Math 342, Spring Term 2009 Pre-Final Sheet

April 13, 2009

The exam has been scheduled for Thursday, April $16^{\text {th }}$ between 15:30-18:00 at Room 100 of the Math Building.

Material

The material for the exam consists of all the material covered in the lectures up to and including Friday, April 3 rd , as well as Problem Sets 1 through 12.

Structure

The exam will consist of several problems. Problems can be calculational (only the steps of the calculation are required), theoretical (prove that something holds) or factual (state a Definition, Theorem, etc). The sample and actual midterm exams present

Sample paper

1. Let F be a field, V a vector space over F.
(a) State what it means for a subset $W \subset V$ to be a subspace.
(b) For $V=F^{4}$, show that $W=\{(x, y, z, w) \in V \mid x+y=z+w\}$ is a subspace.
(c) Assume that $F=\mathbb{F}_{q}$ is the field with q elements. What is $\# V$?
(d) Let $U=\{(x, y, 0,0) \in V\}$. What is $\# U$? Show that $\# U \mid \# V$
(e) Explain why your answer to (d) is a special case of Lagrange's Theorem.
2. Find all solutions to the following systems of equations:
(a) $4 x \equiv 5$ (12), where $x \in \mathbb{Z}$.
(b) $\left\{\begin{array}{l}{[5]_{10} x+[3]_{10} y \equiv[2]_{10}} \\ {[4]_{10} x+y=[0]_{10}}\end{array}\right.$, where $x, y \in \mathbb{Z} / 10 \mathbb{Z}$
(c) $x^{2}=[2]_{3}, x \in \mathbb{Z} / 3 \mathbb{Z}$.
3. PS1 problem 4
4. PS3 problem 9
5. PS10 problem 5.
6. Let $H=\left(\begin{array}{cccc}1 & 1 & 2 & 0 \\ 0 & 2 & 1 & 1\end{array}\right) \in M_{2 \times 4}\left(\mathbb{F}_{3}\right)$ and let $C \subset \mathbb{F}_{3}^{4}$ be the code defined by $C=\{\underline{v} \mid H \underline{v}=\underline{0}\}$.
(a) For any $x, y \in \mathbb{F}_{3}$ show that there is are unique $z, w \in \mathbb{F}_{3}$ so that $\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right) \in C$.
(b) Write a generating matrix for this code. This matrix will represent the encoding function $\binom{x}{y} \mapsto\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right)$ where z, w are as in part (a).
(c) What is the weight of this code?
(d) Can this code correct errors?
7. (RS codes)
(a) Given integers $k \leq n$, a finite field F, and a subset $X \subset F$ of size n, define the Reed-Solomon code of dimension k in F^{n} given by evaluation at X.
(b) Show that the code you defined has weight at least $n-k+1$.
(c) Let $F=\mathbb{F}_{7}, k=2, n=5$. You have received the vector $\underline{v}^{\prime}=$ $(2,6,0,0,4) \in \mathbb{F}_{7}^{5}$ which (up to transmission errors) represents the values of a linear polynomial at the points $X=\{1,2,3,4,5\} \in \mathbb{F}_{7}$. Which linear polynoimal is the maximum likelihood decoding of this transmission? Prove your claim.
8. The group of rigid symmetries of the square is a subgroup $D_{4} \subset S_{4}$ of order 8. In contains a cyclic subgroup of order 4 - the rotations - which we will denote $C_{4} . D_{4}$ also contains the reflection by a diagonal, which we denote π. Using Lagrange's Theorem show that every symmetry of the square is either of the form ρ or $\pi \rho$ for some rotation $\rho \in C_{4}$.

