatorname{Stab}_{G}(i)=K$
$-\operatorname{Stab}_{G}(i \infty)=A N$
$-\operatorname{Stab}_{G}(0) \cap \operatorname{Stab}_{G}(i \infty)=A$.
- Call $\gamma \in \operatorname{SL}_{2}(\mathbb{R})$
- elliptic if $|\operatorname{tr}(\gamma)|<2$, equivalently if γ fixes a point in \mathbb{H}, or is conjugate to an element of K.
- hyperbolic if $|\operatorname{tr}(\gamma)|>2$, equivalently if γ fixes a two points in $\partial \mathbb{H}$, or is conjugate to an element of A.
- parabolic if $|\operatorname{tr}(\gamma)|=2$, equivalently if γ fixes a unique point in $\partial \mathbb{H}$, or is conjugate to an element of N.

2. Discrete Subgroups, fundamental domains \& Cusps

Let $\Gamma<G$ be discrete, also known as a Fuchsian group.
Lemma 2.1. Γ acts properly discontinuously on \mathbb{H} : for every compact set C, $\{\gamma \in \Gamma: \gamma C \cap C \neq \emptyset\}$ is finite.
Definition 2.2. Let $z_{0} \in \mathbb{H}$. The Voronoi cell of z is the set $\mathcal{F}=\left\{z \in \mathbb{H} \mid \forall \gamma \in \Gamma: d\left(z, z_{0}\right) \leq d\left(z, \gamma z_{0}\right)\right\}$.
Lemma 2.3. \mathcal{F} is convex. It is a fundamental domain for the action of Γ. Its boundary is a countable union of geodesic segments.
Definition 2.4. Say Γ is of the first kind if $\int_{\mathcal{F}} d A(z)<\infty$.
Shape of \mathcal{F} : cusps.
Lemma 2.5. Assume $T=\left(\begin{array}{ll}1 & 1 \\ & 1\end{array}\right) \in \Gamma$. Then every $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma$ has either $c=0$ or $|c| \geq 1$.
Proof. Set $A_{0}=\gamma, A_{n+1}=A_{n} T A_{n}^{-1}$. Then $A_{1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}1 & 1 \\ & 1\end{array}\right)\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=$ $\left(\begin{array}{cc}a & a+b \\ c & c+d\end{array}\right)\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=\left(\begin{array}{cc}1-a c & a^{2} \\ -c^{2} & 1+a c\end{array}\right)$, and by induction can write

$$
A_{n}=\left(\begin{array}{cc}
1-a_{n} c_{n} & a_{n}^{2} \\
-c_{n}^{2} & 1+a_{n} c_{n}
\end{array}\right)
$$

with $\left|c_{n}\right|=c^{2^{n}}$. Assume now that $0<|c|<1$. Then also $\left|a_{n}\right| \leq n+\left|a_{0}\right|$. Since $c_{n} \rightarrow 0$ and $a_{n} c_{n} \rightarrow 0$ it follows that $a_{n+1}=1-a_{n} c_{n} \rightarrow 1$ and hence that $A_{n} \rightarrow A$ but they are distinct. This contradicts the discreteness of Γ.

Definition 2.6. Say $\xi \in \partial \mathbb{H}$ is a cusp of Γ if it is fixed by a parabolic element of Γ.

Lemma 2.7. If ξ is a cusp then $\Gamma_{\xi}=\operatorname{Stab}_{\Gamma}(\xi)$ consists of parabolic elements.
Proof. May assume $\xi=i \infty$ and that $T \in \Gamma$. If $A=\left(\begin{array}{cc}a & b \\ & d\end{array}\right) \in \Gamma$ with $|a|<1$ then $A^{n} T A^{-n}=\left(\begin{array}{cc}1 & a^{2 n} \\ & 1\end{array}\right) \rightarrow I_{2}$, a contradiction.
Lemma 2.8. Given a cusp ξ of Γ there exists a horoball D such that $\gamma D \cap D \neq \emptyset$ for $\gamma \in \Gamma$ implies $\gamma \in \Gamma_{\xi}$.
Proof. Again assume $\xi=i \infty$ and $T \in \Gamma$. For $\gamma \notin \Gamma_{\xi}$ we have $|c| \geq 1$ and $\Im(\gamma z)=$ $\frac{\Im(z)}{|c z+d|^{2}}$. Hence

$$
\Im(z) \Im(\gamma z)=\frac{y^{2}}{(c x+d)^{2}+c^{2} y^{2}} \leq \frac{1}{c^{2}} \leq 1
$$

It follows that the horoball $\{y>1\}$ has this property.

Corollary 2.9. All $\Gamma \backslash \Gamma_{\xi}$-translates of $D_{r}\{y>r\}$ lie in $\left\{y<r^{-1}\right\}$. In particular, for r large enough they avoid any fixed compact set.

If ξ, ξ^{\prime} are inequvivalent cusps then can also choose the horoballs to be disjoint in the quotient. It follows that the quotient has the form of a compact set together with a union of quotients of horoballs.
Corollary 2.10. If $\Gamma \backslash \mathbb{H}$ is compact then it has no cusps.
Note that the map $\Gamma_{\xi} \backslash D \rightarrow \Gamma \backslash \mathbb{H}$ is an embedding, and that the area of $\Gamma_{\xi} \backslash D_{r}$ is $\int_{-\frac{1}{2}}^{\frac{1}{2}} d x \int_{1}^{\infty} \frac{d y}{y^{2}}=1$. This horobally is in fact disjoint to
Lemma 2.11. Can bound below width of cusps; hence Γ has finitely many equivalence classes of cusps.

