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Abstract 

In this paper we present a two-dimensional numerical study of the viscoelastic effects on the sedimentation of 
particles in the presence of solid walls or another particle. The Navier-Stokes equations coupled with an Oldroyd-B 
model are solved using a finite-element method with the EVSS formalism, and the particles are moved according to 
their equations of motion. In a vertical channel filled with a viscoelastic fluid, a particle settling very close to one side 
wall experiences a repulsion from the wall; a particle farther away from the wall is attracted toward it. Thus a settling 
particle will approach an eccentric equilibrium position, which depends on the Reynolds and Deborah numbers. Two 
particles settling one on top of the other attract and form a doublet if their initial separation is not too large. Two 
particles settling side by side approach each other and the doublet also rotates till the line of centers is aligned with 
the direction of sedimentation. The particle-particle interactions are in qualitative agreement with experimental 
observations, while the wall repulsion has not been documented in experiments. The driving force for lateral 
migrations is shown to correlate with the pressure distribution on the particle's surface. As a rule, viscoelasticity 
affects the motion of particles by modifying the pressure distribution on their surface. The direct contribution of 
viscoelastic normal stresses to the force and torque is not important. 
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I. Introduction 

W h e n  a f low p h e n o m e n o n  in a n o n - N e w t o n i a n  f luid  c o n t r a s t s  t h a t  w h i c h  is e x p e c t e d  in a 

N e w t o n i a n  fluid,  it is u sua l l y  ca l led  a n  a n o m a l o u s  effect.  A s  m o r e  a n d  m o r e  such  p h e n o m e n a  

a re  d i s c o v e r e d ,  p e o p l e  rea l ize  t h a t  " a n o m a l y "  is the  rule.  S u c h  is the  case  w i t h  the  m o t i o n  o f  

so l id  pa r t i c l e s  in v i scoe las t i c  l iquids .  I n  a l m o s t  eve ry  case  tes ted ,  the  pa r t i c l e  b e h a v e s  q u a l i t a -  
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tively differently in a non-Newtonian fluid. Earlier experimental findings have been summarized 
by Leal [1]. An elongated particle settling in an unbounded quiescent liquid rotates till its long 
axis aligns with the fall (Leal [2], Liu and Joseph [3]). A rod-like particle in a shear flow 
approaches a limiting orbit of rotation with its axis aligned with the vorticity vector (Karnis and 
Mason [4], Gauthier et al. [5,6]). In a Poiseuille flow, a particle migrates across streamlines to the 
center of the pipe [4,6]. Two spheres sedimenting one above another may attract or repel 
depending on their initial separations (Riddle et al. [7]). 

Recently, experimental studies were carried out to investigate the effects of a nearby wall on 
a sedimenting sphere and the interaction between two spheres settling side by side (Joseph et al. 
[8]). In a Newtonian fluid, inertia is known to cause repulsion between the sphere and the wall 
and between the two spheres (Liu et al. [9]). Not surprisingly, a complete reversal occurs in 
viscoelastic liquids; the sphere is pulled toward the wall and the two spheres attract if the initial 
separation is smaller than a critical value, beyond which no interaction is discernible. Tanner 
[10] noticed, in measuring the drag in a falling ball viscometer, that the ball tends to drift off 
center toward the wall under certain conditions. Jones et al. [11] recently reported similar 
observations in a rectangular column. 

Highly successful perturbation theories were developed based on the second-order fluid model 
(Leal [1], Brunn [12]). Qualitatively correct predictions have been obtained for the preferred 
orientation of a settling long body [2], the lateral migration of a sphere in a non-homogeneous 
shear flow (Ho and Leal [13], Chan and Leal [14]) and the evolution of the Jeffery orbit [2]. The 
cause of various anomalous effects has been identified as normal stresses of the second-order 
fluid. As long as no wall-particle or particle-particle interactions are involved, the perturbation 
method yields satisfactory results. However, when Brunn [15] applied the same scheme to the 
interaction of two sedimenting spheres, results show that the two spheres always attract, in 
apparent disagreement with the observations of Riddle et al. [7]. Caswell [16] used a similar 
perturbation procedure to study the wall effects on the sedimentation of a sphere. His results 
show that the sphere would be repelled by the wall, again in contradiction to experimental 
observations. To summarize, perturbation theories apply well only to problems without wall or 
interaction effects. Its failure otherwise may be caused by the use of unrealistic constitutive laws. 

Direct numerical simulation of the motion of solid objects in viscoelastic liquids has recently 
become possible. Most of the work in this area has been concerned with the ball-inside-cylinder 
geometry, inspired by the falling-ball viscometer. Effects of the Deborah number and wall 
blockage on the drag are of primary interest, and only steady flows are considered. A 
comprehensive review of these results can be found in Walters and Tanner [17]. Unsteady 
motion of solid particles causes two additional difficulties in computation: the transient effect in 
the fluid flow and the moving solid boundary. A number of authors have simulated the unsteady 
sedimentation of a ball along the center line of a vertical tube filled with a viscoelastic fluid (e.g., 
Bodart and Crochet [18], Becker et al. [19]). As far as we know, no other geometry or flow 
conditions have been studied for the transient motion of a particle. 

