# Math 342, Spring Term 2009 Pre-Midterm Sheet 

February 8, 2009

## Material

The material for the exam consists of the material covered in the lectures up to and including Friday, Feb $6^{\text {th }}$, as well as Problem Sets 1 through 5. Here are some headings for the topics we covered:

- Arithmetic in $\mathbb{F}_{2}$ (the field with two elements); vectors and linear equations over $\mathbb{F}_{2}$. Application: the one-time pad.
- Proof by induction.
- Foundations of the natural numbers: Peano's axioms; proving the laws of arithmetic, order, and divisibility; well-ordering.
- Foundations of the integers: divisibility and division with remainder, ideals, principal ideals.
- The integers: GCD and LCM, Euclid's Algorithm and Bezout's Theorem, Unique factorization. Application: irrational numbers.
- Congruences and modular arithemtic: definition of congruence and congruence classes; arithmetic modulu $m$; invertibility and inverses using Euclid's algorithm; solving congruences. Application: tests for divisibility by 3, 9 and 11. Application: Luhn's algorithm.
- $\mathbb{Z} / m \mathbb{Z}$ : the set of congruence classes; systems of representatives; the laws of arithmetic in $\mathbb{Z} / m \mathbb{Z}$; invertibility; zero-divisors.


## Structure

The exam will consist of several problems. Problems can be calculational (only the steps of the calculation are required), theoretical (prove that something holds) or factual (state a Definition, Theorem, etc). The intention is to check that the basic tools are at your fingertips.

## Sample paper

1. (Unique factorization)
(a) [calculational] Write 148 as a product of prime numbers.
(b) [factual] State the Theorem on unique factorization of natural numbers.
(c) [theoretical] Prove that every natural number can be written as a product of irreducibles.
2. Solve the following system of equations in $\mathbb{Z} / 5 \mathbb{Z}$ :

$$
\begin{cases}x+y+z & =[4]_{5} \\ {[2]_{5} x+y-z} & =[2]_{5} \\ {[3]_{5} x+z} & =[1]_{5}\end{cases}
$$

3. Prove by induction that $a_{n}=\frac{n(n+1)}{2}$ is an integer for all $n \geq 0$.
4. (modular arithmetic)
(a) State the definition of a zero-divisor modulu $m$.
(b) What are the zero-divisors in $\mathbb{Z} / 15 \mathbb{Z}$ ?
(c) How many non-zero-divisors are there in $\mathbb{Z} / 15 \mathbb{Z}$ ?

## Solutions

1. (Unique factorization0
(a) $148=2 \cdot 74=2 \cdot 2 \cdot 37$.
(b) "Every natural number $n \geq 1$ can be written as a (possibly empty) product $n=\prod_{i=1}^{d} p_{i}$ of prime numbers, uniquely up to the order of the factors." or "For every natural number $n \neq 0$ there exist unique natural numbers $\left\{e_{p}\right\}_{p \text { prime }}$, all but finitely many of which are zero, such that $n=\prod_{p} p^{e_{p}}$.
(c) Let $S$ be the set of natural numbers which are non-zero and which cannot be written as a (possibly empty) product of irrreducible numbers. If $S$ is non-empty then by the well-ordering principle it has a least element $n \in S$. If $n$ were irreducible, it would be equal to a product of irreducibles of length 1 (itself), so $n$ must be reducible, that is of the form $n=a b$ with $1<a, b<n$. But then $a, b \notin S$ (since $n$ was minimal). It follows that both $a$ and $b$ are products of irreducibles, say $a=\prod_{i=1}^{d} p_{i}$ and $b=\prod_{j=1}^{e} q_{j}$. In that case, $n=\prod_{i=1}^{d} p_{i} \cdot \prod_{j=1}^{e} q_{j}$ displays $n$ as a product of irreducibles, a contradiction. It follows that $S$ is empty, that is that every non-zero integer is a product of irreducibles.
2. Let $(x, y, z)$ be a solution to the system. Adding the first two equations we see that $[5]_{5} x+y=[3]_{5}$. Since $5 \equiv 0(5)$ this reads $y=[3]_{5}$. Subtracting the first equation from the third gives: $[2]_{5} x-y=[-3]_{5}$, that is $[2]_{5} x=$ $y-[3]_{5}=[0]_{5}$. Since 2 is invertible modulu 5 , we find $x=[0]_{5}$. Finally, from the last equation we read $z=[1]_{5}$. Thus, the only possible solution is $x=[0]_{5}, y=[3]_{5}, z=[1]_{5}$. We now check that this is, indeed a solution: $0+3+1=4 \equiv 4(5), 2 \cdot 0+3-1=2 \equiv 2(5)$ and $3 \cdot 0+1=1 \equiv 1(5)$ as required.
3. When $n=0$ we have $a_{n}=0$ which is an integer. Continuing by induction, we note that $a_{n+1}-a_{n}=\frac{(n+1)(n+2)}{2}-\frac{n(n+1)}{2}=\frac{(n+1)}{2} \cdot((n+2)-n)=$ $\frac{n+1}{2} \cdot 2=n+1$. Asusming, by induction, that $a_{n}$ is an integer then shows that $a_{n+1}=a_{n}+(n+1)$ is an integer as well.
4. (zero-divisors)
(a) "A number $a$ is a zero-divisor modulu $m$ if there exists $b, b \not \equiv 0(m)$, so that $a b \equiv 0(m)$ " or "a residue class $x \in \mathbb{Z} / m \mathbb{Z}$ is a zero-divisor if there exists $y \in \mathbb{Z} / m \mathbb{Z}, y \neq[0]_{m}$, so that $x y=[0]_{m}$ ".
(b) The zero-divisors are $[0]_{15},[3]_{15},[5]_{15},[6]_{15},[9]_{15},[10]_{15},[12]_{15}$.
(c) There are 7 zer0-divisors hence $8=15-7$ non-zero-divisors.
