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Synopsis

The goal of this article is to determine which closure model should be used in simulating complex
flows of liquid-crystalline polymers~LCPs!. We examine the performance of six closure models:
the quadratic closure, a quadratic closure with finite molecular aspect ratio, the two Hinch–Leal
closures, a hybrid between the quadratic and the first Hinch–Leal closures and a recently proposed
Bingham closure. The first part of the article studies the predictions of the models in homogeneous
flows. We generate their bifurcation diagrams in the (U,Pe) plane, whereU is the nematic strength
and Pe is the Peclet number, and place special emphasis on the effects of the flow type. These
solutions are then compared with the ‘‘exact solutions’’ of the unapproximated Doi theory. Results
show the Bingham closure to give the best approximation to the Doi theory in terms of reproducing
transitions between the director aligning, wagging and tumbling regimes at the correct values ofU
and Pe and predicting the arrest of periodic solutions by a mildly extensional flow. In the second
part of the article, we employ the closure models to compute a complex flow in an eccentric cylinder
geometry. All the models tested predict the same qualitative features of the LCP dynamics. Upon
closer inspection of the quantitative differences among the solutions, the Bingham closure appears
to be the most accurate. Based on these results, we recommend using the Bingham closure in
simulating complex flows of LCPs. ©1998 The Society of Rheology.@S0148-6055~98!01705-2#

I. INTRODUCTION

The interest in simulating complex flows of liquid-crystalline polymers~LCPs! comes
mainly from the potential of injection molding such materials into high strength parts. For
the flow and rheology of LCPs, the prevalent theoretical model is the Doi theory for rigid
rod molecules@Doi ~1981!#. When applied to nonhomogeneous flows, the Doi theory
needs to be simplified by using closure approximations; solving the kinetic equation for
the orientation distribution function in complex flows currently presents formidable dif-
ficulties @Armstrong et al. ~1996!; Nayak et al. ~1997!#. Even after this task becomes
commonplace, the huge savings in effort by using closure approximations will certainly
make the latter more attractive in process design. Recently, Marrucci and Greco~1992!
attempted to generalize the Doi theory by allowing nonlocal nematic interactions. This
new feature is fundamentally important and its implementation at present seems possible
only within the framework of the closure-approximated Doi theory.

a!Author to whom all correspondence should be addressed; Electronic mail: 19120@engineering.ucsb.edu

© 1998 by The Society of Rheology, Inc.
J. Rheol. 42~5!, September/October 1998 10950148-6055/98/42~5!/1095/25/$20.00



A number of closure approximations have appeared in the literature, the most familiar
ones being the quadratic closure@Doi ~1981!# and the Hinch–Leal closures@Hinch and
Leal ~1976!#. Recently, a Bingham closure was proposed by Chaubal and Leal~1998!.
The central issue in previous research on closure approximations is tumbling of the
director in shear flows. In extension-dominated flows, the LCP director aligns steadily
with the flow. The simple quadratic closure has proved to be sufficient for such flows
@Ramalingam and Armstrong~1993!; Mori et al. ~1997!#, although elaborate treatment of
other closure models is available@Wang~1997!#. However, the quadratic closure fails to
predict any periodic director motion in simple shear. The Hinch–Leal closures do predict
director wagging and tumbling, but they yield pathological results at high Peclet number
@Advani and Tucker~1990!; Chaubalet al. ~1995!#. The Bingham closure differs from
the others in that it assumes a special form of the orientation distribution function—the
Bingham distribution—based on which the relationship between the second and fourth
moment tensors is established. This guarantees that the resulting closure never behaves
pathologically. Comparison with the unapproximated solution in homogeneous flows
shows good agreement for a wide range of parameters.

The quadratic closure is the only one that has been used in computing nonhomoge-
neous flows. In extension-dominated flows, the quadratic closure gives a good represen-
tation of the polymer configuration@Ramalingam and Armstrong~1993!; Forestet al.
~1997!; Mori et al. ~1997!#. Its use in pressure-driven channel flows, however, is ques-
tionable. The few studies to date all reported steady aligned solutions@Armstronget al.
~1995!; Mori et al. ~1995!; Wang et al. ~1996!#. In the flow between rotating eccentric
cylinders, Feng and Leal~1997! observed director tumbling, wagging and alignment in
different regions of the flow field. Most interestingly, their results suggest that director
tumbling may be a cause of disclinations in nonhomogeneous flows. This role of director
tumbling imparts additional significance to the choice of closure models for complex
flows. The motivation for the current study is to examine a number of closure models in
homogeneous and nonhomogeneous flows, in anticipation of using such closures for
computational studies of director tumbling and disclination formation in complex flows.

We will begin with a comprehensive study of closure approximations in two-
dimensional homogeneous flows. This is then followed by a comparison of model pre-
dictions in a specific inhomogeneous flow. Previous work in this area was done largely
without the perspective of complex flow calculations. For instance, the effect of tube
dilation on the rotational diffusivity has always been neglected. In a nonhomogeneous
flow, tube dilation may have an important impact owing to the spatial variation of the
order parameter@Feng and Leal~1997!#. From our viewpoint, the most basic features of
a closure model are depicted in a solution diagram which illustrates stable regimes of
director aligning, wagging and tumbling in various ranges of the nematic strength param-
eter U and the Peclet number Pe. Such diagrams are currently available only for the
quadratic closure@Bhaveet al. ~1993!# and the first Hinch–Leal closure@Chaubalet al.
~1995!#, and effects of the flow type have not been systematically documented. In the first
part of this study, we will generate solution diagrams in two-dimensional homogeneous
flows for six closure models as well as the Doi theory without any closure approximation.
All of the closures are described in Sec. II. Tube dilation is included and the effects of
flow type are considered at length. Comparison of the solution diagrams for various
closure models and for the exact theory will demonstrate their respective merits and
deficiencies.

