HYPERBOLIC GEOMETRY

1. The hyperbolic plane

The manifold.

- $\mathbb{H} = \{x + iy \mid y > 0\}, ds^2 = \frac{dx^2 + dy^2}{y^2}, dA(z) = \frac{dxdy}{y^2}.$ $\mathbb{D} = \{(r, \theta) \mid r < 1\}, ds^2 = 4\frac{dr^2 + r^2d\theta^2}{(1 r^2)^2}.$

•
$$z \mapsto \frac{z-i}{z+i}; w \mapsto -i\frac{w+1}{w-1}$$

Isometries (upper halfplane model).

• Obvious isometries

$$-z \mapsto z + x; N = \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix}$$
$$-z \mapsto az; A = \begin{pmatrix} \sqrt{a} \\ & 1/\sqrt{a} \end{pmatrix}$$

- Together act simply transitively. Thus $\operatorname{Isom}(\mathbb{H}) = NA \times K$ where K = $\operatorname{Stab}(i)$.
- By the disc model, K = O(2). Thus $\operatorname{Isom}(\mathbb{H}) = \operatorname{PGL}_2(\mathbb{R})$ (elements of negative determinant act via $z \mapsto \frac{az+b}{cz+d}$) and K acts transitively on each sphere.
- Set $G = \operatorname{PGL}_2^+(\mathbb{R}) = \operatorname{PSL}_2(\mathbb{R})$ (elements of positive determinant).

Geodesics & the boundary.

- Clearly there is a unique shortest curve connecting i, iy: the vertical line. It has length $|\log y|$. Thus the space is uniquely geodesic.
- Well-known: G maps circles and lines to circles and lines; preserves angles and boundary. Thus geodesics are lines or circles and meet boundary at right angles. This means vertical lines and semicircular arcs with endpoints on \mathbb{R} .
- Every geodesic segment can be infinitely extended in either direction in a unique fashion. For every distinct $x, y \in \overline{\mathbb{H}}$ there is a unique geodesic connecting them.
- Fix a point $i \infty \in \partial \mathbb{H}$. Then for every $z, z' \in \mathbb{H}$ the associated geodesic rays $\gamma(t), \gamma'(t)$ have $\lim_{t\to\infty} d(\gamma(t), \gamma'(t))$ exists. Define an equivalence relation by having the limit equal zero. A horosphere is an equivalence relation, clearly the set $\{z' \mid \Im(z) = \Im(z)\}$. This is an N-orbit. For the boundary point $g \cdot (i\infty)$ this is an orbit of gNg^{-1} . The horosphere is the limit of spheres of radius t around $\gamma(t)$. The region bounded by a horosphere is called a *horoball*.

Classification of isometries.

- Stablizers:
 - $-\operatorname{Stab}_G(i) = K$
 - $-\operatorname{Stab}_G(i\infty) = AN$
 - $-\operatorname{Stab}_G(0)\cap\operatorname{Stab}_G(i\infty)=A.$
- Call $\gamma \in \mathrm{SL}_2(\mathbb{R})$

- *elliptic* if $|tr(\gamma)| < 2$, equivalently if γ fixes a point in \mathbb{H} , or is conjugate to an element of K.
- hyperbolic if $|\operatorname{tr}(\gamma)| > 2$, equivalently if γ fixes a two points in $\partial \mathbb{H}$, or is conjugate to an element of A.
- parabolic if $|tr(\gamma)| = 2$, equivalently if γ fixes a unique point in $\partial \mathbb{H}$, or is conjugate to an element of N.
- 2. DISCRETE SUBGROUPS, FUNDAMENTAL DOMAINS & CUSPS

Let $\Gamma < G$ be discrete, also known as a *Fuchsian group*.

Lemma 2.1. Γ acts properly discontinuously on \mathbb{H} : for every compact set C, $\{\gamma \in \Gamma : \gamma C \cap C \neq \emptyset\}$ is finite.

