
Simulating complex flows of liquid-crystalline polymers
using the Doi theory

J. Fenga) and L. G. Leal

Department of Chemical Engineering, University of California–Santa
Barbara, Santa Barbara, California 93106-5080

(Received 2 May 1997; final revision received 6 August 1997)

Synopsis

We simulate the startup flow of lyotropic liquid-crystalline polymers~LCPs! in an eccentric
cylinder geometry. The objectives are to explore the mechanisms for the generation of disclinations
in a nonhomogeneous flow and to study the coupling between the flow and the polymer
configuration. The Doi theory, generalized to spatially varying flows and approximated by the
quadratic closure, is used to model the evolution of LCP configurations. This, along with the
equations of motion for the fluid, is solved by a finite-element method. The flow modification by the
polymer stress is mild for the parameters used, but the LCP exhibits complex orientational behavior
in different regions of the flow domain. For relatively weak nematic strength, a steady state is
reached in which the director is oriented either along or transverse to the streamline, depending
upon local flow conditions and the deformation history. A pair of disclinations, with strength61/2,
are identified in the steady state, and the LCP configuration at the disclinations confirms the model
of a structured defect core proposed by Greco and Marrucci~1992!. For strong nematic strength,
director tumbling occurs in the more rotational regions of the flow field, giving rise to a polydomain
structure. The boundary of the tumbling domain consists of two disclinations of61/2 strength, a
structure very similar to previous experimental observations of LCP domains. ©1997 The Society
of Rheology.@S0148-6055~97!00306-4#

I. INTRODUCTION

In 1971, DuPont produced ultrahigh strength Kevlar® fibers from liquid-crystalline
polyamides. Since then, the prospect of using liquid-crystalline polymers~LCPs! as struc-
tural and barrier materials has spawned intensive research efforts. To date, however, the
high expectations of LCPs remain largely unfulfilled. Commercial production of LCPs
other than fibers has been limited to injection molding of very small high-precision parts.
These operations take advantage of the low processing viscosity and small thermal ex-
pansion of LCPs, but not the high tensile strength and moduli that come with optimal
orientation of LCP molecules. The main difficulty in molding three-dimensional parts
consists in controlling molecular orientation. A major problem is the tendency for for-
mation and proliferation of disclinations under flow, leading to so-called polydomain
structures. The goal of controlling molecular orientation requires a thorough understand-
ing of the rheology and flow behavior of these peculiar materials as well as advanced
strategies for mold design and process optimization@Ophir and Ide~1983!#.
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Lyotropic LCPs~solutions! are easier to study than thermotropics~melts! and, thus,
our knowledge is more complete for lyotropics. The rheology of the two types of LCPs
differs in certain aspects, and in this paper, we will focus on lyotropics. Most of the prior
research on LCP rheology has been done on simple shear flows. Based on rheological
measurements and optical observations, a more or less complete picture of LCP behavior
in shear flow has emerged@Larson and Mead~1993!#, which consists of an Ericksen
number cascade and a Deborah number cascade. The first cascade comprises flow re-
gimes at low-to-medium shear rates for which the LCP behavior is governed by the
balance between a viscous torque due to flow and an elastic torque due to Frank elastic-
ity. The relative magnitude of these two torques is represented by the Ericksen number
Er. As Er increases, the LCP behavior evolves from steady tipping of the director in the
shear plane to a roll-cell instability and director turbulence. The Leslie–Ericksen~LE!
theory @Leslie ~1979!#, along with elastic and flow stability analyses based on the LE
theory @Pieranskiet al. ~1976!; Larson ~1993!#, describes the lowEr regimes well, al-
though the physics behind the generation of disclination lines is still unknown. In the
polydomain regime of director turbulence, domain refinement and transient rheology may
be described by the mesoscopic Larson–Doi theory@Larson and Doi~1991!#. The regime
of director turbulence corresponds to region II of the often cited Onogi–Asada flow curve
@Onogi and Asada~1980!#. The low Er behavior described above is for well-relaxed or
monodomain initial states, and does not correspond to the shear-thinning region I. The
origin for region I remains a mystery; recent experiments have suggested a few possi-
bilities @Walker and Wagner~1994!; Ugazet al. ~1997!#.

At higher flow rates, the molecular order is distorted by the flow, giving rise to a
molecular elasticity that overwhelms the Frank elasticity. At this stage, the LCP configu-
ration is governed by the competition between flow-induced distortion and relaxation
through Brownian motion, indicated by the Deborah numberDe. The monodomain Doi
theory predicts tumbling, wagging, and flow-aligning behavior of LCPs at increasing
shear rate@Marrucci ~1990!; Larson~1990!#. Even though the polydomain structure per-
sists except for the highest flow rates, the elastic stress between domains is apparently
unimportant; an average over individual tumbling/wagging domains predicts steady-state
rheological properties such as shear viscosity and normal stress differences@Marrucci and
Maffettone~1990!; Larson~1990!#. These predictions are in good qualitative and some-
times quantitative agreement with experiments@Magdaet al. ~1991!; Baeket al. ~1993a,
1993b!#. TheDe cascade corresponds to region III of the Onogi–Asada flow curve.