In this paper, we present dynamic simulations of the sedimentation of particles in an 
Oldroyd-B fluid. The goal of this work is to study the fluid mechanics of wall-particle and 
particle-particle interactions. The algorithm is an extension of what we used in simulating 
moving boundary problems in Newtonian fluids [20,21]. At each time step, the equations of 
motion and the constitutive equation of the fluid are solved using a finite element solver 
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POLYFLOW with an EVSS scheme (Debae et al. [22]). The force and torque on the solid 
particle then determine the position and velocity of the particle at the next time step. The new 
domain is re-meshed and the old velocity and stress fields are projected onto the new mesh. Then 
the velocity, pressure, stress and deformation gradient fields are computed for the new time. 
More details of the algorithm and the mesh are given by Huang and Feng [23]. 

As compared to its Newtonian counterpart,  the viscoelastic code is more susceptible to 
numerical instabilities, and we frequently used refined mesh and reduced time increment to 
verify the convergence of the results. The highest Deborah number that can be handled by the 
code typically lies between 1 and 2. The inability of lower-order EVSS methods to compute high 
Deborah number flows is well recognized (Khomami et al. [24]). This does not compromise our 
mission in this paper, however, because the leading-order effects of elasticity that we are 
interested in occur at low Deborah numbers already. We are currently limited to two-dimen- 
sional simulations. Nonetheless, this is the first attempt, to our knowledge, at dynamic 
simulation of  particle motion in complex flows of viscoelastic fluids. 

Two problems are studied in this paper: the sedimentation of a circular particle released in a 
vertical channel at various initial distances from the side wall and the sedimentation of  a pair of 
particles released side by side or in tandem. Because the Newtonian counterparts of  these 
problems have been studied [9,20], the effects of normal stresses can be highlighted. In Section 
2, we will first consider a few test problems and compare our numerical results with those of  
previous studies. This comparison serves as a validation of our program. Then numerical results 
for the two proposed problems will be discussed. 

2. Numerical results and discussions 

2. I.  Va l ida t ion  o f  the  code  

We have found no data in the literature that affords a complete check of  the validity of our 
code. Two previous studies seem to serve this purpose to some extent. Carew and Townsend [25] 
have computed the force and torque on a circular cylinder fixed at different eccentric positions 
in a creeping channel flow. A finite element method with a mixed Galerkin formulation is used. 
The fluid is represented by the Oldroyd-B model or the Phan-Thien-Tanner  model. Their 
computat ion verified the lateral force that pulls the cyclinder toward the nearby wall, which was 
first measured by Dhahir  and Waiters [26] in experiments. This computat ion is in two 
dimensions like ours, and quantitative comparison is possible. Inertia of  the fluid flow is, 
however, not included. Moreover, the flow is steady so the transient performance of our code 
cannot be tested. For this purpose, we use the axisymmetric computat ion of a sphere falling in 
a vertical tube [18,19]. 

The geometry in Carew and Townsend [25] is shown in Fig. 1. The blockage ratio 2 a / L  = 

7/12. The lateral position of the cylinder is indicated by an eccentricity factor 

e = 1 --  dl/d2. (1) 

Thus e = 0 when the cylinder sits on the centerline of the channel; e = 1 when the cylinder 
touches the wall. For an Oldroyd-B fluid 
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V V 

T +  2~ T = 2u(O + 220). (2) 

Carew and Townsend used 22/21 = 1/9. A parabolic velocity profile is assigned to the inflow. 
Four  positions of  the cylinder have been computed: e = 0, 0.33, 0.57 and 0.75. 

To compare with the results of  Ref. [25], we set the inertia to zero in our program, and used 
exactly the same geometric and rheological parmeters. The length of  the computational  domain 
is 100a, about  the same as in Ref. [25]. At the inlet of  the domain, fully developed velocity and 
stress profiles are assumed. At the outlet, normal derivatives of  the velocity are set to zero. We 
use an unstructured triangular mesh, which is much denser than the mesh in Ref. [25]. 

The drag, lift and torque on the cylinder are compared between the two computat ions in Fig. 
2. The dimensionless force and torque coefficients are defined by 

Drag per unit length(Fx) 
Cd = 

~u0 

Lift per unit length(Fy), 
c, 

~u0 
Torque per unit length (Tz) 

c ,=  
,u Uoa 

Counter-clockwise torque is defined as positive. We define a Deborah number  

D e  = Uo21/a ,  

which differs from that of  Carew and Townsend [25] by a factor of  (1 - 22/20. Their data have 
been converted to our D e  in Fig. 2. 

Both studies concur that there is a drag reduction with increasing D e  (Fig. 2(a)). The 
Newtonian drag agrees fairly well, but Carew and Townsend [25] obtained a much smaller drag 
for viscoelastic fluids. For eccentric positions, both computations predict a wall attraction force 
(Fig. 2(b)). This force increases with the Deborah number; for a fixed De,  it has a maximum at 
some intermediate position between e = 0.33 and 0.75. The magnitude of  this attraction force is 
about  50% larger in our calculation. Both computat ions yield a positive torque on the cylinder 
(Fig. 2(c)), which increases monotonically in our calculation but has a minimum at D e  ~ 0.12 in 
Ref. [25]. 