Definition 2.2. Let $z_0 \in \mathbb{H}$. The Voronoi cell of z is the set $\mathcal{F} = \{z \in \mathbb{H} \mid \forall \gamma \in \Gamma : d(z, z_0) \leq d(z, \gamma z_0)\}$. Lemma 2.3. \mathcal{F} is convex. It is a fundamental domain for the action of Γ . Its boundary is a countable union of geodesic segments.

Definition 2.4. Say Γ is of the first kind if $\int_{\mathcal{F}} dA(z) < \infty$.

Shape of \mathcal{F} : cusps.

Lemma 2.5. Assume
$$T = \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix} \in \Gamma$$
. Then every $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ has
either $c = 0$ or $|c| \ge 1$.
Proof. Set $A_0 = \gamma$, $A_{n+1} = A_n T A_n^{-1}$. Then $A_1 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} a & a+b \\ -c & a \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 1-ac & a^2 \\ -c^2 & 1+ac \end{pmatrix}$, and by induction can write
 $A_n = \begin{pmatrix} 1-a_n c_n & a_n^2 \\ -c_n^2 & 1+a_n c_n \end{pmatrix}$

with $|c_n| = c^{2^n}$. Assume now that 0 < |c| < 1. Then also $|a_n| \le n + |a_0|$. Since $c_n \to 0$ and $a_n c_n \to 0$ it follows that $a_{n+1} = 1 - a_n c_n \to 1$ and hence that $A_n \to A$ but they are distinct. This contradicts the discreteness of Γ .

Definition 2.6. Say $\xi \in \partial \mathbb{H}$ is a *cusp* of Γ if it is fixed by a parabolic element of Γ .

Lemma 2.7. If ξ is a cusp then $\Gamma_{\xi} = \operatorname{Stab}_{\Gamma}(\xi)$ consists of parabolic elements.

Proof. May assume $\xi = i\infty$ and that $T \in \Gamma$. If $A = \begin{pmatrix} a & b \\ & d \end{pmatrix} \in \Gamma$ with |a| < 1 then $A^n T A^{-n} = \begin{pmatrix} 1 & a^{2n} \\ & 1 \end{pmatrix} \to I_2$, a contradiction.

Lemma 2.8. Given a cusp ξ of Γ there exists a horoball D such that $\gamma D \cap D \neq \emptyset$ for $\gamma \in \Gamma$ implies $\gamma \in \Gamma_{\xi}$.

Proof. Again assume $\xi = i\infty$ and $T \in \Gamma$. For $\gamma \notin \Gamma_{\xi}$ we have $|c| \ge 1$ and $\Im(\gamma z) = \frac{\Im(z)}{|cz+d|^2}$. Hence

$$\Im(z)\Im(\gamma z) = \frac{y^2}{(cx+d)^2 + c^2y^2} \le \frac{1}{c^2} \le 1.$$

It follows that the horoball $\{y > 1\}$ has this property.

Corollary 2.9. All $\Gamma \setminus \Gamma_{\xi}$ -translates of $D_r \{y > r\}$ lie in $\{y < r^{-1}\}$. In particular, for r large enough they avoid any fixed compact set.

If ξ, ξ' are inequvivalent cusps then can also choose the horoballs to be disjoint in the quotient. It follows that the quotient has the form of a compact set together with a union of quotients of horoballs.

Corollary 2.10. If $\Gamma \setminus \mathbb{H}$ is compact then it has no cusps.

Note that the map $\Gamma_{\xi} \setminus D \to \Gamma \setminus \mathbb{H}$ is an embedding, and that the area of $\Gamma_{\xi} \setminus D_r$ is $\int_{-\frac{1}{2}}^{\frac{1}{2}} dx \int_{1}^{\infty} \frac{dy}{y^2} = 1$. This horobally is in fact disjoint to

Lemma 2.11. Can bound below width of cusps; hence Γ has finitely many equivalence classes of cusps.