Math 342, Spring Term 2009 Pre-Midterm Sheet

February 8, 2009

Material

The material for the exam consists of the material covered in the lectures up to and including Friday, Feb 6th, as well as Problem Sets 1 through 5. Here are some headings for the topics we covered:

- Arithmetic in \mathbb{F}_2 (the field with two elements); vectors and linear equations over \mathbb{F}_2 . Application: the one-time pad.
- Proof by induction.
- Foundations of the natural numbers: Peano's axioms; proving the laws of arithmetic, order, and divisibility; well-ordering.
- Foundations of the integers: divisibility and division with remainder, ideals, principal ideals.
- The integers: GCD and LCM, Euclid's Algorithm and Bezout's Theorem, Unique factorization. Application: irrational numbers.
- Congruences and modular arithemtic: definition of congruence and congruence classes; arithmetic modulu *m*; invertibility and inverses using Euclid's algorithm; solving congruences. Application: tests for divisibility by 3, 9 and 11. Application: Luhn's algorithm.
- $\mathbb{Z}/m\mathbb{Z}$: the set of congruence classes; systems of representatives; the laws of arithmetic in $\mathbb{Z}/m\mathbb{Z}$; invertibility; zero-divisors.

Structure

The exam will consist of several problems. Problems can be calculational (only the steps of the calculation are required), theoretical (prove that something holds) or factual (state a Definition, Theorem, etc). The intention is to check that the basic tools are at your fingertips.

Sample paper

- 1. (Unique factorization)
 - (a) [calculational] Write 148 as a product of prime numbers.
 - (b) [factual] State the Theorem on unique factorization of natural numbers.
 - (c) [theoretical] Prove that every natural number can be written as a product of irreducibles.
- 2. Solve the following system of equations in $\mathbb{Z}/5\mathbb{Z}$:

$$\begin{cases} x+y+z &= [4]_5\\ [2]_5x+y-z &= [2]_5\\ [3]_5x+z &= [1]_5 \end{cases}$$

- 3. Prove by induction that $a_n = \frac{n(n+1)}{2}$ is an integer for all $n \ge 0$.
- 4. (modular arithmetic)
 - (a) State the definition of a zero-divisor modulu m.
 - (b) What are the zero-divisors in $\mathbb{Z}/15\mathbb{Z}$?
 - (c) How many non-zero-divisors are there in $\mathbb{Z}/15\mathbb{Z}$?

Solutions

- 1. (Unique factorization0
 - (a) $148 = 2 \cdot 74 = 2 \cdot 2 \cdot 37$.
 - (b) "Every natural number $n \ge 1$ can be written as a (possibly empty) product $n = \prod_{i=1}^{d} p_i$ of prime numbers, uniquely up to the order of the factors." or "For every natural number $n \ne 0$ there exist unique natural numbers $\{e_p\}_{p \text{ prime}}$, all but finitely many of which are zero, such that $n = \prod_{p} p^{e_p}$ ".
 - (c) Let S be the set of natural numbers which are non-zero and which cannot be written as a (possibly empty) product of irreducible numbers. If S is non-empty then by the well-ordering principle it has a least element $n \in S$. If n were irreducible, it would be equal to a product of irreducibles of length 1 (itself), so n must be reducible, that is of the form n = ab with 1 < a, b < n. But then $a, b \notin S$ (since n was minimal). It follows that both a and b are products of irreducibles, say $a = \prod_{i=1}^{d} p_i$ and $b = \prod_{j=1}^{e} q_j$. In that case, $n = \prod_{i=1}^{d} p_i \cdot \prod_{j=1}^{e} q_j$ displays n as a product of irreducibles, a contradiction. It follows that S is empty, that is that every non-zero integer is a product of irreducibles.
- 2. Let (x, y, z) be a solution to the system. Adding the first two equations we see that $[5]_5x + y = [3]_5$. Since $5 \equiv 0$ (5) this reads $y = [3]_5$. Subtracting the first equation from the third gives: $[2]_5x y = [-3]_5$, that is $[2]_5x = y [3]_5 = [0]_5$. Since 2 is invertible modulu 5, we find $x = [0]_5$. Finally, from the last equation we read $z = [1]_5$. Thus, the only possible solution is $x = [0]_5$, $y = [3]_5$, $z = [1]_5$. We now check that this is, indeed a solution: $0 + 3 + 1 = 4 \equiv 4$ (5), $2 \cdot 0 + 3 1 = 2 \equiv 2$ (5) and $3 \cdot 0 + 1 = 1 \equiv 1$ (5) as required.
- 3. When n = 0 we have $a_n = 0$ which is an integer. Continuing by induction, we note that $a_{n+1} - a_n = \frac{(n+1)(n+2)}{2} - \frac{n(n+1)}{2} = \frac{(n+1)}{2} \cdot ((n+2) - n) = \frac{n+1}{2} \cdot 2 = n+1$. Assuming, by induction, that a_n is an integer then shows that $a_{n+1} = a_n + (n+1)$ is an integer as well.
- 4. (zero-divisors)
 - (a) "A number a is a zero-divisor modulu m if there exists b, $b \neq 0$ (m), so that $ab \equiv 0$ (m)" or "a residue class $x \in \mathbb{Z}/m\mathbb{Z}$ is a zero-divisor if there exists $y \in \mathbb{Z}/m\mathbb{Z}$, $y \neq [0]_m$, so that $xy = [0]_m$ ".
 - (b) The zero-divisors are $[0]_{15}, [3]_{15}, [5]_{15}, [6]_{15}, [9]_{15}, [10]_{15}, [12]_{15}$.
 - (c) There are 7 zer0-divisors hence 8 = 15 7 non-zero-divisors.