Homogeneous flows other than simple shear have received much less attention. Purely
extensional flow of LCPs is simple because of the uniform alignment of molecules with
the streamlines@See et al. ~1990!#. Homogeneous flows of a mixed type have been
considered by Chaubalet al. ~1995!. The most interesting result is that the behavior of
LCPs is extremely sensitive to the flow type in the neighborhood of simple shear. The
slightest addition of an extensional component to a simple shear flow will change director
tumbling to flow aligning. Conversely, adding a small rotational component will lead to
tumbling up to very large Deborah numbers.

Nonhomogeneous flows are more complex than homogeneous flows for two reasons:
the presence of history effects due to the Lagrangian unsteadiness of the flow and flow
modification due to nonzero divergence of the polymer contribution to stress. The poly-
mer configuration, represented by the orientation distribution function, depends on the
deformation history in any flow. But for nonhomogeneous flows, this dependence is
particularly significant since the flow conditions vary both along and between stream-
lines. The coupling between flow and polymer configuration is a hallmark of nonhomo-
geneous flows. Grizzutiet al. ~1991! observed modification of the velocity field in a slit
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flow of LCP solutions. There is a local maximum of the velocity near the edges of the
channel, indicating lower viscosity there. This is consistent with later studies by Bedford
and Burghardt~1994, 1996! who demonstrated that the LCP molecules are almost per-
fectly aligned with the flow near the sidewalls. These latter authors did not, however,
detect any significant flow modification. More complex geometries, such as channels
with abrupt or gradual expansion/contraction, have been studied by Baleo and Navard
~1994! and Bedford and Burghardt~1996!. Besides the strong alignment near the side-
walls, both studies confirmed that converging flows tend to align LCP molecules and
enhance orientational order.

In summary, the behavior of LCPs in shear flows has been well documented in ex-
periments but theoretical development lags experiments. The Doi theory applies at high
flow rates when the elastic stress due to gradients of the director field is unimportant. The
monodomain assumption, however, precludes the theory from accounting for the genera-
tion and proliferation of disclinations at lower flow rates. For nonhomogeneous LCP
flows, recent experiments have provided some insights, but at present, there is no detailed
and accurate understanding of the coupling between flow and LCP configurations. There
is a wide gap between our modeling capability of LCP flows and the goal of injection
molding high-strength three-dimensional parts.

A critical task then appears to be to develop a new theory to accommodate the dy-
namics of disclinations and the polydomain structure. Marrucci and Greco~1991, 1992,
1993! made a breakthrough in this direction. By using a nematic potential with nonlocal
molecular interactions, they added the elasticity due to spatial variation of the polymer
configuration to the Doi theory. This effect reduces to the Frank elasticity in the limit of
weak flows. The new potential introduces spatial interaction in the director field, and
hence, the possibility of theoretically accounting for wall anchoring. The new theory
admits a ‘‘hedgehog defect’’ as a solution in the absence of flow@Greco and Marrucci
~1992!#, but so far has not been used for flow calculations.

The work to be presented in this paper takes a different approach. We relax the
monodomain restriction of the Doi theory, as suggested by Marrucci and Greco~1993!,
by allowing the polymer configuration and the flow to vary in space. Then, instead of
adding gradient elasticity, we test the theory in nonhomogeneous flow simulations. In an
eccentric cylinder device, the theory predicts disclination lines of half-strength and a
tumbling domain whose boundary is made up of such disclination lines. Similar exten-
sions of the Doi theory were previously attempted in channel flows@Armstronget al.
~1995!; Mori et al. ~1995!# and Couette flows@Wang~1996!#. Because of the flow kine-
matics or limitations to high Peclet numbers, only monodomain, steady solutions have
been obtained.

In the next section, we will define the flow problem and formulate the governing
equations. The Stokes flow kinematics are described in Sec. III. LCP flows with steady
and periodic director motions are discussed in Secs. IV and V. Conclusions will be given
in the final section.

II. FORMULATION OF THE PROBLEM

We consider the start-up flow in an eccentric cylinder device~Fig. 1!. This geometry
is used because it contains extensional, shear and rotational flows in different regions;
this affords us the opportunity to examine how the LCP configuration evolves along
streamlines that pass through different regions. The outer cylinder is stationary and the
inner cylinder starts at timet 5 0 to rotate with angular velocityv. The geometry is
characterized by two dimensionless parameters:m 5 (R22R1)/R1 5 7/3 and e

1319SIMULATING COMPLEX FLOWS OF LCPs



5 e/R1 5 5/3. In presenting the results, we will takeR1 5 3 and R2 5 10 so as to
avoid fractional radii. This amounts to usingL 5 R1/3 as the characteristic length.