In summary, our EVSS formulation gives qualitatively the same results as Carew and 
Townsend [25], but considerable numerical discrepancies exist. This is perhaps owing to the 
coarse mesh used in Ref. [25]. Their finest mesh has only 112 elements. This was shown to be 
sufficient for Newtonian flows; no convergence test was given for viscoelastic flows. Our 

Vo_ . . . . . . .  
T dl 

X 

Fig. 1. Geometry of the channel flow around a fixed cylinder computed by Carew and Townsend [25]. 
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numerical  experiments indicate that  viscoelastic flows generally require much  more  refined mesh. 
Our  typical mesh has 500 elements and 1100 grid points.  

The settling of  a sphere or cylinder in a tube or plane channel  filled with Oldroyd-B fluid (Eq. 
(2)) is de termined by the following dimensionless groups: 
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Fig. 2. (a), (b). 
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Fig. 2. C o m p a r i s o n  be tween  o u r  numer ica l  results  and  those  o f  Ca rew  and  T o w n s e n d  [25]: (a) drag,  (b) lift, (c) torque .  

Re = pfUta De = Ut21 Fr - ga a P__2 22 
' a ' - Pr' 

Where Ut is the terminal velocity of  the particle and R is the radius of  the tube or the semiwidth 
of  the channel.  In compar ing  our  planar  case with axisymmetric cases, it is obviously impossible 
to match  all six parameters.  Thus,  a meaningful  quanti tat ive compar ison cannot  be made.  Fig. 
3 compares  the variation of  the settling velocity obtained in our  calculation with two axisymetric 
calculations for spheres. Bodart  and Crochet  [18] used a mixed finite-element me thod  with a 
Galerkin formulat ion.  The  mesh is at tached to the sphere and translates with it. Becker et al. 
[19] used a Lagrangian finite element me thod  with a single integral Oldroyd-B model.  A large 
overshoot  in the falling speed is obtained in all three computa t ions ,  consistent with the 
experimental  observat ions of  Waiters and Tanner  [17] and Becker et al. [19]. The terminal 
velocity is approached  th rough  a damped  oscillation. 

The above compar isons  indicate that  our  code gives qualitatively reasonable results for the 
two test problems. Its accuracy cannot  be assessed at present owing to lack of  comparable  data. 

2,2. Sedimentation o f  a single particle in a channel 

The geometry of  the problem is shown in Fig. 4. A cylinder of  radius a and density Ps is 
released at an eccentric posi t ion in a channel  filled with an Oldroyd-B fluid. The cylinder is 
heavier than the fluid and starts to settle under  gravity. We wish to study the lateral mot ion  of  
the particle as a result of  the walls. 

Before doing dynamic  simulations of  the sedimentat ion,  we first carried out  static calculations. 
The  particle is fixed in space; a uni form velocity U is applied at the inlet of  the domain  and on 
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Fig. 3. Comparison of the settling velocity in three studies. Our calculations: Re = 0.02255, De = 0.2255, Fr = 10.36, 
a/R=0.5 ,  ps/pr=26.74, A2/2 ~ = 1/9. Bodart and Crochet [18]: Re=0.6468, De= 1.986, Fr=4.976, a/R=0.5 ,  
,Os/pf= 7.162, 22/A ~ --1/9. Becker et al. [19] Re= 5.27 x 10 -3, De = 0.402, a i r  =0.243. Other parameters are not 
given. 

b o t h  side walls. This  is a Gal i l ean  t r a n s f o r m a t i o n  o f  a s teady sed imen ta t ion  wi thou t  lateral  

m i g ra t i on  a nd  ro ta t ion .  T h e  lateral  force  on  the par t ic le  then  suggests the d i rec t ion  o f  lateral  
m o t i o n  if  the cons t ra in t s  are r emoved .  T h e  stat ic ca lcula t ions  are  i m p o r t a n t  fo r  two reasons.  

Firs t ly,  by  p lac ing the cyl inder  at  different  lateral  posi t ions ,  we learn where  interest ing behav iors  
are expected.  T h e n  we can  use these as initial pos i t ions  in d y n a m i c  s imulat ions,  Secondly ,  effects 
o f  var ious  p a r a m e t e r s  such as the Reyno ld s  n u m b e r  and  the D e b o r a h  n u m b e r  can  be exp lo red  
using stat ic calcula t ions .  Bo th  cons ide ra t ions  are  based  on  the fact  tha t  d y n a m i c  runs  usual ly  

Y 

L --| 

Fig. 4. Sedimentation of a single cylinder in a channel filled with an Oldroyd-B fluid. 
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Fig. 5. The drag on a cylinder at different positions. Re = 0.05, L / a  = 8. 

have long transients and require tremendous amount of computation. With the help of static 
calculations, we may gain a complete picture of the sedimentation by doing just a few dynamic 
simulations. Next, we will present the results of static calculations first. Then several dynamic 
simulations are discussed. Finally, we explore the origin of the cylinder's behavior by analyzing 
the pressure distribution around its surface. 

2.2.1. Static calculations 
We use an Oldroyd-B model with 22/21  = 1/8. The control parameters are Re=pfUa / l  t, 

De = U2t/a and the blockage ratio L/a. We define a drag coefficient (Cd) and a lift coefficient 
(Ct) by dividing the forces by (psU2a), and a torque coefficient (Ct) by dividing the torque by 
( 2 p f U 2 a 2 ) .  

