Math 342 Problem set 11 (due 3/4/09)

The symmetric group

1. Multiply (compose) the following permutations in S_4 . Explain why the answers to (b) and (d) are the same.

(a)	(1)	2	3	4	(1	2	3	4 \
	$\begin{pmatrix} 1 \end{pmatrix}$	3	2	4)	(4	3	2	1]
(b)	(1)	2	3	4	(1)	2	3	4
	(4	2	3	1]	$\begin{pmatrix} 2 \end{pmatrix}$	1	4	3)
(c)	(1)	2	3	4	(1)	2	3	4
	(4	3	2	1]	$\begin{pmatrix} 2 \end{pmatrix}$	1	4	3)
(d)	(1)	2	3	4	(1)	2	3	4
	$\begin{pmatrix} 1 \end{pmatrix}$	3	2	4)	(3	4	1	2)

- 2. Let S_3 be the symmetric group on three letters, C_6 the group $(\mathbb{Z}/6\mathbb{Z}, [0]_6, +)$.
 - (a) Show that both C_6 and S_3 have six elements.
 - (b) Find two elements a, b of S_3 which do not commute (that is, such that $ab \neq ba$.
 - (c) Using (b) explain why the groups S_3 and C_6 cannot be "the same group".
 - (d) For the *a*, *b* you found calculate $c = (ab)(ba)^{-1} = aba^{-1}b^{-1}$. This is called the "commutator" of *a*, *b*.
 - (e) Let f: S₃ → C₆ be a group homomorphism (that is: f(id) = 0, f(στ) = f(σ) + f(τ), f(σ⁻¹) = -f(σ) for all σ, τ ∈ S₃). Show that f(c) = [0]₆. *Hint*: Calculate f(c) in terms of the (unknown) f(a), f(b) and simplify your answer using properties of modular addition.
 - (f) Conclude that any group homomorphism $f: S_3 \to C_6$ is not injective, in particular not an isomorphism.

Orders

- 3. (§9E.E1; General cancellation property) Let *G* be a group and let $x, y, z \in G$. Show that if xz = yz then x = y and that if zx = zy then also x = y.
- 4. For each $\sigma \in S_3$ find the smallest *k* such that $\sigma^k = id$. This is called the *order* of σ .
- 5. Let G be a group, g ∈ G. Define a function f: N → G by setting f(0) = e, f(n+1) = f(n) ⋅ g. Extend f to a function f: Z → G by setting f(-n) = f(n)⁻¹.
 (a) What is f(1)?
 - (a) What is f(1)?
 - (b) Show that for all $m, n \in \mathbb{N}$, $f(m+n) = f(m) \cdot f(n)$.
 - (c) Let n, m ∈ N with n > m. Show that f ((-m) + n) = f(-m) ⋅ f(n).
 Hint: Show that f(m) ⋅ f ((-m) + n) = f(m) ⋅ (f(-m) ⋅ f(n)) [for the LHS use part (a), for the second associativity] then use problem 3.
 - OPTIONAL Show that $f(n+m) = f(n) \cdot f(m)$ for all $n, m \in \mathbb{Z}$. We have shown: for any group *G* and element $g \in G$ there exists a group homomorphism $f: (\mathbb{Z}, 0, +) \to G$.
 - OPTIONAL Show that such *f* is *unique*.

Because of this we usually write f(n) as g^n .

- 6. (Continuation)
 - (a) Let $I = \{n \in \mathbb{Z} \mid f(n) = e\}$. Show that $0 \in I$ and that *I* is closed under addition.
 - (b) Show that *I* is closed under multiplication by elements of Z. *Hint:* Multiplication is repeated addition.

OPTIONAL Show that f descends to an injection $g: \mathbb{Z}/I \hookrightarrow G$.

Optional problems

- A. Definite direct products and sums.
 - (a) Let G, H be groups. On $G \times H$ define a binary operation by $(g_1, h_1) \cdot (g_2, h_2) \stackrel{\text{def}}{=} (g_1g_2, h_1h_2)$. Together with the identity element (e_G, e_H) show that this makes $G \times H$ into a group called the *direct product* of G, H.
 - (b) More generally, let $\{G_i\}_{i \in I}$ be a family of groups. Let $\prod_{i \in I} G_i$ be the set of all functions f with domain I such that $f(i) \in G_i$ for all i. Give $\prod_{i \in I} G_i$ the structure of a group. This is the *direct product* of the family. When the G_i are all isomorphic to a fixed group G this is usually denoted G^I .
 - (c) Let Σ_{i∈I}G_i ⊂ Π_iG_i be the set of *finitely supported* functions, that is those functions f such that f(i) = e_{Gi} for all but finitely many i. Show that Σ_{i∈I}G_i is a group, called the *direct sum* of the groups G_i. When the G_i are all isomorphic to a fixed group G this is sometimes denoted G^{⊕I}.
- B. Distinguishing direct products and sums.
 - (a) Show that C₂^{⊕ℕ} is not isomorphic to C₂^ℕ, and that Z^{⊕ℕ} is not isomorphic to Z^ℕ.
 Hint: In both cases show that the direct sum is countable and that the direct product has the cardinality of the continuum.
 - (b) Show that every element of $\sum_{n=1}^{\infty} C_n$ has finite order.
 - (c) Show that $\prod_{n=1}^{\infty} C_n$ has elements of infinite order.

7.2. Orders of elements

Let