Doi ~1981! modeled an LCP solution as a concentrated suspension of rodlike mol-
ecules with uniform lengthL and negligible thickness. The orientation distribution of the
polymer and the velocity gradient were assumed to be spatially uniform. A generalization
to spatially nonuniform systems was formulated by Doi and Edwards~1986!, allowing
translation of polymer molecules by diffusion and convection. In this paper, we neglect
translational diffusion so as to maintain a uniform polymer concentration in the solution.
If we then apply the Prager procedure to the Smoluchowski equation@Eq. ~8.26! of Doi
and Edwards~1986!#, the evolution equation of the second moment tensor is obtained:

]A

]t
1v•“A2“vT

•A2A•“v 5 26Dr S A2
d

3D 16UDr~A•A2A:AA !22D:AA ,

~1!

whereA 5 ^uu&, u being the unit vector along the axis of the molecules.d is the unit
tensor, v is the fluid velocity, and D is the deformation gradient tensorD
5 (“v1“vT)/2. Dr is the rotational diffusivity of the LCP molecules, and the dimen-

sionless parameterU is the nematic strength in the Maier–Saupe potential

V~u! 5 2 3
2UkTuu:A, ~2!

wherek is the Boltzmann constant andT the temperature.
A few comments about Eq.~1! are in order. First, the~v•“A! term describes the

spatial variation ofA along a streamline, and is not included in the monodomain Doi
theory. A similar derivation of this term was given by Bhaveet al. ~1991!. Second, we
have neglected the tube dilation effect, namely, the enhanced diffusivity due to molecular
order. We have carried out simulations with tube dilation and the results do not differ
qualitatively for the parameters used. Third, the quadratic closure is used, mostly for its

FIG. 1. The eccentric cylinder device.
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simplicity. Its often-mentioned failure to predict director tumbling in simple shear is not
a serious problem for other types of homogeneous flows@Chaubalet al. ~1995!#. In a
nonhomogeneous flow, the history effect will further reduce the influence of the local
flow properties, and the choice of closure approximations is expected to be less conse-
quential. Finally, Eq.~1! is formulated in terms ofA 5 ^uu& instead of the order param-
eter tensorS 5 A2d/3. A is positive definite and, thus, can be geometrically represented
by an ellipsoid; this facilitates graphical presentation of the results. We will refer toA as
the configuration tensor since it contains all the information about the orientation distri-
bution function at this level of approximation.

For the polymer stress, we adopt the original form of Doi~1981!:

t 5 3nkTSA2
d

3D 23nkTU~A•A2A:AA !1
nkT

2Dr~nL3!2 D:AA , ~3!

wheren is the number density of the rodlike molecules. Equation~3! does not take into
account the inhomogeneity ofA. In other words, we have neglected any dependence oft
on “A. The term proportional toD:AA is a viscous stress, (nL3)2 being the crowdedness
factor. @One referee pointed out that an empirical coefficientb 5 O(103) should multi-
ply the viscous stress~see Sec. 9.4.3 of Doi and Edwards, 1986!. Fortunately, this does
not invalidate our results since the crowdedness factor (nL3)2 is determined empirically
by comparing the viscous stress as in Eq.~3! to experimental data, and thus, will incor-
porate theb factor.#

Assuming negligible inertia, we write the governing equations for the fluid flow as

“•v 5 0, ~4!

r
]v

]t
5 2“p1hs“

2v1“•t, ~5!

wherer is the density of the fluid,hs is the solvent viscosity, andp is the pressure.
Equations~1! and ~3! can be made dimensionless:

]A

]t
1v•“A2“vT

•A2A•“v 5 2
1

PeS A2
d

3D 1
U

Pe
~A•A2A:AA !22D:AA ,

~6!

t 5 SA2
d

3D 2U~A•A2A:AA !1
Pe

~nL3!2 D:AA , ~7!

where the strain rate is scaled byv, the length byL 5 R1/3, the velocityv by vL, time
t by v21, and the polymer stress by 3nkT. The Peclet number is defined byPe
5 v/(6Dr ); it is also the Deborah number since 1/Dr may be considered the relaxation

time of the polymer molecules. The equation of motion for the fluid flow is made dimen-
sionless by scalingp by hsv:

Re
]v

]t
5 2“p1“

2v1
c

Pe
“•t, ~8!

where the Reynolds number is defined asRe 5 rvL2/hs , and

c 5
nkT

2hsDr
, ~9!
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is a concentration parameter. The physical meaning ofc needs some explanation. It is
proportional to the polymer contribution to the zero-shear-rate viscosity of the LCP
solution. The Doi theory gives this contribution as

hp 5
nkT

6Dr

~12S!2~112S!~113
2S!1@3/2~nL3!2#S2~112S!~12S!

~11S/2!2 5
nkT

2Dr
a~S!,

~10!

whereS 5 @(3A:A21)/2#1/2 is the order parameter. Thus,hp /hs 5 a(S)c. If the LCP
molecules are well aligned~by strong nematic strengthU, say!, a can be very small. The
polymer contribution to the shear viscosity is then much smaller thanc.