Results show that at relatively low Reynolds numbers, the drag has a minimum when the 
cylinder is somewhere between the centerline and the wall (Fig. 5). For L/a = 8, this minimum 
occurs at y/a ~ 2. The minimum drag is consistent with the creeping flow results of Dvinsky and 
Popel [27]. As the Deborah number is increased, the drag is reduced. The torque on the cylinder 
is positive for y < L/2 (Fig. 6), meaning that the cylinder would rotate as if rolling up the nearby 
wall. Increasing De tends to reduce the magnitude of this torque. 

The variation of the lateral force is much more intriguing. Typically, there is a region near the 
wall in which strong wall repulsion prevails. Between this wall region and the centerline of the 
channel is a core region in which the cylinder experiences attraction toward the nearby wall. The 
effect of De is to promote wall attraction (Fig. 7). At De = 0, a wall repulsion prevails 
throughout the entire region, a well-known fact from previous study of Newtonian flows [20]. As 



J .  F e n g  e t  a l .  / J .  N o n - N e w t o n i a n  F l u i d  M e c h .  6 3  ( 1 9 9 6 )  6 3 - 8 8  71 

De increases from 0.2 to 1, the core region becomes wider and the magnitude of  the attraction 
force is greatly increased. The wall region is narrowed, though the repulsion force sees an 
increase. The effect of  Re, on the other hand, is to suppress the wall attraction (Fig. 8). As 
compared with the creeping flow (Re = O, De = 0.2), the inertial flow at Re = 0.05 and De = 0.2 
has a smaller core region with a weaker attraction force and a stronger repulsion in the wall 
region. It is interesting to see how the lift force and the two regions change when Re and De are 
varied simultaneously while the ratio De~Re is kept constant. This corresponds to a series of  
experiments using particles of  the same diameter but different densities in the same fluid. For  
De/Re = 4, the core region dwindles only slightly as De and Re are increased (Fig. 9). Inside the 
core region, the wall attraction becomes weaker, suggesting that the inertia is winning over the 
normal  stress. In the wall region, a large increase in the repulsion force is observed since both 
effects promote  this repulsion. 

The geometric parameter  L/a has an unexpectedly strong effect on the lateral force. Narrower  
channels have a relatively wider core region with a larger attraction force (Fig. 10). To compare 
the lift curves in different channels, we use the eccentricity factor e (eq. (1)). For  L/a = 3.43 (the 
aspect ratio used in Ref. [25]), the core region extends to e = 0.92. On the other hand, no core 
region is observed for a wide channel of  L/a = 20; wall repulsion prevails throughout.  

The above results imply that the wall attraction is not  a result of  a single wall, but rather is 
caused by two walls. This is different from the concept of  wall attraction derived from 
experiments [8,11]. There are two possible explanations for this apparent  discrepancy: (i) our  
numerical  results are valid in two dimensions only, and the wall effects are markedly different 
in two and three dimensions; or (ii) the present results are qualitatively valid in three 
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i : i ~ D~=o.o 
20 t,..-e. --::-. - - ~  .................... ~ ........................ ! ...... j. De=02 .......... ............................... 
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lO' /i ...... i 
5 . . . . . . . . . . . . . . .  , . . . . . . . . . . . .  , . . . . . . . . . . .  
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Fig.  6. T h e  t o r q u e  on  a cy l inder  at  d i f ferent  pos i t ions .  R e  = 0.05, L / a  = 8.  
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Fig. 7. The lift on a cylinder at various lateral positions. Re = 0.05, L/a = 8. The Deborah number tends to promote 
the attraction force. 

dimensions, and the previous notion of  attraction toward a single wall is misguided. Wang, Feng 
and Joseph [28] carried out  a three-dimensional calculation is an enclosed domain. A perturba- 
tion scheme is used to extract the leading-order viscoelastic effects on the lateral force between 
a sphere and a nearby wall. A repulsion force is obtained in a region next to the wall and an 
attraction force exists further out. This result appears to be evidence, for (ii). But it remains to 
be seen whether  the core region will dwindle or even disappear when the other walls are moved 
away (see Fig. 10). One may also argue that no experiment can realise the flow conditions in a 
truly semi-infinite domain; other side walls are always present to enclose the body of  fluid. If  the 
Deborah  number  is large and the Reynolds number  is small, the wall attraction will dominate 
the entire region except for a thin wall layer that is perhaps difficult to detect experimentally. 
Indeed, Joseph et al. [8] noticed that under certain conditions, a sphere does not  come into 
contact  with the wall but rather keeps a small stand-off distance. In addition, the numerical 
results in Figs. 7 and 10 seem to enjoy support from the falling-ball experiment of  Tanner  [1~0]. 
A critical bal l -cyl inder  radius ratio can be defined. Smaller balls fall along the center of  the 
cylinder. Once the radius ratio exceeds the critical value, about  0.21 for the viscoelastic solution 
used, the ball drifts off the center and assumes an eccentric position, rotating meanwhile in the 
sense opposite to that of  a sphere rolling down the nearby wall. This observation is consistent 
with the effects of  L/a obtained in our computat ion.  To summarize, the apparent  discrepancy 
between numerical and experimental results cannot  be resolved unambiguously based on our 
current  knowledge. More rigorous comparison between two- and three-dimensional data is 
needed. 



