Math 342 Problem set 11 (due 3/4/09)

The symmetric group

1. Multiply (compose) the following permutations in S_{4}. Explain why the answers to (b) and (d) are the same.
(a) $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{array}\right)\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right)$
(b) $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1\end{array}\right)\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)$
(c) $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right)\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)$
(d) $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{array}\right)\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right)$
2. Let S_{3} be the symmetric group on three letters, C_{6} the group $\left(\mathbb{Z} / 6 \mathbb{Z},[0]_{6},+\right)$.
(a) Show that both C_{6} and S_{3} have six elements.
(b) Find two elements a, b of S_{3} which do not commute (that is, such that $a b \neq b a$.
(c) Using (b) explain why the groups S_{3} and C_{6} cannot be "the same group".
(d) For the a, b you found calculate $c=(a b)(b a)^{-1}=a b a^{-1} b^{-1}$. This is called the "commutator" of a, b.
(e) Let $f: S_{3} \rightarrow C_{6}$ be a group homomorphism (that is: $f(\mathrm{id})=0, f(\sigma \tau)=f(\sigma)+f(\tau)$, $f\left(\sigma^{-1}\right)=-f(\sigma)$ for all $\left.\sigma, \tau \in S_{3}\right)$. Show that $f(c)=[0]_{6}$.
Hint: Calculate $f(c)$ in terms of the (unknown) $f(a), f(b)$ and simplify your answer using properties of modular addition.
(f) Conclude that any group homomorphism $f: S_{3} \rightarrow C_{6}$ is not injective, in particular not an isomorphism.

Orders

3. (§9E.E1; General cancellation property) Let G be a group and let $x, y, z \in G$. Show that if $x z=y z$ then $x=y$ and that if $z x=z y$ then also $x=y$.
4. For each $\sigma \in S_{3}$ find the smallest k such that $\sigma^{k}=\mathrm{id}$. This is called the order of σ.
5. Let G be a group, $g \in G$. Define a function $f: \mathbb{N} \rightarrow G$ by setting $f(0)=e, f(n+1)=f(n) \cdot g$. Extend f to a function $f: \mathbb{Z} \rightarrow G$ by setting $f(-n)=f(n)^{-1}$.
(a) What is $f(1)$?
(b) Show that for all $m, n \in \mathbb{N}, f(m+n)=f(m) \cdot f(n)$.
(c) Let $n, m \in \mathbb{N}$ with $n>m$. Show that $f((-m)+n)=f(-m) \cdot f(n)$.

Hint: Show that $f(m) \cdot f((-m)+n)=f(m) \cdot(f(-m) \cdot f(n))$ [for the LHS use part (a), for the second associativity] then use problem 3.
OPTIONAL Show that $f(n+m)=f(n) \cdot f(m)$ for all $n, m \in \mathbb{Z}$.
We have shown: for any group G and element $g \in G$ there exists a group homomorphism $f:(\mathbb{Z}, 0,+) \rightarrow G$.
OPTIONAL Show that such f is unique.
Because of this we usually write $f(n)$ as g^{n}.
6. (Continuation)
(a) Let $I=\{n \in \mathbb{Z} \mid f(n)=e\}$. Show that $0 \in I$ and that I is closed under addition.
(b) Show that I is closed under multiplication by elements of \mathbb{Z}. Hint: Multiplication is repeated addition.
OPTIONAL Show that f descends to an injection $g: \mathbb{Z} / I \hookrightarrow G$.

Optional problems

A. Definite direct products and sums.
(a) Let G, H be groups. On $G \times H$ define a binary operation by $\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right) \stackrel{\text { def }}{=}\left(g_{1} g_{2}, h_{1} h_{2}\right)$. Together with the identity element $\left(e_{G}, e_{H}\right)$ show that this makes $G \times H$ into a group called the direct product of G, H.
(b) More generally, let $\left\{G_{i}\right\}_{i \in I}$ be a family of groups. Let $\prod_{i \in I} G_{i}$ be the set of all functions f with domain I such that $f(i) \in G_{i}$ for all i. Give $\prod_{i \in I} G_{i}$ the structure of a group. This is the direct product of the family. When the G_{i} are all isomorphic to a fixed group G this is usually denoted G^{I}.
(c) Let $\Sigma_{i \in I} G_{i} \subset \prod_{i} G_{i}$ be the set of finitely supported functions, that is those functions f such that $f(i)=e_{G_{i}}$ for all but finitely many i. Show that $\sum_{i \in I} G_{i}$ is a group, called the direct sum of the groups G_{i}. When the G_{i} are all isomorphic to a fixed group G this is sometimes denoted $G^{\oplus I}$.
B. Distinguishing direct products and sums.
(a) Show that $C_{2}^{\oplus \mathbb{N}}$ is not isomorphic to $C_{2}^{\mathbb{N}}$, and that $\mathbb{Z}^{\oplus \mathbb{N}}$ is not isomorphic to $\mathbb{Z}^{\mathbb{N}}$.

Hint: In both cases show that the direct sum is countable and that the direct product has the cardinality of the continuum.
(b) Show that every element of $\sum_{n=1}^{\infty} C_{n}$ has finite order.
(c) Show that $\prod_{n=1}^{\infty} C_{n}$ has elements of infinite order.

7.2. Orders of elements

Let