So our problem is completely defined by Eqs.~6!–~8!. The dimensionless parameters
are: Re, Pe, U, c, and (nL3)2 along with two geometric parameters of the eccentric
cylinder devicem ande. The Reynolds number is proportional to the time scale for the
suspending fluid to react, via vorticity diffusion, to a change of speed at the inner cylin-
der. To avoid the complication of this flow transient, we fix the Reynolds number at a
small valueRe 5 1.1131024. To select appropriate values forc and (nL3)2, we refer
to the measurements on aqueous hydroxypropylcellulose solutions reported by Do-
raiswamy and Metzner~1986! and Moriet al. ~1995!. The crowdedness parameter ranges
from O(102) to O(103), andc 5 O(106) owing to the small solvent viscosity in their
systems. In our computations, we fix (nL3)2 5 200, but usec 5 10 and 100. The small
c values are intended to suppress flow modification effects. As will become clear in the
next section, the dynamics of the polymer configuration is rather complicated. By avoid-
ing the complication of severe flow modifications in this initial study, the LCP behavior
is easier to analyze. For largerc values, the coupling between LCP configuration and the
fluid flow will be stronger. But the dynamics of LCP orientation and ordering that the
current study reveals will apply. The remaining parameters,Pe andU, will be varied so
as to generate steady and periodic regimes of director motion.

The flow field is two-dimensional in thex–y plane. The individual molecules are
allowed to orient out of the plane but maintain a collective symmetry about the plane. So
the director is either in the plane or perpendicular to it, the latter corresponding to a
log-rolling state. The imposed symmetry excludes the kayaking regime that is observed
in simple shear over a narrow range of parameters@Larson and O¨ ttinger ~1991!#.

The no-slip boundary condition is used on solid walls. No boundary condition is
needed forA because of the hyperbolic nature of Eq.~6!; A evolves along the charac-
teristics, which are the streamlines. This is an inherent shortcoming of the Doi theory
since director anchoring cannot be accommodated. Subject to the symmetry about the
flow plane, the configuration tensorA has three unknown components:

A 5 F A1 A2 0

A2 A3 0

0 0 12A12A3

G . ~11!

The initial order parameter is taken to be the equilibrium value@Doi ~1981!#:

Seq 5
1

4
1

3

4S 12
8

3U D 1/2

. ~12!

Initially, the director is uniformly aligned with one of thex, y, andz axes.
The numerical algorithm is adapted from a code that we have used to compute two-

dimensional flow of dilute polymer solutions@Feng and Leal~1997!#. The flow solver
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needs little change, but the evolution equation forA is more complicated for LCPs than
FENE dumbbells. The coupled system@Eqs.~6!–~8!# is solved by using a finite-element
method on an unstructured triangular mesh, an example of which is shown in Fig. 2. A
special feature of the program is the treatment of the convection term~v•“A!; it is
discretized implicitly or explicitly on different nodes depending on the property of the
tensorA. This ensures that the eigenvalues ofA lie in the range of~0,1!. For a few sets
of parameters, we did numerical experiments to ensure convergence of the solution with
respect to the mesh size and the time step. Our numerical algorithm allows us access to
a much wider range of parameters than was accessible to Moriet al. ~1995!. In particular,
we can compute sufficiently low Peclet numbers that director tumbling occurs in the
more rotational regions of the flow.

III. STOKES FLOW

A Stokes flow prevails in the absence of polymer stresses. This flow field serves as a
base line in identifying flow modification by polymer stresses. Besides, since flow modi-
fication is mild for the parameters used in this study, most features of the Stokes flow
carry over to the LCP flows, and thus, bear on the LCP behavior. For a comprehensive
study of the Stokes flow in the eccentric cylinder geometry, see Ballal and Rivlin~1976!.

Because of the small Reynolds number, the Stokes flow reaches a steady state quickly
after start-up; the dimensionless time of the transient is on the order of 1022. Figure 3
shows the streamlines and contours of the flow-type parameter in the steady state. There
are two groups of closed streamlines, one surrounding the rotating inner cylinder and the
other constituting a recirculating eddy in the wide gap. The flow around the inner cylin-
der is largely shear in nature, whereas the flow in the recirculation zone is rotational. The
flow in the area above the inner cylinder, where the two groups of streamlines diverge, is
extensional with a negative acceleration along the dividing streamline. In contrast, the

FIG. 2. A typical mesh used in the simulations, with 2872 triangular elements, 5868 nodes, and 1498 vertices.
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area below the inner cylinder contains a converging flow with positive acceleration along
the dividing streamline. Contours of the flow-type parameter consist of three thin strips of
nonshear flows surrounded by near-shear flow. The light crescent on the right represents
rotational flow associated with the recirculation zone, the minimum ofl occurring on the
x axis. The two dark arcs contain extensional flows, with converging and diverging
streamlines, respectively.

IV. STEADY SOLUTIONS OF LCP FLOWS

Previous studies of homogeneous LCP flows@Larson~1990!; Chaubalet al. ~1995!#
show that periodic motion of the director~tumbling or wagging! occurs for large values
of U and small values ofPe, while strong flow and weak nematic strength promote
steady alignment with the streamline. These are used as guidelines in the exploration of
various LCP regimes in our nonhomogeneous flows. In this section, we present results for
U 5 4 andPe 5 20; under these conditions a steady director field is approached in our
simulations.

