Math 342 Problem set 5 (due 9/2/09)

Congruences

- 1. We will calculate 15^{321} modulu 121 by a method called "repeated squaring".
 - (a) Find a small representative for 15^{2} modulu 121.
 - (b) Find a small representative for 15^4 modulu 121 (hint: $15^4 = (15^2)^2$)
 - (c) Find a small representative for 15^8 modulu 121 (hint: $15^8 = (15^4)^2$)
 - (d) Find small representatives for 15^{16} , 15^{32} , 15^{64} , 15^{128} and 15^{256} modulu 121.
 - (e) Write 321 as a sum of powers of two.
 - (f) Using the formula $15^{a+b} \equiv 15^a \cdot 15^b (121)$, find a small representative for 15^{321} modulu 121 by multiplying some of the numbers you got in parts (a)-(d) (as well as $15^1 = 15$). You should only need to use each intermediate result at most once.
- 2. Solve the following congruences:
 - (a) $x + 7 \equiv 3(18)$.
 - (b) $5x \equiv 12(100)$
 - (c) $5x \equiv 15(100)$
 - (d) $x^2 + 3 \equiv 2(5)$
- 3. For each pair of *a*, *m* below use Euclid's algorithm to find \bar{a} so that $a \cdot \bar{a} \equiv 1 (m)$.
 - (a) m = 5, a = 2.
 - (b) m = 12, a = 5.
 - (c) m = 30, b = 7.
- 4. Multiplying by the inverses from the previous problem, solve the following congruences: (a) $2x \equiv 9(5)$.
 - (a) $2x \equiv f(3)$.
 - (b) $5x + 3 \equiv 11(12)$.
 - (c) $14x \equiv 28(60)$.

Luhn's Algorithm

- 5. Replace *x* with an appropriate final digit so that the following digit sequences satisfy Luhn's Algorithm:
 - (a) 45801453*x*.
 - (b) 6778312*x*.
- 6. Show that adding zero digits *on the left* to a digit sequence does not affect whether it passes the check.
- 7. Let $n = \sum_{i=0}^{d} a_i 10^i$ be a number written in base 10.
 - (a) Show that changing any single digit, or transposing any two neighbouring digits, will change the residue class of n modulu 11.
 - (b) Starting with the number 15, one of the numbers $150, 151, 152, \dots, 159$ is divisible by 11 (which?). Find an example of a number *n* such that adding a digit to *n* on the right will never give a number divisible by 11.
 - (c) Explain why the previous example rules out using the 'mod 11' algorithm in place of Luhn's algorithm.

Foundations of Modular arithmetic

8. Show that arithmetic in $\mathbb{Z}/m\mathbb{Z}$ satisfies the distributive law for multiplication over addition.

Optional

A. Explain how to use the idea of problem 1 to calculate the residue class $[a^b]_m$ using only $2(1 + \log_2 b)$ multiplications instead of *b* multiplications. This algorithm is known as "exponentiation by repeated squaring".