J. Feng et al. / J. Non-Newtonian Fluid Mech. 63 (1996) 63-88  73 

Some liquids used in the experiments are shear-thinning. To test this effect, we used the 
Carreau-Bird  viscosity function in our calculations (see Ref. [23]). The power index n = 1 
corresponds to no shear-thinning, and smaller n indicates more shear-thinning. The curve with 
n = 0.2 in Fig. 8 shows that shear-thinning causes a small decrease in the magnitude of the 
lateral force in the wall and core regions alike. This does not seem to account for the 
discrepancy between numerics and experiments discussed above. 

2.2.2. Dynamic simulations 
The transient sedimentation of  particles depends on the Froude number Fr = ga/Uat and the 

density ratio Ps/Pr besides Re, De and L/a. The dynamic behavior of a settling particle is 
manifest of  the wall-particle interaction that we have learned from static calculations. Fig. 11 
shows the sedimentation of a particle released from different initial positions. An equilibrium 
position at y/a = 2.76 is reached by all trajectories. The effect of  the Deborah number is depicted 
in Fig. 12. The curves were obtained by varying the relaxation time of the fluid 21 while keeping 
other parameters fixed. Because the drag on the particle depends on De [23], the terminal 
velocity Ut and thus Re and Fr also change. It is clear that larger De results in an equilibrium 
position closer to the channel wall, indicating a wider core region in which wall attraction 
prevails (see Fig. 7). In narrower channels, a particle stabilizes closer to the wall, consistent with 
Fig. 10. For L/a = 3.43, a particle released near the center migrates all the way to the wall; the 
equilibrium position is such that the particle almost touches the wall (Fig. 13). 
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Fig. 8. The  lift on  a cylinder at var ious  lateral posit ions.  L/a  = 5. The  Reynolds  n u m b e r  tends to suppress the 
a t t rac t ion  force. A curve for  N e w t o n i a n  flow is also shown for compar ison .  The  curve with n = 0.2 indicates the 
effects of  shear - th inn ing  on the lateral  force (discussion at the end of  Section 2.2.1.). 
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2.2.3. Stress analysis 
In the above discussions, viscoelasticity is shown to generate a wall repulsion on the particle 

in the wall region and an attraction in the core region. In previous works on the motion of solid 
particles in Newtonian and non-Newtonian fluids [21,29], we analyzed the forces and torque 
related to inertia or non-Newtonian rheology by studying the stress distribution on the surface 
of the particle. Here the same scheme will be followed. Static results will be used because the 
lateral motion in dynamic runs is accompanied by a viscous drag that in part obscures the 
driving force due to viscoelasticity. 

In the EVSS formulation used here, the total stress tensor may be written as 

T = - p l  + 2pD + S, 

Where p is pressure, D is the rate-of-deformation tensor and S is an extra-stress tensor. It is easy 
to show that the flow next to the surface of the particle is a simple shear flow except for two 
stagnation points. Thus, for an Oldroyd-B fluid, the shear stress on the surface comes entirely 
from the 21uD term, and S only contributes to the normal stress. Therefore, the force on ,the 
particle is a summation of three integrals: an integral of the pressure, that of the shear stress 
(from the viscous term) and that of the elastic normal stress. The projections of these integrals 
in the lateral direction are denoted by P, V and E. Numerical results show that in all cases 
computed, pressure makes by far the largest contribution to the lateral force. For example, 
P:E:V,,~ 5:1:0.28 at Re = 0.05, De = 0.2, L/a = 5 and y/a = 2 (see Fig. 8). Closer to the wall at 
y/a = 1.2, we have P:E: V ~ 18:1:1.6 x 10- 2, with still stronger pressure domination. This means 
that viscoelasticity generates the lateral force by modifying the pressure distribution; the direct 
contribution of the normal stresses is rather small. The same behavior has been observed in a 
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three-dimensional per turbat ion study of  the slow sedimentation of  an ellipsoid in a second-order 
fluid [29]. Hence, the effects of  viscoelasticity can be examined by comparing the pressure 
distributions for Newtonian  and viscoelastic fluids. 

Fig. 14 shows pressure distributions on a circular particle located at y / a  = 2 in a channel of  
width L = 5a. The pressure coefficient Cp is defined by 