Under flow, the LCP orientation distribution is distorted from the uniaxial shape that
it assumes at equilibrium. Then the notion of a director no longer applies. Nevertheless,
one can use the principal birefringence axis as an indication of the local orientation
@Larson~1990!#. In our paper, the orientation distribution is described approximately by
a second-order tensorA. Then the eigenvector ofA corresponding to the largest eigen-
value is a natural choice for representing the preferred orientation of the LCP molecules.
We will refer to the unit vector along this eigenvector as the director, with the under-
standing that the orientation distribution is now biaxially symmetric.

A. c 510

As mentioned in Sec. II, typical lyotropic LCPs have very large values ofc. For this
preliminary study, we do not strive to simulate a particular LCP system. Instead, the
emphasis is on trying to understand the physics of various mechanisms affecting LCP
configurations and the fluid flow. Therefore, we have used relatively small values ofc.
To some degree, this avoids the complications of flow modification and simplifies the

FIG. 3. Kinematics of the steady Stokes flow in the eccentric cylinder geometry:~a! streamlines;~b! contours
of the flow-type parameterl. Positive and negative values ofl indicate extensional and rotational flow,
respectively.l 5 0 represents a shear flow. For the definition ofl, see Singh and Leal~1993!.
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task of understanding the behavior of LCPs. The effect of flow modification will be
explored within a limited extent in Sec. IV B when we discuss results forc 5 100.

Initially, the director field is uniformly oriented in either the horizontal or vertical
direction. The initial orientation affects the approach to the steady state, but not the
steady state itself. With directors initially oriented in the horizontal direction, Fig. 4
shows snapshots of the LCP field during its evolution. Each ellipse represents the con-
figuration tensor at a mesh point; its axes are oriented in the direction of the in-plane
eigenvectors, and the length of the semiaxes represents the corresponding eigenvalues.
Shortly after start up, the LCP configuration next to the inner cylinder is affected by the
flow @Fig. 4~a!#. The director becomes aligned with the circular streamlines, and the
beltlike region widens as the effect of the inner cylinder is felt by LCP molecules farther
away@Fig. 4~b!#. In the mean time, the recirculation in the wide gap leads to a thin strip
resembling a line defect across which the director changes direction rapidly. This is a
direct result of the change in sign of the velocity gradient across the strip: the director
rotates clockwise to the left of the ‘‘defect’’ and counterclockwise to its right. As flow

FIG. 4. Evolution of the director field forU 5 4, Pe 5 20, andc 5 10. Initially, the director is uniformly
aligned with thex axis.~a! Shortly after the start-up at timet 5 0.2; ~b! t 5 24; ~c! t 5 48; and~d! the steady
state att 5 140. A streamline is also plotted to illustrate how the director turns with respect to the flow. The
sketches show the director lines surrounding the11/2 disclination in the fourth quadrant and the21/2 one in
the third quadrant.
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continues, the strip is healed from the top down@Fig. 4~c!#. Finally, the LCP director field
reaches a steady state@Fig. 4~d!#.

There are two striking features in the steady-state director field: the asymmetry about
the x axis and the disclination-like pattern in the fourth quadrant~see Fig. 1 for the
coordinate system!. The asymmetry is a manifestation of the alignment behavior of LCPs
in converging and diverging extensional flows. Along a recirculating streamline, a poly-
mer molecule encounters a converging flow in the lower-left part of the eddy~see Fig. 3!.
This aligns the director with the streamline. The flow downstream is roughly shear and
the alignment holds. Further downstream, the flow becomes extensional with diverging
streamlines in the upper-left part of the eddy. In this region, the director prefers an
orientation perpendicular to the streamline, and thus, does not follow the turn of the
streamlines. On the right side of the eddy, the flow is again mostly shear and the director
is more or less aligned with the streamlines. Therefore, as a result of the varied flow
types, the director is aligned with the local streamline everywhere except in the upper-left
part of the eddy, where the director is almost perpendicular to the streamlines. In the
above discussion, we have referred to streamline and flow-type patterns as depicted in
Fig. 3, for the Stokes flow. This is justified because for the relatively smallc used here,
the flow modification is mild. We will elaborate on flow modifications when discussing
results forc 5 100.

The pattern in the fourth quadrant resembles a disclination of strength11/2. The
director orientation changes 180° around the defect core, at which the order parameter is
reduced to 0.248; the equilibrium order-parameterSeq 5 0.683 forU 5 4. In trying to
identify this pattern with a disclination, we realized that a definitive picture of the struc-
ture of disclinations in LCPs does not seem to exist. For small-molecule nematics, dis-
clinations have been treated as mathematical singularities with no physical structure
@Chandrasekhar~1977!; Kléman ~1980!#. A model of the defect core was recently pro-
posed by Greco and Marrucci~1992!. The ingenuity of this model is that by allowing the
order parameter to decrease toward the center of the core, a continuous representation
becomes possible. This is especially appropriate for polymeric liquid crystals, whose
molecular order is susceptible to external disturbances, e.g., flow or magnetic fields. A
‘‘hedgehog point defect’’ was analyzed in this framework and that appears to be the only
form of defect whose core structure has been described so far.