Observations in homogeneous flows may not carry over to nonhomogeneous flows for
microstructured materials. The LCP configuration at a certain point is not determined
solely by the local strain rate and flow type; the flow and deformation history along the
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streamline leading to this point play an essential role@Szeriet al. ~1991!; Feng and Leal
~1997!#. Therefore, in a complex flow, the spatially varying flow conditions may diminish
or accentuate the differences among closure models observed in homogeneous flows. We
will numerically simulate the nonhomogeneous flow in an eccentric-cylinder flow device
using the closure models. This geometry produces extensional, shear and rotational flows
in various regions of the domain, and therefore suits our purpose well. The numerical
simulations in this article seem to represent the first flow calculations done for any
closure models except the quadratic closure. As mentioned before, flow calculations
using the exact Doi theory are improbable at this stage, so we are unable to compare the
predictions of the closure models with that of the exact theory in the nonhomogeneous
flow.

II. THE CLOSURE MODELS

This section briefly describes the Doi theory and the closure models to be discussed in
the rest of the article. The Doi theory is based on an orientation distribution function
C~u! for an ensemble of rigid rods,u being the unit vector along each rod. Following the
Prager procedure, the evolution equation of the second moment tensorA
5 *uuC(u)du 5 ^uu& can be derived:

]A

]t
1v–¹A2¹vT

–A2A–¹v 5 2
f

Pe S A2
d

3D 1
f U

Pe
~A–A2A:^uuuu&!22D:^uuuu&,

~1!

where d is the unit tensor,v is the fluid velocity andD 5 (¹v1¹vT)/2. The Peclet
number Pe5 G/(6Dr ) is defined using a characteristic strain rateG and the rotational
diffusivity Dr in an isotropic solution of the same volume concentration.U is the nematic
strength in the Maier–Saupe potential andf represents the tube dilation effect, i.e., the
enhancement in rotational diffusion due to the nematic molecular order. The polymer
stress may be written as

t 5 SA2
d

3D 2U~A–A2A:^uuuu&!1
bPe

~nL3!2 D:^uuuu&, ~2!

wheret has been scaled by 3nkT, n being the volume concentration of the LCP solution,
k the Boltzmann constant andT the temperature.L is the length of the rods, (nL3)2 is the
crowdedness factor andb 5 O(103) is an empirical parameter. Note that in deriving~1!,
the motion of an LCP molecule is taken to be that of a thin rod of infinite aspect ratio.

The above equations differ slightly from the original formulations of Doi~1981!. The
~v–¹A! term in Eq.~1! is added to describe the variation ofA along a streamline in a
nonhomogeneous flow@Feng and Leal~1997!#. The last term in Eq.~2! is a viscous stress
originally omitted by Doi~1981!. It is important at high flow rates@see, e.g., Marrucci
and Maffettone~1989!# and thus retained here.

In order to ‘‘close’’ the theory at the level of the second moment tensorA 5 ^uu&, f
and^uuuu& need to be expressed in terms ofA. Doi ~1981! has suggested a simple form
for the tube dilation effect:

f 5 ~12S2!22 5 4
9 ~12A:A!22, ~3!

whereS 5 @(3A:A-1)/2#1/2 is the order parameter. We will use this form in this article.
The relationship between̂uuuu& and^uu& is represented by the various closure models.
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A. The quadratic closure

The simplest and most widely used approximation is the quadratic closure originally
adopted by Doi~1981!:

^uuuu& 5 ^uu&^uu& 5 AA . ~4!

Here, the fourth moment tensor is replaced byAA when contracting intoA andD in Eqs.
~1! and ~2!. The quadratic closure fails to reproduce director tumbling and wagging in
simple shear flow, as predicted by the exact~i.e., unapproximated! Doi theory.

B. The QuadR closure

The Doi theory models LCP molecules as rods of infinite aspect ratio. In a simple
shear flow, such a rod tends to align with the flow. Brownian diffusion constantly kicks
individual rods out of alignment with the flow. The rods then rotate back to the aligned
state, but in the absence of nematic interaction the distribution function would remain
time independent. The cohesive force due to nematic interaction allows for collective
rotation of the rods for some ranges of Pe andU, and hence director tumbling in simple
shear flow. This is the result of a delicate balance between the tendency of the strain rate
D to maintain a fixed orientation and the tendency of the vorticityV to induce rotation.
The quadratic closure approximation of the termD:^uuuu& in Eq. ~1! leads to a slight
overestimate of the strain-rate effect as compared to the vorticity effect, and hence shifts
the balance in the quadratic closure based model so that no director tumbling occurs in
simple shear. In fact, the tendency for tumbling is recovered for flows that are slightly
more rotational than simple shear@Chaubalet al. ~1995!#. It may also be recovered, as
explained below, by modifying Eq.~1! to a form that would be appropriate for rods of a
finite aspect ratio.

A cylindrical rod of an ‘‘effective aspect ratio’’r e @Anczurowski and Mason~1968!#
rotates in a simple shear flow along a Jeffery orbit:

u̇ 5 V–u1l~D–u2D:uuu!, ~5!

whereV andD are the vorticity and the rate-of-deformation tensors. The parameterl is
related tor e :l 5 (r e

2
21)/(r e

2
11). Hence, a decrease ofr e from infinity to a finite

value reduces the relative strength of the strain rate with respect to the vorticity in
determining the rotation of a rodlike molecule. The collective behavior of an ensemble of
rods is similarly modified by the finite aspect ratio; the evolution equation ofA becomes

]A

]t
1v–“A 5 ~V1lD!–A1A–~2V1lD!22lD:^uuuu&2

f

Pe S A2
d

3D
1

f U

Pe
~A–A2A:^uuuu&!. ~6!

The behavior of a nematic solution of rods of finite aspect ratio is then equivalent to that
of the original infinite-aspect-ratio system in a more rotational flow. Indeed, one may
think of the effect of the finite aspect ratio as changing the flow type parameter froma
@see Astarita~1979! for definition# to

ã 5
luDu2uVu

luDu1uVu
5

l~11a!2~12a!

l~11a!1~12a!
. ~7!