Sample solutions

1. Let F be a field, V a vector space over F.
(a) A subset $W \subset V$ is a subspace if it is non-empty and is closed under addition and under multiplication by scalars.
(b) If $x=y=z=w=0$ then clearly $x+y=z+w$ so $\underline{0} \in W$. Also, if $(x, y, z, w),\left(x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime}\right) \in W$ and $\alpha \in F$ then the associtativity and commutativity of addition in F show that $\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)=$ $(x+y)+\left(x^{\prime}+y^{\prime}\right)$ while $\left(z+z^{\prime}\right)+\left(w+w^{\prime}\right)=(z+w)+\left(z^{\prime}+w^{\prime}\right)$. Since $(x+y)=(z+w)$ and $\left(x^{\prime}+y^{\prime}\right)=\left(z^{\prime}+w^{\prime}\right)$ it follows that $\left(x+x^{\prime}\right)+$ $\left(y+y^{\prime}\right)=\left(z+z^{\prime}\right)+\left(w+w^{\prime}\right)$, that is that $(x, y, z, w)+\left(x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime}\right)=$ $\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}, w+w^{\prime}\right) \in W$. We also have $\alpha(x+y)=\alpha(z+w)$. By the distributive law in F we have $\alpha x+\alpha y=\alpha z+\alpha w$, that is that $\alpha(x, y, z, w)=(\alpha x, \alpha y, \alpha z, \alpha w) \in W$.
(c) V is the space of 4-tuples of elements drawn from a set of size q, so $\# V=q^{4}$.
(d) Similarly, $\# U=q^{2}$ which divides its square q^{4}.
(e) $U \subset V$ is a subspace. In particular, it is a subset of V containing the zero vector and closed under addition. Thinking only of the additive group $(V, \underline{0},+), U$ is a subgroup. Its order must divide that of V by Lagrange's Theorem.
2. Find all solutions to the following systems of equations:
(a) Since $4 x$ is even for all $x \in \mathbb{Z}, 4 x-5$ is always odd and in particular not divisible by 12 . It follows that there are no solutions to the equation.
(b) Let $x, y \in \mathbb{Z} / 10 \mathbb{Z}$ be solutions to the equation. Multiplying the second equation by $[3]_{10}$ and subtracting the two equations shows $[3]_{10} x=[2]_{10}$. Since $7 \cdot 3 \equiv 1(10)$ this implies $x=[7]_{10}[2]_{10}=[4]_{10}$. The second equation then shows $[6]_{10}+y=[0]_{10}$, that is $y=[4]_{10}$ as well. We also have $5 \cdot 4+3 \cdot 4=32 \equiv 2(10)$. Thus $x=[4]_{10}, y=[4]_{10}$ is the unique solution to the system of equations.
(c) We have $[0]_{3}^{2}=[0 \cdot 0]_{3}=[0]_{3},[1]_{3}^{2}=[1 \cdot 1]_{3}=[1]_{3},[2]_{3}^{2}=[2 \cdot 2]_{3}=$ $[4]_{3}=[1]_{3}$. Since $\mathbb{Z} / 3 \mathbb{Z}=\{[0],[1],[2]\}$ the equation has no solutions.
3. PS1 problem 4.
4. PS3 problem 9.
5. PS10 problem 5.
6. Let $H=\left(\begin{array}{cccc}1 & 1 & 2 & 0 \\ 0 & 2 & 1 & 1\end{array}\right) \in M_{2 \times 4}\left(\mathbb{F}_{3}\right)$ and let $C \subset \mathbb{F}_{3}^{4}$ be the code defined by $C=\{\underline{v} \mid H \underline{v}=\underline{0}\}$.
(a) We first show that if z, w exist they are unique. For this let $x, y, z w \in$ \mathbb{F}_{3} be such that $\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right) \in C$. Then $x+y+2 z=0$ and $2 y+z+w=0$. Adding z to the first equation, $y+2 z$ to the second, we find: $z=x+y$, $w=y+2 z$, and both equatios imply $w=y+2(x+y)=2 x$, so that both z, w and uniquely determined by x, y. Conversely, given x, y setting $z=x+y$ and $w=2 x$ we have $x+y+2 z=x+y+2(x+y)=$ $3(x+y)=0$ and $2 y+z+w=2 y+x+y+2 x=3(x+y)=0$.
(b) $G=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 2 & 0\end{array}\right)$.
(c) Since $G\binom{0}{1}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right) \in C$, the code has weight at most two. Conversely, let $\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right) \in C$. If $x \neq 0$ then $w=2 x$ does not vanish as well (it is the product of two non-zero elements of a field) and the codeword has weight at least 2. If $x=0$ but $y \neq 0$ then $z=y \neq 0$ and the codeword has weight two. If $x=y=0$ then $z=w=0$ as well and the codeword vanishes.
(d) Since the weight is two, the code is not guaranteed to correct even all 1-bit errors. For example, if we recieve the trasmission $\underline{v}^{\prime}=\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 0\end{array}\right)$ it is equally consistent that the sender tramitted $\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 2 \\ 2 \\ 0\end{array}\right)$.
7. (RS codes)
(a) Say $X=\left\{x_{i}\right\}_{i=1}^{n}$ with the $x_{i} \in F$ distinct. The Reed-Solomon code is the set of n-tuples $\underline{v} \in F^{n}$ for which there exists $\underline{a} \in F^{k}$ such that for all $1 \leq i \leq n, v_{i}=\sum_{j=0}^{k-1} a_{j} x_{i}^{j}$, where we labelled the co-ordinates of \underline{a} from 0 to $k-1$ instead of the usual 1 to k.
(b) Assume that there exists a non-zero $\underline{v} \in C_{\mathrm{RS}}$ of weight at most $n-k$, and say \underline{v} is obtained by evaluating the polynomial $p(x)=\sum_{j=0}^{k-1} a_{j} x^{j}$ at the points of X. Since p takes non-zero values at no more than $n-k$
of the points of X, and hence vanishes in at least k distinct points of F. Thus p is a polynomial of degree at most $k-1$ with at least k distinct roots. We showed in class that the only such polynomial is the zero polynomial, at which point $p\left(x_{i}\right)=0$ for all i, so $\underline{v}=\underline{0}-\mathrm{a}$ contradiction.
(c) We try the polynomial $\ell(x)=4(x-1)+2=4 x+5$, chosen so that $\ell(1)=2, \ell(2)=6$. It also has $\ell(3)=3, \ell(4)=0, l(5)=4$, so $\underline{v}=(2,6,3,0,4)$ is a codeword. We claim that it is the closest codeword to \underline{v}^{\prime}. For this let \underline{u} be any other codeword. We saw in part (b) that the weight of the code is at least $5-3+1=3$, so by the triangle inequality we have:

$$
d_{\mathrm{H}}\left(\underline{u}, \underline{v}^{\prime}\right)+d_{\mathrm{H}}\left(\underline{v}^{\prime}, \underline{v}\right) \geq d_{\mathrm{H}}(\underline{u}, \underline{v}) \geq 3 .
$$

Since $d_{\mathrm{H}}\left(\underline{v}^{\prime}, \underline{v}\right)=1$ this means

$$
d_{\mathrm{H}}\left(\underline{u}, \underline{v}^{\prime}\right) \geq 2>d_{\mathrm{H}}\left(\underline{v}, \underline{v}^{\prime}\right) .
$$

8. In the space of equivalence classes of the relation $x \equiv_{L} y\left(C_{4}\right)$ (that is the space D_{4} / C_{4} of left- C_{4}-cosets in D_{4}) consider the equivalence classes of the two elements id, $\pi \in D_{4}$. The two elements are not equivalent $\left(\mathrm{id}^{-1} \cdot \pi=\pi \notin C_{4}\right) . x \in D_{4}$ is equivalent to id iff $x^{-1} \mathrm{id} \in C_{4}$, that is if $x \in C_{4}$. Also, $x \equiv_{L} \pi\left(C_{4}\right)$ iff $\pi^{-1} x \in C_{4}$. If we call this element ρ then $\pi^{-1} x=\rho$, and multiplying by π on the left we have $x=\pi \rho$ as claimed. It remains to show that every x belongs to one of the two equivalence classes. For this we use Lagrange's Theorem, according to which the number of equivalence classes is the ratio $\# D_{4} / \# C_{4}=8 / 4=2$.