P 
Cp= 1 

"~ p f U  2 

For  the Newtonian  case ( R e  = 0.05,  D e  = 0), the high pressure at the front stagnation point 
(0 ~ 200 °) gives rise to a weak repulsion force that pushes the particle away from the wall. (A 
more  detailed analysis o f  the repulsion due to inertia can be found in Ref. [9]). For  the 
viscoelastic case ( D e  = 0.2), the pressure is elevated on the two sides of  the cylinder (0 = 90 ° and 
0 = 270 °) and decreased on the top and the bo t tom (0 = 0 ° and 0 = 180°). This trend is more 
obvious at higher Deborah  numbers.  The pressure increase on the right side of  the cylinder (near 
0 - - 9 0  °) is larger than that on the left side (near 0 = 270°), which is closer to the wall. This 
imbalance gives rise to the wall attraction. Fig. 14 represents yet another example of  the 
antagonism between inertia and non-Newtonian  normal stress. We also note that the modifica- 
tion of  pressure by viscoelasticity agrees with our three-dimensional per turbat ion study [29]. In 
that calculation, viscoelastic effects are shown to create high pressures on the left and right o f  
a settling ellipsoid and low pressures on the top and bot tom.  This is just  opposite to the inertial 
effects; this pressure distribution generates a torque that turns the ellipsoid to a long-axis vertical 
posture.  
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Fig. 10. Effects of the blockage ratio L/a on the lift force. Re = 0.05, De = 0.2. The eccentricity factor e = 0 on the 
center line; e = 1 when the cylinder touches one side-wall. 
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Fig. 11. Sedimentat ion of  a particle released from different initial positions. Lla  = 8, PJPr=  i.0007, Re = 0.22, 
De = 0.97, Fr = 2.53 × 104. 

For  a particle placed very close to the wall, a different picture is obtained (Fig. 15). The high 
shear-rate in the narrow passage near 0 = 270 ° leads to a very large pressure gradient. The 
Newtonian pressure distribution again features a large stagnation pressure between 0 = 180 ° and 
0 = 270 °, which gives rise to an inertial repulsion. The non-Newtonian effects again cause an 
increase of  pressure on the two sides of  the circle. This time, however, the pressure increase is 
stronger on the near-wall side (near 0 = 270°), and this gives rise to a strong wall repulsion. 
Based on the current  information, we are unable to explain how the wall proximity in Fig. 15 
reverses the imbalance of  pressure between the left and right sides of  the particle. 

2.3. Interaction o f  two particles settling in a channel 

Brunn [15] used a perturbation method to study the interaction between two spheres settling 
far from each other through a second-order fluid. Results show that regardless of  their relative 
positions, the spheres attract and approach each other while the line of  centers turns to the 
vertical direction. This prediction is qualitatively correct for two spheres falling side by side [8]. 
Two spheres falling tandem, however, repel each other when they are far apart  [7]. By using 
numerical simulations, we are rid of  the restrictions on slow flow and large separations between 
particles. 

2.3.1. The vertical configuration 
Riddle et al. [7] observed in experiments that two spheres released tandem in a viscoelastic 

liquid will at tract  and come into touch if their initial separation is below a critical value that 
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depends  on the rheological properties of  the fluid. If  the initial separat ion exceeds this critical value, 
the two spheres will become farther apart  dur ing the settling. 

We study the par t ic le-par t ic le  interactions by static and dynamic  simulations. In the static 
calculations, two circular particles of  radius a are fixed on the centerline of  a plane channel  of  
width L = 8a; the channel  is filled with an Oldroyd-B fluid with 2,/22 = 1/8. The center-to-center 
distance between the particles is s. In this computa t ion ,  the crucial factor is the drag forces on 
bo th  particles. I f  the drag on the particle on top (Dl) is larger than that  on the particle at the 
b o t t o m  (D2), the two will seperate during sedimentation.  Contrari ly,  the particle on top will catch 
up with the bo t tom one if D2 > D1. Fig. 16 shows the variation of  the drag coefficient at different 
separations. Cd, Re and De are defined as in Fig. 5. In the Newtonian  case, the drag is essentially 
the same on the two particles. This is because the inertia is small at Re = 5 x 10-3.  At Deborah  
number  De = 1, particle 1 (on top) experiences a smaller drag than particle 2 if the particles are 
fairly close (s/a < 7). In the range 7 < s/a < 9, there is a reversal in the relative magni tude  of  the 
drag; the b o t t o m  particle has a slightly smaller drag. At  s/a = 10, the two drag forces are almost  
identical, indicating negligible interactions between particles at this separat ion or farther apart.  
Apparent ly ,  the static results are consistent with the experimental  observations of  Riddle et al. 
[7]. One may  also note  in Fig. 16 that  the in t roduct ion of  viscoelasticity tends to reduce the drag 
on both  particles; this is true except when the two are very close, in which case the particle at 
the b o t t o m  acquires a larger drag than  its counterpar t  in a Newtonian  fluid. 

Dynamic  simulat ions are done  for inertialess flows (Re = 0). This is in part  because the behaviour  
to be simulated has no th ing  to do with inertia, as is obvious f rom Fig. 16. This is also the case 
in the experiment  of  Riddle et al. [7]. Since Re is not  directly controlable in the computa t ion ,  it 
is t roublesome to ensure that  the fluid inertia, if retained, is not  obscuring the desired effect. An 
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Fig. 12. The effect of viscoelasticity on the trajectory of a particle settling in a channel. L / a  = 8, Ps/Pr = 1.0007. Re,  
De  and Fr all change as the relaxation time of the fluid 2, is changed. 
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De = 0.37, Fr = 1.44 x l05. 

additional benefit of neglecting fluid inertia is reduced computational cost; the non-linear inertia 
requires a Newton iteration. The inertia of solid particles is retained. 