If we replacê uuuu& in ~6! by AA and use al value less than unity, the overestimate
of the strain-rate effect by the quadratic closure may be compensated so that the predic-
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tions of the model, hereafter called QuadR, provide a better approximation to the dynam-
ics of A as predicted by the original Doi model with no closure and an infinite molecular
aspect ratio. In this framework, the parameterr e is viewed as ‘‘ad hoc,’’ chosen to give
the best approximation to the unapproximated Doi theory rather than having any relation
to the actual shape of the LCP molecule. Equation~2! for the stress remains unaltered
because it is still the infinite-aspect-ratio Doi theory that we are trying to approximate.
The fourth moment terms in this equation are calculated fromA via the quadratic closure
approximation@Eq. ~4!#.

C. The HL1 and HL2 closures

Hinch and Leal~1976! proposed two closures based on interpolating between the
weak and strong flow limits in a Brownian suspension of rods. The HL1 closure can be
written as

B:^uuuu& 5 1
5 @6A–B–A2B:AA12d ~A2A–A!:B#, ~8!

and the HL2 closure as:

B:^uuuu& 5 AA :B12A–B–A2
2A–A:D

A:A

3A–A1rF 52

315
B2

8

21 S B–A1A–B2
2

3
A:BdD G , ~9!

wherer 5 exp@(226A:A)/(12A:A)#. In Eqs. ~8! and ~9!, B is any traceless tensor.
These relationships can be applied directly toD:^uuuu&. The A:^uuuu& term can be
worked out by replacingB by the tracelessA-d/ 3.

D. The HL1Q closure

It has been noted that the accuracy of a closure model differs considerably when
applied to the ‘‘nematic term’’A:^uuuu& and the ‘‘flow term’’ D:^uuuu& @Larson and
Mead ~1991!; Baek et al. ~1993!#. The quadratic closure is generally accurate for the
nematic term. It is its inaccuracy in the flow term that causes the loss of periodic solu-
tions in simple shear. Numerical experiments by Chaubal~1997! showed that the HL1
closure is more accurate than the quadratic closure for the flow term, but the reverse is
true for the nematic term. It is then natural to propose a hybrid model using the quadratic
closure forA:^uuuu& and the HL1 closure forD:^uuuu&. We denote the resulting model
as the HL1Q closure.

E. The Bingham closure

The Bingham closure is based on the idea that^uuuu& can be related tôuu& by
assuming a special form for the orientation distribution function. Chaubal and Leal
~1998! chose the Bingham distribution:

C~u! 5
1

Z
exp~u–T–u!, ~10!

whereT is a symmetric matrix andZ is a normalization constant. Owing to the orthot-
ropy of the fourth moment tensor^uuuu& @Cintra and Tucker~1995!#, the number of its
independent components is greatly reduced in its principal coordinate system. These
independent components can be related to the eigenvalues of^uu& through integration
over the Bingham distribution function. For the ease of implementation, Chaubal and

1099CLOSURE APPROXIMATIONS



Leal ~1998! established this relationship by fitting third-order polynomials to calculated
values of the independent components of^uuuu& for 284 pairs of eigenvalues of^uu& that
were chosen to cover the full range of realizable values.

The Bingham closure is built on a distribution function that is symmetric about three
orthogonal planes containing the principal axes ofT. Therefore, it is exact in the weak
flow limit ~i.e., the equilibrium state! and in potential flows. Its accuracy is expected to
decline in flows that skew the distribution function. A salient feature of the Bingham
closure is that it never produces pathological predictions. This is owing to the fact that the
^uuuu& components are calculated using a physically acceptable orientation distribution
function, albeit one which may be an inaccurate approximation in some regions of the
parameter space.

III. HOMOGENEOUS FLOWS

In this section we compare solutions of the Doi theory in two-dimensional homoge-
neous flows with and without a closure approximation. The dimensionless velocity gra-
dient tensor is:

¹v 5 F 0 a 0

1 0 0

0 0 0
G , ~11!

wherea is the flow type parameter. We assume that the director orientation is symmetric
with respect to the flow plane, and therefore exclude director kayaking from this work.
Kayaking is a rather exceptional regime of director motion@Larson and O¨ ttinger ~1991!#
and its inclusion would make the inhomogeneous flow calculation of Sec. IV three
dimensional and much more costly. Under the current assumption,

A 5 F a1 a2 0

a2 a3 0

0 0 12a12a3

G . ~12!

With a closure approximation, Eq.~1! @or Eq.~6! for the QuadR model# can be broken
down to three coupled ordinary differential equations for the three unknown components
of A, which are then solved using a fourth-order Runge–Kutta method with automatic
time step adjustment. In-plane orientations are always used as initial conditions.

Solving the unapproximated Doi theory is a much more elaborate endeavor. We use a
smoothed-particle-hydrodynamics algorithm to compute the evolution of the orientation
distribution function in the same homogeneous flows. Details of the method have been
described elsewhere@Chaubalet al. ~1997!#.

A. The quadratic and QuadR closures

As explained in the last section, the QuadR model gives the same results as the
original Doi theory with the quadratic closure in a flow that is effectively more rotational.
Therefore, the solution diagrams for the quadratic closure and the QuadR model are the
same subject to a change of the flow type parameter. Figure 1 shows the results for the
quadratic closure.

The structure of this diagram is well known from the previous study of Chaubalet al.
~1995!. For anegativevalue of the flow type parametera, director aligning, wagging and
tumbling occur in three domains delineated by three curves in the (U,Pe) plane. The
vertical line at small Pe~curvea! marks a homoclinic bifurcation; the director aligns with
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the flow on the left side of curvea and tumbles on the right. Curveb is the ceiling of the
tumbling domain, above which director wagging prevails. Curvec indicates a Hopf
bifurcation that demarcates flow aligning~which occurs above and to the left of curvec!
and wagging solutions. Curvesa and b are determined numerically by bisecting an
interval of U for a fixed Pe. Curvec is computed semianalytically by studying the
Jacobian of the linearized differential equations and finding the critical point where the
real part of the eigenvalues changes sign. The same scheme is used for the HL and HL1Q
closures to be presented below. For the Bingham closure and the exact Doi theory, the
numerical approach is used to compute all three curves.