The pattern in Fig. 4~d! is considered a disclination because it demonstrates the key
features of the Greco–Marrucci model. Toward the center, the ellipsoid representingA
deforms as described by Greco and Marrucci~1992!. The order parameter reaches a
minimum at the center of the defect core and the director cannot be defined. Unlike the
hedgehog point defect, however, here the orientation distribution need not be isotropic at
the center. In fact, it is uniaxial with an oblate shape. To the best of our knowledge, this
is the first time that a structured defect core has been identified in a flowing LCP, and it
confirms the essence of the Greco–Marrucci model. It is not clear whether such a discli-
nation would appear as a ‘‘thin’’ or a ‘‘thick’’ thread. Since the orientation distribution
varies continuously inside the defect core, the Greco–Marrucci model implies a much
blurred distinction between thins and thicks. In particular, it is possible for the orientation
distribution to be uniaxially prolate at the center of a half-strength disclination, with the
director ‘‘escaping into the third dimension’’@Kléman~1991!#. It would be of interest to
test the continuous-core model by microscopic observations of the defect structure in
LCP samples.

Outside the defect core, many aspects of the topology of disclinations in small-
molecule liquid crystals can be carried over to LCPs. In particular, a conservation theo-
rem holds such that the strength of all disclinations in the domain adds up to a fixed
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number@Kléman ~1980!#, which is zero in our case. There is a second disclination of
strength21/2 in the third quadrant near the outer cylinder. One may also consider the
inner cylinder equivalent to a11 disclination and the outer cylinder equivalent to a21
disclination at`. The zero-sum rule holds regardless of the dynamic behavior of the
LCPs, as will be seen in Sec. V.

B. c 5100

In this subsection, we study the effects of largerc, especially on the flow field. The
steady-state LCP configuration is shown in Fig. 5. It is quite similar to that forc
5 10, with a pair of61/2 disclinations. But there are some subtle differences, which

will be explained by the changes in the flow. Figure 6 compares profiles of the velocity,
strain rate, and order parameter along thex axis for c 5 100, 10, and 0~Stokes flow!.
Polymer stress suppresses the fluid flow; the velocity is reduced everywhere in the flow
field, most notably in the recirculation zone@Fig. 6~a!#. This effect becomes more severe
for largerc. Since the velocity is fixed at the surface of the inner cylinder, a larger strain
rate arises next to the cylinder@Fig. 6~b!#. This effect is reminiscent of the flow of a dilute
polymer solution in a four-roll mill device@Feng and Leal~1997!#, in which higher
polymer concentration enhances the strength of fluid deformation around the roller but
suppresses it farther out. The wriggle atx ' 3 is caused by the relatively large spatial
gradient of the polymer configuration in that region~cf. Fig. 5!.

The impact of flow modification on the LCP configuration is apparent. Forc
5 100, the order-parameterS is higher than that forc 5 10, immediately to the right of

the inner cylinder@Fig. 6~c!#. Further to the right, however,S drops off more steeply as
the flow dies out more rapidly. Interestingly, the difference inS close to the outer
cylinder (5 , x , 10) is much larger than at the inner cylinder (x 5 22), though the

FIG. 5. The steady-state director field forU 5 4, Pe 5 20, andc 5 100. Initially, the director is uniformly
aligned with thex axis.
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difference inġ is not as large. This may be an effect of the flow type: the flow is weakly
rotational atx 5 22, but becomes extensional near the outer cylinder~cf. Fig. 3!. For
bothc 5 10 andc 5 100,S is above the equilibrium valueSeq 5 0.683 for allx except
a small region atx ' 3. This forms a contrast to simple shear flows, for whichS is below
Seq unlessPe is extremely large@Larson ~1990!#. Another evidence of the coupling
between LCP configuration and flow can be found in the third quadrant below the inner
cylinder in Fig. 5. This area consists of two regions in which the director orientation is
dictated either by the rotating cylinder~upper left! or by the recirculating eddy~lower
right!. As compared with Fig. 4~d!, the first region expands and pushes the second region
to the right. This is evidently a result of the reduced strength of the eddy depicted in Fig.
6~b!.

C. Log rolling

If initially the director field is uniformly oriented in thez direction ~perpendicular to
the flow plane!, a different steady-state configuration is reached~Fig. 7!. The director is
flow aligned in the region surrounding the inner cylinder and a log-rolling state prevails
in the wide gap. A similar solution was obtained by Wang~1996! for a Couette flow.
There is a sharp transition between the log-rolling and flow-aligning regions; the eigen-
value ofA corresponding to the out-of-plane eigenvector shrinks as one moves from the
log-rolling region toward the inner cylinder. The larger in-plane eigenvalue grows and
becomes the largest of the three inside the flow-aligning region. This picture is consistent
with the calculations of Larson and O¨ ttinger ~1991! in simple shear flows, which predict

FIG. 6. Effects of the concentration parameterc on the steady-state flow and LCP configuration.U 5 4, and
Pe 5 20. ~a! Profiles of the vertical velocity component along thex axis; ~b! profiles of the strain rate defined
as the magnitude of the strain-rate tensorġ 5 (2D:D)1/2; and~c! profiles of the order parameter. The straight
lines betweenx 5 28 andx 5 22 are within the inner cylinder.
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log rolling as a stable solution at low shear rate, but flow aligning to be the sole attractor
at large shear rate. Quantitative comparison is hampered by the nonshear flow types in
our problem.