Three dynamic runs are shown in Fig. 17. The particles are released at different initial 
separations: So = 4a, 8a and 10a. In the first case, the particle on top rapidly catches up with the 
other. When they become too close to each other, the simulation breaks down. In reality the 
particles will come into contact and fall as a doublet [7]. The other two runs are intended to 
demonstrate the weak repulsion force found in static calculations. This scenario turns out to be 
difficult to realize dynamically. For So -- 8a, the center-to-center distance s does tend to grow at 
the beginning. But this trend is quickly reversed, and the particles start to get closer slowly. For 
So--10a, s never increases; it maintains its initial value for a short time and then starts to 
decrease. Finally s seems to attain an equilibrium value at 9.85a. The "terminal" velocity is 
virtually the same in the last two cases; the doublet formed in the first case (So--4a) falls much 
faster. 

The failure to simulate the separation of particles is probably a result of the transient nature 
of the motion. During sedimentation, the velocities of the particles change constantly. This has 
two effects on the relative magnitude of the drag. Firstly, because of the unsteadiness, the drag 
forces will be different from those in a steady flow at the same velocity. Secondly, the Deborah 
number and Reynolds number based on the instantaneous velocity are different from the 
projected terminal values. Then the ranges of s/a corresponding to attraction and repulsion (see 
Fig. 16) may also be different. Therefore, the dynamic behavior of a pair of particles in 
sedimentation cannot be safely predicted from static forces based on their initial separation and 
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the projected terminal  velocity. Besides, the repulsion is very weak in our  two-dimensional  
calculation and thus easily d rowned  out  in dynamic  simulation. The si tuation seems to be 
different in three dimensions:  the separat ion of  spheres is a fairly robust  feature in Ref. [7]. 

The  par t ic le-par t ic le  at t ract ion can be traced to special pressure distr ibutions on the particles 
p roduced  by viscoelasticity. We pick the configurat ion with s = 3a in Fig. 16 for analysis. In 
bo th  Newton ian  and viscoelastic calculations, pressure and viscous shear stress make  compara-  
ble contr ibut ions  to the drag on each particle. The contr ibut ion of  elastic normal  stresses is at 
least one order  of  magni tude  smaller. More  interestingly, the viscous part  of  the drag differs by 
3% between the two particles at D e  = 1, whereas the pressure part  differs by 30%. Hence, the 
following rule is again observed: viscoelastic effects are realized th rough  a modified pressure 
field, and the direct cont r ibut ion  of  normal  stresses is un impor tan t .  

Fig. 18(a) shows the pressure distr ibutions on the particles in a Newtonian  fluid. The pressure 
at the midpoin t  between the particles is set to zero. Cp~ and Cp2 are essentially mir ror  images of  
each other, indicating negligible inertia. Viscoelasticity breaks this symmetry (Fig. 18(b)). The  
pressure on the two sides of  the particles (near 0 = 90 ° and 270 °) is elevated, consistent with 
previous results of  per turba t ion  [29]. The  dashed line in the plot  is a mirror  image of  Cp2, which 
is what  Cp~ would be to mainta in  the symmetry.  The difference between Cp~ and - Cp2  is larger 
in the first and four th  quadran ts  (0 ° < 0 < 90 ° and 270 ° < 0 < 360 °) than in the second and third 
( 9 0 ° <  0 < 270°). The  consequence is a downward  net force on particle l, whose magni tude  
equals the difference in drag between the particles. Alternatively, one may  compare  Cp2 and 
-Cp~  and argue that  particle 2 experiences an upward  force, The weak repulsion extant for 
larger s is not  easily borne out  by pressure distributions,  and stress analysis will not  be done for 
the repulsion. 
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Fig. 14. Comparison between the pressure distributions in a Newtonian and a viscoelastic fluid. Re = 0.05, L/a = 5, 
y/a = 2. 
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2.3.2. The horizontal configuration 
We will consider the interaction of  two particles settling abreast. Joseph et al. [8] reported that  

two spheres released side-by-side in a polymer  solution attract and approach  each other  if their 
initial separat ion is not  too large. This is in clear contrast  to the inertial repulsion well 
documen ted  for Newtonian  flows (Jayaweera and Mason [30]). We again use static and dynamic  
simulat ions to study the par t ic le-par t ic le  interaction in this configuration. The two particles are 
fixed or released symmetrically across the centerline of  the channel  with a center-to-center 
distance of  s. The  width of  the channel  is L = 20a for static calculations. 

The lateral force f rom static calculations is shown in Fig. 19. A positive lift on the left particle 
implies attraction.  For  a Newtonian  fluid at Re = 0.05, the two particles repel each other when 
they are close. This repulsion force diminishes when their separation increases and eventually 
gives way to an "a t t rac t ion"  force at s/a = 10. This bogus at tract ion is actually a result of  
repulsion f rom side walls; in this configurat ion the particles are much  closer to the nearby wall 
than  they are f rom each other. I f  inertia is removed but  normal  stress in t roduced in the 
calculation (Re = O, De = 1), the inter-particle force is reversed. A strong at tract ion force exists 
between the particles, and it decreases as the particles become farther apart.  Eventually the 
at t ract ion is replaced by a "repuls ion",  which is probably caused by wall attraction. When 
inertia and normal  stress coexist, as is the case in the experiments,  the two mechanisms compete  
with each other  and the ou tcome will depend  on their relative strength. Fig. 19 shows a lift curve 
at Re = 0.05 and De = 1; in this case the normal  stress apparent ly  has an upper  hand.  