With increasinga, all three curves shift to the upper right of the diagram; the tumbling
and wagging domains recede to the right but never disappear completely for anya , 0.
The curvec for the Hopf bifurcation becomes a vertical line at a large Peclet number.
Therefore, based on the quadratic closure, wagging will not be suppressed by increasing
the flow rate if the nematic order is sufficiently strong. This will be seen to be an artifact
that all the closure models incur.

We emphasize that the prediction of the QuadR model is precisely the same as shown
in Fig. 1, but with the effective flow type parameter of Eq.~7! replacinga. Now a value
of the nominal aspect ratio can be chosen such that tumbling occurs in a simple shear
flow for the QuadR model.

B. The HL1 closure

The solution diagram for the HL1 closure has a similar structure~Fig. 2!, except that
HL1 admits a periodic solution fora 5 0 as well as slightly positive flow type param-
eters. Asa increases, the flow-aligning regime encroaches on the domain of periodic
solutions from the left. Interestingly, there appears to be another boundary on the right
~curved!, beyond which the solution is again flow aligning. Curved, almost vertical in

FIG. 1. Solution diagram of the quadratic closure in homogeneous flows of flow type parametera. As an
example, the broken curvesa, b and c mark the boundaries of different regimes of director motion for
a 5 20.04. All curves are bounded on the left by the criticalU for the isotropic–nematic transition.
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Fig. 2, represents a second homoclinic bifurcation; the period of the tumbling solution or
wagging solution goes to infinity as one approaches this boundary from the left. With
increasinga, curved moves to the left and so the tumbling and wagging domains are
squeezed from both sides. This is how the extensional character of the flow eliminates
periodic solutions.

The solution structure fora . 0 with a tumbling domain sandwiched between flow-
aligning domains at large and small values ofU is inherent in theunapproximatedDoi
theory; it is distorted by the quadratic closure but remains with the HL1 closure. The
origin of this behavior can be understood in the limit of weak flows. The Doi theory then
reduces to the Leslie–Ericksen theory, and the motion of the directorn in a homogeneous
flow follows:

] n

]t
5 V–n1l~D–n2D:nnn!, ~13!

where the tumbling parameterl depends on the nematic strengthU but not on the flow.
Without closure approximation, Kuzuu and Doi~1984! calculated the tumbling parameter
using the Onsager potential and Archer and Larson~1995! did the same with the Maier–
Saupe potential. With closure approximations,l is much easier to calculate@Larson
~1990!#. Figure 3 compares predictions ofl as a function ofU for the various closure
models with the results of Archer and Larson~1995!. In a simple shear flow, the director
aligns with the flow forl . 1 and tumbles forl , 1. The exact curve and the HL1
curve both have a valley in whichl , 1, signifying director tumbling in simple shear
over most of theU values for which there is a nematic phase. In anonsheartwo-
dimensional flow characterized by flow type parametera, the director tumbles if

l ,
12a

11a
. ~14!

FIG. 2. Solution diagram of the HL1 closure. Takinga 5 0.04 as an example, curvesa, b, c andd demarcate
different regimes of director motion.
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This can be easily seen by manipulating the relative magnitudes ofV andD in Eq. ~13!,
which holds for any planar homogeneous flow. For a positivea, it can be seen from Fig.
3 and Eq.~14!, that the tumbling domain shrinks from both sides for the unapproximated
theory and for all closure models except the quadratic closure. For the quadratic model,
l . 1 and thus director tumbling occurs only fora , 0. When the negativea in-
creases, Fig. 3 shows that the tumbling domain will shrink only from the left side as
occurs in Fig. 1. One also notes that the exact theory has a significantly deeper valley~in
which l , 1! than all closure models except HL2. Thus, for most of the closure-based
models, the range ofa in which periodic solutions are predicted by Eq.~13! is much
smaller than it is for the exact theory. HL2 is an exception in that tumbling persists to
highera values than for the exact theory. Although the above arguments are based on the
weak flow limit, they appear to apply qualitatively to moderate and large Pe in Figs. 1
and 2.

Roughly speaking, the effect of tube dilation on the solution diagrams is to move the
curves to larger Peclet numbers; Figs. 1 and 2 can be compared with the diagrams in
Chaubalet al. ~1995!. This is because the enhanced molecular diffusion is tantamount to
reduced flow strength. Since the order parameterS varies periodically during wagging
and tumbling, the tube dilation effect is in fact rather subtle and cannot be simply
represented by a change in Pe.

Finally, we note an aphysical behavior of the HL1 closure first pointed out by Chaubal
et al. ~1995!. The order parameter fails to approach unity as Pe→ `; insteadS tends to
a constantS` , 1 ~for wagging solutions, the mean ofS approachesS`!. S` assumes
the value ofA7/12 in simple shear and appears to increase monotonically toward unity
with increase of the flow typea.

FIG. 3. Comparison of the tumbling parameterl for the unapproximated Doi theory and the closure models.
All curves converge tol 5 1 asU tends to infinity. The minimumU for a stable nematic phase is 4.898 for
the HL1 closure, 4.457 for the HL2 closure, 4.55 for the unapproximated theory and the Bingham closure and
2.667 for the quadratic and HL1Q closures. The HL1Q, Bingham and HL2 curves are discussed later in this
section.
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C. The HL1Q closure

The solution diagram for the HL1Q closure is very similar to that of the HL1 closure,
except that all the curves appear shifted to lowerU values~Fig. 4!. The reason for this
nearly uniform shift can again be understood from the weak flow limit.