The boundary between the flow-aligning and log-rolling domains can be considered a
surface of twist disclinations, or a ‘‘wall’’@Donald and Windle~1992!#. The orientation
distribution becomes uniaxially oblate~disklike!, where the eigenvalue associated with
the out-of-plane eigenvector equals the larger of the in-plane eigenvalues; the director
degenerates. This is also where the order parameter drops to a minimum~Fig. 8!. In
reality, such disclination surfaces appear most often during a transformation from a
homeotropic to a planar configuration between solid walls.

FIG. 7. The steady-state director field forU 5 4, Pe 5 20, andc 5 100. Initially, the director is uniformly
aligned with thez axis ~perpendicular to the flow plane!.

FIG. 8. The profile of the order-parameterS along thex axis in the steady state shown in Fig. 7. The minimum
of S at x 5 1.16 indicates the ‘‘wall’’ separating the flow-aligning and log-rolling regimes. The dash line
betweenx 5 28 andx 5 22 is inside the inner cylinder.
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V. A POLYDOMAIN SOLUTION WITH DIRECTOR TUMBLING

In this section, we consider the start-up flow of a lyotropic LCP forU 5 20, Pe
5 100, andc 5 10. As mentioned before, the relatively smallc value is used to avoid

the complication of severe flow modification. Figure 9 shows the evolution of the LCP
configuration after start-up.~We have made a video from these numerical results, which
gives a better representation of the evolving LCP configuration and disclination forma-
tion. The video is available from the authors upon request.!

Initially, the development of the director field is similar to that shown in Fig. 4,
although the order parameter is higher owing to the largerU. As in Fig. 4~b!, an arc-
shaped defect forms as a result of the recirculating eddy@Fig. 9~b!#. This arc seems to
contain multiple defect cores; the sketch shows two pairs of61/2 disclinations on top of
a 11/2 disclination. We should note that the accuracy of such a sketch is limited by the
resolution of the numerical results. If a defect core does not fall on a grid point, its
existence is inferred from the director orientation in the neighborhood. Besides, addi-
tional pairs of61/2 disclinations may exist which are too close together to be detected.
The strength of all disclinations in the arc adds up to11/2, and the total strength of all
disclinations in the plane equals zero.

As the flow progresses, the pairs of61/2 disclinations in the arc cancel, leaving only
the 11/2 disclination at the bottom, which travels to the lower left@Fig. 9~c!#. Mean-
while, the director starts to tumble in the upper part of the eddy. This gives birth to a pair
of 61/2 disclinations as shown in the sketch. As the tumbling zone grows and assumes a
kidney shape@Fig. 9~d!#, the21/2 disclination travels downward along the left boundary
of the tumbling zone and the11/2 disclinations along its right boundary. In the upper
part of the tumbling zone, the boundary starts to heal; the director inside has tumbled
through 180° and its orientation is again in accord with its neighbors outside. When the
21/2 disclination eventually arrives at the bottom of the tumbling zone@Fig. 9~e!#, it
meets the11/2 disclination that is the remnant of the arc in Fig. 9~b!. These two discli-
nations annihilate each other, leaving the11/2 disclination traveling down the right
boundary of the tumbling zone@Fig. 9~f!#. Finally, the tumbling approaches the end of the
cycle in Fig. 9~g! and a new cycle is about to start as depicted in Fig. 9~c!. Note that at
any moment, the total strength of all disclinations is conserved.

Figure 10 shows the periodic change of the order-parameterS and the orientation
angleu at (x,y) 5 (3,0) inside the tumbling zone. TheS value oscillates as the principal
axis ofA is alternately compressed and stretched by the flow, much like in a simple shear
flow @Larson~1990!#. The period is aboutT 5 53, and does not vary much throughout
the tumbling zone. Immediately outside the tumbling zone is a belt-shaped region in
which the director wags. Further out, the director field is steady and resembles that in Fig.
4~d!. The tumbling and wagging behavior is mainly caused by the rotational flow type in
the recirculation region, consistent with the effect that Chaubalet al. ~1995! observed in
homogeneous flows.