The lateral force between two particles is very different f rom the force exerted on a single 
particle by the channel  walls (see Fig. 7).  Firstly, the at t ract ion force increases as two particles 
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Fig. 19. Inter-particle forces on a pair of  particles fixed side by side in a channel. A Newtonian lift curve is also shown 
for comparison.  L/a = 20. 

get closer and no repulsion force is discovered. Secondly, the wall attraction arises only when the 
channel is sufficiently narrow. The particle-particle attraction, on the other hand, does not 
vanish when the channel width increases (Fig. 20). If the channel is relatively narrow, wall 
attractions will cancel part of  the inter-particle attraction, resulting in a smaller lateral force 
(e.g., L/a = 10). As the walls move away, the lateral force seems to tend to a limiting value, 
which is the particle-particle attraction in the absence of  bounding walls. The comparison 
between Figs. 10 and 20 is interesting because for Newtonian fluids, particle-wall  interactions 
are similar to particle-particle interactions. 

For reasons given before, the fluid inertia is put to zero in dynamic simulations of  two circular 
particles settling abreast. To reduce computational  cost, we use a channel of  L = 10a, which is 
narrower than that used in the static computation.  This is expected to have only qualitative 
effects on the behavior of the particles (see Fig. 20). Two simulations are shown in Fig. 21. 

Immediately after the particles are dropped, they tend to repel each other and move apart. 
This initial transient is similar to that observed in Fig. 17. After that, the particles start to attract 
and approach each other, rotating in the mean time as if rolling up the vertical plane of  
symmetry between them. When the two particles are close enough, they behave like a single long 
particle, and as such begin to turn the line of centers toward the direction of  settling. For this 
configuration, the inter-particle attraction in Fig. 16 kicks in. The two particles will eventually 
touch and fall as a long particle. The initial center-to-center distance has a subtle effect on the 
scenario. For smaller So (Fig. 21 (a)), the lateral approaching occurs first and the turning of  the 
doublet follows. If So is relatively large (Fig. 21(b)), the turning and approaching happen 
simultaneously. When the doublet is slanted during the turning, it also drifts sideways as in a 



84 J. Feng et al. / J. Non-Newtonian Fluid Mech. 63 (1996) 6 3 - 8 8  

30 

25 

20 

C t 15 

10 _ 

5 

0 20 40 60 80 100 

L/d 

Fig. 20. Wall effects on the par t ic le-par t ic le  interaction. The separation between the two particles is fixed at s /a  = 4. 
R e = O ,  D e =  l. 

Newtonian fluid. At the end of  both simulations, the doublet has come close to one side wall 
and wall effects start to interfere. Though the dynamic simulations in two dimensions cannot be 
rigorously compared to the experiments [8], they have correctly reproduced the qualitative 
features observed. 

The lateral attraction between two particles settling side by side results from a pressure 
distribution that bears the signature of viscoelasticity. Fig. 22 compares the pressure distribution 
on the left particle in a Newtonian and viscoelastic fluid. The pressure on the sides of the particle 
(near 0 = 90 ° and 270 °) is elevated by viscoelasticity. But the pressure increase is much higher 
on the outside of  the particle (0 ~ 90°), thus giving rise to a lateral force pulling the two particles 
together. One may note the similarity between Fig. 22 and Fig. 14. 

3. Conclusions 

This paper investigates the viscoelastic effects on the sedimentation of  particles in the presence 
of  solid walls or another particle. The non-linear effects of inertia in these situations are well 
known from previous studies. The main results of  this paper may be summarized as follows. 
(a) For a particle settling in a vertical channel, viscoelasticity generates a wall repulsion if the 

particle is very close to the wall and a wall attraction if they are farther apart. The particle 
will approach an eccentric equilibrium position which depends on the Reynolds and 
Deborah numbers. 
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Fig. 21. The  in terac t ion between a pai r  of  particles released side by side. L l a  = 10, Ps/Pf = 1.0005, R e  = 0. (a) Initial  
separa t ion  So = 3a. At  the end of  the s imula t ion  D e  ~ 1,8, Fr  ~ 1.36 x 104 for bo th  particles. (b) Initial  separa t ion  
s o = 4a. At  the end  of  the  s imula t ion  D e  ~ 1.43, Fr ~ 2.17 x 104 for b o t h  particles. 
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Fig. 22. Compar s ion  of  the pressure dis t r ibut ions  on the left particle in a Newton ian  and  a viscoelastic fluid. L/a  = 20, 
Re = 0.05, s/a = 3. 

(b) The wall attraction is a result of both walls and it vanishes when the channel is sufficiently 
wide. 

(c) Two particles settling one on top of the other attract and approach each other if their initial 
separation is not too large. 

(d) Two particles settling side by side attract and approach each other. The doublet rotates till 
the line of centers is aligned with the direction of fall. 

(e) Viscoelasticity affects the motion of particles by modifying the pressure distribution on 
them. The direct contribution of normal stresses to the force and torque is unimportant. 

Some of the numerical results (items (c) and (d)) agree with experiments very well, while others 
seemingly do not. For instance, the wall repulsion has not been documented in experiments, and 
the separation of two particles released one far above the other is not realized in dynamic 
simulations. These discrepancies may have to do with the two-dimensionality of the current study. 
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