The only difference between the HL1 and HL1Q closures is in the nematic term
A:Šuuuu‹. Since the Brownian term and the nematic term cancel exactly in the absence
of flow, the motion of the director in the weak flow limit (Pe→ 0) is the same for the
two closures when expressed in terms of the equilibrium order parameterSeq @Larson
~1990!#. But Seq as a function ofU depends on the form of the nematic term, hence the
shifts of criticalU values for transitions in the solution. More precisely, the criticalU at
the first homoclinic bifurcation is related for the two closures by

Seq
c 5

1

4
S 11A92

24

UHL1Q
D 5

1

8
S 11A492

240

UHL1
D . ~15!

The HL1 and HL1Q curves in Fig. 3 also observe this relationship, and the homoclinic
bifurcation is where the curves intersectl 5 1. For a finite Pe, the relationship between
the two closures may be more complex than the simple shift indicated by Eq.~14!, but a
degree of parallelism remains.

D. The Bingham closure

The solution diagram for the Bingham closure has a structure similar to those dis-
cussed above~Fig. 5!. The locus of the Hopf bifurcation, marking the boundary between
flow aligning and wagging solutions, are difficult to determine at large Pe. As mentioned
before, this curve is computed numerically by bisecting an interval ofU based on the
predicted behavior at the two ends of the interval. At high Pe, the solution has long
transients and even a flow-aligning solution may appear as wagging after a long but finite
period of time. Any flow-aligning criterion based on the finite-time behavior is necessar-

FIG. 4. Solution diagram of the HL1Q closure.
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ily arbitrary. Thus we draw the upper part of the aligning–wagging boundary as dashed
lines in Fig. 5 following the patterns in Figs. 2 and 4. For Pe smaller than about 10, the
margin of error in determining the locus of the Hopf bifurcation is rather small.

Two features of Fig. 5 stand out. First, the behavior of the director, as predicted by the
Bingham closure, is far less sensitive to the flow type parametera than for the three
models discussed above. For the range ofa values tested, the spread of the curves is
much smaller in Fig. 5 than in Figs. 1, 2 and 4. This can also be inferred from the shape
of the curves in Fig. 3; at their respective intersections withl 5 1, the Bingham curve
has the steepest slope among the closure models~except HL2; see below!. Hence the
critical U for the aligning–tumbling transition will shift the least for the Bingham curve
when the flow type is varied. Periodic solutions are arrested by extensional flows in the
same fashion for the Bingham, the HL1 and the HL1Q closures, but they persist to a
significantly largera for the Bingham model, as is also true for the unapproximated Doi
theory. Second, the curves in Fig. 5 appear to be shifted downward as compared to Figs.
2 and 4; transitions in the solution occur at smaller critical Pe values.

E. The HL2 closure

As alluded to in the preceding discussions, HL2 stands apart from the other closure
models in several aspects. At the weak flow limit~Fig. 3!, HL2 is the only closure that
has a stronger tendency toward director tumbling than the exact Doi theory. Also at the
intersection withl 5 1, the HL2 curve is the only one that has a slope steeper than the
exact curve. Hence, HL2 is the least sensitive to the flow type at the weak flow limit; the
critical U corresponding to the homoclinic bifurcation shifts the least asa varies.

The solution diagram of HL2 also has some peculiar features~Fig. 6!. The wagging–
tumbling boundary bends to the left for large Pe. Therefore, for sufficiently largeU,
director tumbling will not be suppressed by high Pe in simple shear. For smallerU, the
wagging amplitude increases with Pe and wagging may eventually become tumbling.

FIG. 5. Solution diagram of the Bingham closure. Fora > 0.04, no periodic solution can be found in the
(U,Pe) ranges studied.
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When applied to Brownian suspensions of rods, HL2 has a well-known failing: it predicts
spurious oscillations in shear flows at high Pe@Advani and Tucker~1990!; Szeri and Lin
~1996!#. Evidently Fig. 6 manifests the same failing. In fact, a nematic solution becomes
indistinguishable from a suspension of rodlike particles as Pe tends to infinity; see Eq.
~1!.

For positivea, a second homoclinic bifurcation occurs which bounds the tumbling
domain on the right. From Fig. 3 and Eq.~13!, one may estimate that at the weak flow
limit, director tumbling will be suppressed only fora . 0.1. Thus, at the weak flow
limit, the HL2 closure is insensitive toa. For higher Pe, however, the wagging–tumbling
boundary varies greatly witha.

F. Comparison and discussion

Having constructed solution diagrams for all the closure models in homogeneous
flows, we now undertake a more detailed comparison among them as well as a direct
comparison with the predictions of the unapproximated Doi theory. We will concentrate
on three characteristics of the solution diagrams: the criticalU values where transitions in
the solution occur, particularly the criticalUh for the first homoclinic bifurcation; the
critical Pe values where transitions occur; and finally the reaction of the model predic-
tions to the flow type parametera.

Figure 7 compares the solution diagrams of various closure models and the exact Doi
theory for a simple shear flow. The quadratic closure predicts no transition from flow
aligning at anyU or Pe and thus does not appear. In order to use the QuadR model, a
nominal molecular aspect ratior e has to be chosen. We have takenr e 5 A10 so that in

a simple shear flow,ã 5 20.1 and the QuadR model predicts a homoclinic bifurcation
that is fairly close to that of the exact theory@Fig. 7~b!#. Incidentally, this ad hocr e value
is an order of magnitude smaller than the typical aspect ratio of real LCP molecules
@Donald and Windle~1992!; Walker and Wagner~1994!#.

The behavior of the HL2 closure deviates markedly from the exact theory@Fig. 7~a!#.
In its original context of Brownian suspensions of rods, HL2 represents a higher-order

FIG. 6. Solution diagram of the HL2 closure.
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approximation than HL1@Hinch and Leal~1976!#. Then one may expect HL2 to be more
accurate for LCPs as well. In the weak flow limit this is arguably true~see Fig. 3!. For Pe
above 1, however, HL2 exhibits an exceedingly strong tendency toward director tum-
bling, and its solution diagram becomes qualitatively different from that of the unap-
proximated Doi theory.