The most remarkable feature of Fig. 9 is the polydomain structure caused by director
tumbling. The exact meaning of a ‘‘domain’’ was the subject of a debate at a Faraday
Discussion more than a decade ago. In an analogy to ferromagnetism, Windle~1985!
defined a domain ‘‘as a region within which an orientation parameter varies no more than
slowly with position, compared with its rapid variation at the delineating boundaries.’’
Later observations of thin LCP films corroborated the fact that the orientation is roughly
uniform within a domain@Wood and Thomas~1986!#. The tumbling zone in Fig. 9 fits
this definition of a domain. Furthermore, Wood and Thomas~1986! discovered that the
boundary of a domain consists of an even number of discrete disclination lines, normal to
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FIG. 9. Evolution of the director field forU 5 20, Pe 5 100, andc 5 10. Initially, the director is uniformly
aligned with thex axis. The sketches to the right of some plots show the director lines around disclinations.~a!
Shortly after the start-up at timet 5 0.2, ~b! t 5 33, and~c! t 5 49; the upper sketch shows director lines at
this time and the lower one illustrates the two disclinations to emerge shortly afterwards.~d! t 5 65; the
maximum extent of the tumbling domain is indicated.~e! t 5 81, ~f! t 5 85, and~g! t 5 93.
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the LCP film, with alternating11/2 and21/2 strength; across the boundary the director
undergoes rapid but continuous rotation except in the vicinity of the disclination cores.
This description of the domain boundary agrees perfectly with that depicted in Fig. 9~d!.
Though the photographs of Wood and Thomas~1986! show the boundary as straight line
segments connecting neighboring disclinations, this configuration is not unique. In fact,
Fig. 9~d! shows curved boundaries containing only one pair of61/2 disclinations. Our
tumbling domain is topologically equivalent to the domain sketched in Fig. 11.

Another feature of the tumbling domain is that the order-parameterS drops on the
domain boundary, where the director orientation changes rapidly. This is expected in the
vicinity of the defect cores, but appears to be true even away from the disclinations. It is
not clear whether there is an intrinsic connection between the large gradient of the
director orientation and reduced molecular order. There seems to be no experimental data
on the variation ofS across a domain boundary.

VI. DISCUSSION AND CONCLUSION

The two main results of this paper are the generation of disclinations by flow and the
formation of a polydomain structure bounded by disclinations. The key element in these
events is the nonhomogeneity of the flow field. In particular, director tumbling in the
rotational eddy is responsible for forming the domain. In experiments, however, discli-
nations have been observed to emerge and multiply in simple shear flows@Larson and
Mead ~1992!; Mather ~1994!#. It appears that in these experiments, disclinations are

FIG. 10. The periodic change of the order-parameterS and the orientation angleu at (x,y) 5 (3,0) inside the
tumbling zone.U 5 20, Pe 5 100, andc 5 10. The equilibrium order-parameterSeq 5 0.948.

FIG. 11. A sketch illustrating a domain whose boundary~the dash loop! contains a pair of61/2 disclinations.
The director orientation is roughly uniform inside the domain and differs from the prevalent orientation outside.
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caused by initial nonhomogeneity of the polymer configuration. Gradient elasticity,
which reduces to the Frank elasticity in the limit of small distortions@Marrucci and Greco
~1991, 1993!#, makes possible director anchoring at solid surfaces or at residual defect
cores in apparently relaxed samples. When a shear flow is applied, the nonhomogeneity
of the LCP configuration prohibits uniform tumbling of the director field and eventually
leads to disclinations.

Hence, the nonhomogeneity in the fluid flow and that in the polymer configuration are
two independent agents that may cause disclinations. Note that gradient elasticity is not
included in our simulations. A consequence of this omission is the periodic healing of the
boundary of the tumbling domain. No elastic energy builds up as the director field gets
splayed and bent at the boundary. Therefore, part of the boundary disappears periodically
when the difference in orientation angle across the boundary reaches a multiple of 180°.
In reality, more disclinations must arise at the boundary to release the mounting elastic
energy: if the director degenerates or escapes into the third dimension, the continuous
rotation of the director on one side of the boundary will not cause unlimited winding.
This mechanism may explain the phenomenon that continued shear leads to proliferation
of disclinations and reduction of the domain size@Alderman and Mackley~1985!; Larson
and Mead~1992!#. The absence of the elastic stress in our simulations may be the
principal reason that our tumbling domain retains a large size as compared to the domains
found in experiments.

Obviously, the next task is to incorporate the gradient elasticity into the Doi theory,
and the nonlocal nematic potential of Marrucci and Greco~1991, 1993! may serve this
purpose. With the introduction of a¹2A term in the nematic potential, the LCP configu-
ration is correlated between neighboring streamlines, and its evolution now follows an
elliptic equation@cf. Eq. ~6!#. In complex flows, one will be able to include wall anchor-
ing as a boundary condition. Flow-induced disclinations may arise from the flow kine-
matics or the gradient elasticity, and the two mechanisms may interact.

Finally, the findings of this study can be summarized as follows:

~1! The LCP director exhibits steady or periodic behavior depending on the nematic
strength parameterU, the Peclet numberPe, the local flow-type parameterl, and
the deformation history. The effects ofU, Pe and l are consistent with previous
studies of homogeneous flows. The deformation history is determined by the kine-
matics of the flow.

~2! The nonhomogeneity of the flow gives rise to disclinations of61/2 strength. The
structure of the defect core corroborates the main features of the continuous-core
model of Greco and Marrucci~1992!.

~3! Director tumbling in the rotational flow region produces a polydomain structure. The
boundary of the tumbling domain consists of a pair of61/2 disclinations in agree-
ment with the observations of Wood and Thomas~1986!.

The last two conclusions are subject to the caveat that the elastic stress due to spatial
gradients in the director field has not been taken into account.
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