A common failing of all the closures in Fig. 7 is in the Hopf bifurcation curves: for
most values ofU they predict a wagging regime that extends to arbitrarily large Pe. In
particular, if U is sufficiently large, increasing Pe does not lead to a transition from

FIG. 7. Comparison of the solution diagrams of closure models and the unapproximated Doi theory in a simple
shear flow.~a! The HL2 closure and the exact theory;~b! the other closures. For QuadR, a nominal molecular
aspect ratior e 5 A10 is used.

1107CLOSURE APPROXIMATIONS



wagging to flow aligning. In the exact theory, the boundary between aligning and wag-
ging solutions does not become vertical at a high Peclet number but remains more or less
parallel to the tumbling–wagging boundary. Thus, wagging can be suppressed at anyU
by increasing Pe. This confirms previous analysis on a two-dimensional version of the
Doi theory in simple shear@Maffettone and Crescitelli~1994!#.

The HL1 closure appears to be the least desirable of the closures shown in Fig. 7~b! in
that the homoclinic bifurcation is predicted at too large aUh value. This is a result of the
HL1 closure underestimating the order parameter at equilibriumSeq; also see Eq.~14!.
Because the Bingham distribution@Eq. ~9!# is exact in the limit of weak flows, the
Bingham closure exactly reproduces the tumbling parameter of the Doi theory~see Fig.
3!, and in particular the criticalUh for the homoclinic bifurcation. The HL1Q model and
the QuadR model, with the appropriately chosenr e parameter, also give accurate predic-
tions of Uh . Both models fail, however, to capture the boundary between tumbling and
wagging; the critical Pe for arresting director tumbling is too large. In this regard, the
Bingham model does well for smallerU, although the discrepancy seems to grow with
U. On the whole, the Bingham closure appears to be the best in terms of approximating
the exact solution diagram in the (U,Pe) plane. The QuadR closure is the second best,
followed by the HL1Q, HL1 and HL2 models.

The effect the flow type parametera is most interestingly manifested in arresting
periodic director motions in extensional flows. All closure models except the QuadR
closure have captured the essential features of this scenario. Figure 8 compares the
Bingham closure and the exact theory in terms of their reaction to a mildly extensional
flow. In the weak flow limit, the Bingham model converges to the exact theory, this
common Leslie–Ericksen limit being denoted by triangles on theU axis. Away from that

FIG. 8. Sensitivity of the Bingham closure and the unapproximated Doi theory to the flow type parametera.
Solid lines represent results of the Bingham closure fora 5 0 and 0.03. The circles represent the aligning-
wagging boundary for the exact theory and the squares the tumbling-wagging boundary, both fora 5 0. The
3’s and crosses represent the two boundaries respectively fora 5 0.03 and the dash line on the right marks the
second homoclinic bifurcation. The triangles on theU axis indicate the criticalUh for the homoclinic bifurca-
tions in the Leslie–Ericksen limit.
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limit, the Bingham closure is slightly more sensitive toa than the exact theory. Asa
changes from 0 to 0.03, the aligning–wagging boundary barely changes for the exact
theory but changes appreciably for the Bingham model. The change in the tumbling–
wagging boundary is comparable for the two. The second homoclinic bifurcation at large
U, marking a tumbling–aligning transition, shifts more to the left for the Bingham
closure. With an increasinga, therefore, the domains of wagging and tumbling contract
more for the Bingham closure than for the exact theory. For the Bingham model,a
5 0.04 annihilates all periodic solutions within the parameter ranges studied (Pe
> 0.1); for the exact theory, periodic solutions persists toa 5 0.05. Incidentally, the

Bingham curves in Fig. 8 do not go through the triangles; Pe5 0.1 is apparently still too
strong a flow.

For rotational flows (a , 0), the Bingham closure approximates the exact theory
extremely well, as it does in the opposite extreme of strongly extensional flows@Chaubal
and Leal~1998!#. This is because the distribution function is not skewed seriously in
rotational and nearly purely extensional flows. For intermediate flow conditions, the
Bingham closure is the least sensitive of all the closure models~except perhaps HL2! and
gives by far the best approximation. The artificial sensitivity of the other models toa can
be appreciated in Figs. 1, 2 and 4.

To summarize the findings of this section, there are two shortcomings common to all
of the closure models considered here; one is excessive sensitivity to the flow type and
the other is the failure to arrest wagging at high Peclet numbers. The fact that none of the
closure approximations correctly reproduces the transition between wagging and flow
aligning may be intrinsic to closure at the second-moment level. Direct solutions of the
distribution functionC @Chaubal and Leal~1998!# show thatC is skewed at the transition
and hence cannot be faithfully represented by any second-moment approximation. Larson
~1990! discovered, using the unapproximated Doi theory, that in steady alignment the
normal stress differences undergo a sign change as Pe increases. Hence, the closure
models may not produce the correct normal stresses at high Pe@Baeket al. ~1993!#. This
is a potentially serious drawback in simulating flow situations where the normal stresses
play an important role. Of all the closure models considered, the Bingham closure gives
the best performance on account of its approximation of the solution diagram in the
(U,Pe) space for simple shear flows and its least sensitivity to the flow type. The other
closures have additional problems: the QuadR closure fails to predict the second ho-
moclinic bifurcation for a positivea and the HL1 and HL2 models have pathological
behavior at large Pe.

Previous studies of closure models, mostly focused on simple shear flows, emphasize
the difference between the models. What is notable about the present results is the
similarity among the model predictions for general two-dimensional homogeneous flows.
All the closures predict the same regimes of director motion. The differences among them
consist of shifts of the criticalU, Pe anda values corresponding to transitions between
director aligning, wagging and tumbling. In a nonhomogeneous flow, the LCP configu-
ration depends not only on the local flow conditions but also on the history of deforma-
tion. If the variations in flow type and strain rate are large, the integrative effect along a
streamline will obscure the differences between predictions of different closures. Hence,
in such a flow, one may expect the LCP dynamics to be qualitatively the same for all the
closures.

IV. NONHOMOGENEOUS FLOWS

In this section we apply the quadratic, the QuadR, the HL1Q and the Bingham closure
models to a complex flow calculation. The HL1 and HL2 closures are not used because
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their solution diagrams differ greatly from that of the exact solution, and so they have
little chance of outperforming the other closure models.

We choose the flow in an eccentric cylinder device as a test for the same reason that
it was used in our previous study@Feng and Leal~1997!#. The geometry leads to a
complex flow field with shear, extensional and rotational flow types in different regions
of the domain. This offers a good opportunity for examining the effects of deformation
history on the LCP behavior. Figure 9 shows the geometry of the eccentric-cylinder flow
cell. The outer cylinder is stationary and the inner one starts abruptly att 5 0 with an
angular velocityv. We takeL 5 R1/3 as the characteristic length of the problem. Then
R1 5 3, R2 5 10 and the distance between the centers of the cylinders ise 5 5. The
inertia of the fluid is neglected and the flow is governed by

¹–v 5 0, ~16!

Re
]v

]t
5 2¹p1¹2v1

c

Pe
¹–t, ~17!

where the Reynolds number is defined as Re5 rvL2/hs, with r andhs being the density
of the fluid and the constant solvent viscosity, respectively. The concentration parameter
c is defined by

c 5
nkT

2hsDr
. ~18!

The polymer stress tensort is computed from Eq.~2! and influences the flow through Eq.
~17!. The fluid flow in turn affects the evolution ofA through Eq.~1! @or Eq. ~6! for the
QuadR model#. The coupled system is solved by a finite element method. The flow is two
dimensional and the LCP orientation distribution is assumed to be symmetric about the
flow plane. This precludes the kayaking motion of the director that has been observed
over a narrow range of parameters in simple shear. More details of the setup of the

FIG. 9. The eccentric cylinder flow cell.
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problem and the numerics can be found in Feng and Leal~1997!. We will only use
in-plane initial orientations, although the log-rolling state may arise spontaneously at
certain locations.

The following parameter values are used:b 5 1000, Re5 1.1131024, (nL3)2

5 23106, c 5 10, U 5 6 and Pe5 10. The small Reynolds number ensures a short
initial transient of the fluid flow after the startup. The crowdedness factor is typical of
lyotropic systems used in experiments. It is not clear whatc values are representative of
real LCPs. Doraiswamy and Metzner~1986! and Moriet al. ~1995! effectively estimated
c by fitting the Doi theory with quadratic closure to steady shear viscosity measured for
LCP solutions. This procedure is problematic. The model produces a steady-state shear
viscosity because the quadratic closure artificially suppresses director tumbling. In the
experiment, however, the steady state is a manifestation of the polydomain structure with
each domain tumbling continuously. Here we choose a fairly smallc so as to limit the
effects of polymer stress on the flow field. This avoids the complication of severe flow
modification and allows us to concentrate on the dynamics of the LCP, which serves as
a test for the closure models. Generally one would expect the performance of the closures
to vary depending on the values ofU and Pe. It is not obvious what values are most
suitable for our purpose. As will be seen presently, the quadratic model predicts similar
features here as it does forU 5 20 and Pe5 100 in a previous study@Feng and Leal
~1997!#. Therefore, we may hope for a certain degree of generality of the results obtained
using the values ofU and Pe listed above.

The flow kinematics in the eccentric cylinder geometry has been reported in Fig. 3 of
Feng and Leal~1997!. There is a recirculation eddy in the wide gap where the flow is
rotational. There are two arclike regions above and below the inner cylinder that contain
extensional flows, associated with the diverging and converging streamlines. The rest of
the domain contains largely near-shear flows. Next, the predictions of the quadratic,
QuadR, HL1Q and Bingham closure models will be described and compared.

A. The quadratic closure

The LCP dynamics for the quadratic closure is similar to that depicted in Fig. 9 of
Feng and Leal~1997! at U 5 20, Pe5 100. The main features of the solution can be
summarized as follows. The rotational flow in the recirculating eddy induces director
tumbling. As a result, a tumbling domain appears periodically which is surrounded by a
belt in which the director wags. Further out the director is steadily aligned with the flow.
On the boundary of the domain, the director field is severely distorted and a pair of61/2
disclinations form and travel along the boundary. When the director rotation inside the
domain reaches multiples of 180°, the boundary disappears, and the domain will emerge
and grow anew with the next cycle of director tumbling. Figure 10 shows the tumbling
domain in its maximum size.

B. The QuadR closure

With the finite molecular aspect ratio in the QuadR model, the director behaves as if
it were governed by the original Doi theory with the quadratic closure in a somewhat
more rotational flow. Hence one expects a greater tendency toward director tumbling and
wagging. The cyclic variation of the director field is similar to that for the quadratic
closure. However, there are two new features. First, the area surrounding the inner cyl-
inder now sees director wagging instead of steady alignment. Second, there appear two
areas to the upper right and lower left of the inner cylinder in which the order parameter
S is reduced@Fig. 11~a!#. This is probably a result of the decelerating flow in these areas
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related to the diverging streamlines. It is not clear why the pattern is absent or at least less
conspicuous in Fig. 10 for the quadratic closure.

Each cycle of director tumbling is initiated at the right edge of areaA. The tumbling
propagates to the right and joins the tumbling that has emerged from the center of the
recirculating eddy. This results in a much larger tumbling zone than that in Fig. 10. A
pair of 61/2 disclinations form on the boundary and travel downward as the tumbling
domain grows towards the end of the cycle@Fig. 11~b!#. On the outer cylinder, the flow
is simple shear and director tumbling is expected. But the local strain rate is about 30
times smaller than that at the inner cylinder and hence the tumbling period is extremely
long.

C. The HL1Q closure

The initial development of the director field is similar to those of the quadratic and
QuadR closures. The director wags in the area surrounding the inner cylinder with a
greater amplitude than for the QuadR closure. Above the inner cylinder, director tum-
bling occurs in an arc-shaped strip@areaA in Fig. 12~a!#, which propagates to the right
and later connects with the tumbling zone in the center of the eddy. The tumbling domain
grows in time and its boundaries heal in much the same manner as for the QuadR model.
Figure 12~b! shows the domain in its maximum size. Director tumbling also occurs in
areaB below the inner cylinder, creating a localized defectlike structure which heals
periodically. Apparently, areasA and B correspond to the two lowS regions for the
QuadR closure in Fig. 11, only here the director tumbles in both areas instead of wag-
ging. The tumbling domain is much wider thanks to the location of areaA. The tumbling
of the director in areaA, areaB and the center of the recirculating eddy occurs at
different phase and period, giving the entire director field a quasiperiodic quality.

FIG. 10. A snapshot of the director field as predicted by the quadratic closure.t 5 79. The loop delineates the
tumbling domain in its maximum size.
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FIG. 11. The evolution of the director field as predicted by the QuadR closure.~a! t 5 80. The lower order
parameter in areasA and B is indicated by plumper ellipses;~b! t 5 112. The loop delineates the tumbling
domain. On its boundary there are a pair of61/2 disclinations indicated by the arrows and illustrated by the
sketches.
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FIG. 12. The evolution of the director field as predicted by the HL1Q closure.~a! t 5 36. Director tumbling
starts in areaA; ~b! t 5 72. The loop delineates the tumbling zone. Director tumbling also occurs in areaB.
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D. The Bingham closure

As for the QuadR model, the initial development of the director field leads to two low
S regions@A andB in Fig. 13~a!#. Their positions are roughly the same as for the QuadR
closure but the order parameter is even lower. Director tumbling originates from the right
edge of areaA, and propagates to the right to join the tumbling zone centered inside the
eddy. The size of the tumbling domain, nearly fully grown in Fig. 13~b!, is between those
of the quadratic and QuadR closures.

One may also note that the ellipses in Fig. 13 are generally plumper than in the
preceding figures; the Bingham closure predicts lower molecular order. This is not sur-
prising since the quadratic closure overestimates the equilibrium order parameterSeq @see
Fig. 2 of Chaubalet al. ~1995!#, and the QuadR and HL1Q models have the sameSeq.

E. Comparison and discussion

As expected at the end of Sec. III, thequalitativenature of the inhomogeneous solu-
tion is indeed the same for all closures tested. In homogeneous flows, the difference
between the closure models and the exact Doi theory is most prominent in the neighbor-
hood of simple shear. In the nonhomogeneous flow computed, the deformation history
includes greatly varying conditions far from shear and hence the predictions do not differ
as much among models. In particular, the distinct inability of the quadratic model to
predict tumbling in simple shear is hardly discernible in the simulation. The fact that the
essential features of the solution are independent of the closure approximations is encour-
aging; these features are unlikely to be artifacts of the specific closure used, and we have
probably captured the true LCP dynamics as predicted by the unapproximated Doi
theory.

There arequantitative differences among the four simulations. The most obvious
difference is in the size of the tumbling domain. The closure models are ordered as
quadratic, Bingham, QuadR and HL1Q with increasing size of the tumbling zone. The
models, in that order, also feature progressively more vigorous wagging and even tum-
bling in regions outside the recirculating eddy. One may see this ordering as one with an
increasing proclivity toward periodic motions of the director. This is consistent with their
respective behavior in homogeneous flows@see Fig. 7~b!#. For the quadratic closure, the
tumbling domain originates and centers inside the recirculating eddy. For the other clo-
sures, there are two lowS areasA andB close to the rotating cylinder, and the tumbling
domain extends from the eddy to areaA. Going to finer details of the four simulations,
Fig. 14 compares the temporal variations of the order parameter and the orientation angle
of the director at a fixed spatial point that is roughly at the center of the eddy. The
quadratic closure has a longer period than the other three models. The Bingham closure
stands out in that it predicts a lower order parameter, a fact already noted in Fig. 13.
Since the Bingham closure gives the exactSeq, the Bingham curves in Fig. 14 should be
more accurate than the others.

V. CONCLUSION

In two-dimensional homogeneous flows, all six closure models considered in this
article ~quadratic, QuadR, HL1, HL1Q, HL2 and Bingham! predict three regimes of
director motion: steady alignment, wagging and tumbling. HL2 stands out because it
predicts spurious tumbling or large-amplitude wagging at high Pe in near-shear flows.
The differences among the rest of the models consist of shifts of the criticalU, Pe anda
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FIG. 13. The evolution of the director field as predicted by the Bingham closure.~a! t 5 20. The molecular
order is reduced in regionsA andB; ~b! t 5 108. The loop delineates the tumbling domain.
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values for transitions between regimes. The Bingham closure gives the best approxima-
tion to the exact Doi theory. In particular, its prediction is exact in the weak flow limit.

In the inhomogeneous flow computed, the closure models predict the same essential
features of the LCP behavior. This is expected to be true for most inhomogeneous flows
containing regions of markedly different flow strength and flow types.~This excludes
shear-dominated flows; for instance, the quadratic and Bingham closures will give dras-

FIG. 14. Temporal variation of the LCP configuration at (x,y) 5 (3,0) for different closure models.~a! The
order parameterS; ~b! the orientation angle of the directoru ~same symbols as ina!. At U 5 6, the equilibrium
order parameterSeq 5 0.745 for the Bingham closure and the unapproximated Doi theory and 0.809 for the
other closures.
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tically different predictions in channel flows.! Without a solution of the exact Doi theory
to compare with, it is not obvious which model performs best in simulating complex
flows. A closer inspection of the order parameter at one fixed point suggests that the
Bingham closure gives the most accurate prediction.

One may argue that the superiority of the Bingham closure in inhomogeneous flows
has yet to be firmly established by comparing with the exact Doi theory. At present,
however, we recommend the Bingham closure for use in simulating complex LCP flows.
Its implementation is no more difficult than the other closure models. The QuadR and
HL1Q closures give better predictions than the quadratic, HL1 and HL2 closures, but we
see no circumstances that would favor them more than the Bingham closure.
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