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Abstract

A two dimensional incompressible smoothed particle hydrodynamics scheme for
long term sedimentation of rising or falling particulates (bubbles, drops or rigid
particles) in Newtonian fluids is presented and validated by simulating the sedi-
mentation of a single elliptic disc. The proposed method is then used to simulate
the sedimentation of an elliptic disc subject to an external electric field parallel
to the gravitational field. A range of electric field intensities, permittivity ratios,
blockage ratios and density ratios are covered in this study. The results show
that for given blockage and density ratios, the final sedimentation orientation
of the ellipse is dependent on a combination of permittivity ratio and electric
field intensity, ranging from horizontal to vertical. Compared to non-electrified
sedimentation, an increase in electric field intensity and permittivity ratio lead
to vertical sedimentation. As the channels grow wider, the presence of electric

field leads to faster ellipse descent, regardless of its initial orientation.
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1. Introduction

Sedimentation of small particles in a background fluid is a prevalent phe-
nomenon in many natural and industrial applications such as meteorology, sed-
imentology, biomechanics and chemical engineering (Field et al., 1997). A few
examples include the motion of atmospheric aerosols, hailstone growth, falling
of winged seeds, river erosion, slurry transport and sedimentation of colloidal
particles. The paths traversed by the particles in these buoyancy driven flows
are highly dependent on particle shapes, proximity of bounding walls and den-
sity ratio, ranging from a straight line to chaotic. A detailed review of the path
and wake of falling particles is given by Ern et al. (2012).

Most of the particles found naturally are of non-spherical shapes. Among
non-spherical geometries, spheroids and ellipsoids in three dimensions as well as
ellipses in two dimensions have been the subject of many studies. Cox (1965)
showed that a prolate spheroid sedimenting in infinite fluid will align its ma-
jor axis perpendicular to the falling direction. Feng et al. (1994) simulated
the sedimentation of an ellipse between parallel walls and observed a gradual
change in behavior with increasing Reynolds number. In a later work, Feng and
Joseph (1995) simulated the interactions of two sedimenting ellipses in Stokes
regime. Aidun et al. (1998) further investigated the interactions of two ellipses
at larger Reynolds number. Swaminathan et al. (2006) simulated the sedimenta-
tion of a prolate spheroid in a sufficiently large tube and observed that for finite
Reynolds numbers, the spheroid settles with its major axis perpendicular to the
direction of gravity. Xia et al. (2009) covered a wide range of blockage ratios
for sedimenting ellipses. They report that the ellipse adopts different patterns
of sedimentation for low blockage ratios and the final mode of sedimentation
depends on the initial conditions. In a similar work, Yang et al. (2015) stud-

ied the sedimentation of prolate spheroids in narrow tubes and made similar



observations.

Once particle and sedimenting environment properties are fixed, there is no
control over the trajectory of sedimenting particles. It is possible to modify
the particle behavior indirectly by introducing shear or pressure drop in fluid
medium. Alternatively, use of an external magnetic or electric field affects ori-
entation and translational motion of the particles directly. Electric fields are
widely used to modify the behavior of particles in controlling clustering in sedi-
menting colloids (Newman and Yethiraj, 2015; Sullivan et al., 2003; Chang and
Keh, 2013; Lee et al., 2000), electrorheological fluids (Parthasarathy and Klin-
genberg, 1996; Bonnecaze and Brady, 1992) and assembly of colloidal particles
and biological cells (House et al., 2012; Velev et al., 2009). Despite the afore-
mentioned applications, the sedimentation of an elliptic particle in an external
electric field has not been studied in detail.

In this study, we consider the sedimentation of a single non-conductive el-
lipse subject to parallel electric and gravitational fields. As such, we disregard
particle-particle interactions due to flow and electric fields observed in denser
suspensions. To simplify our analysis, we assume thin electric double layer. This
means at its smallest, the ellipse must be micron sized (Ai and Qian, 2010).
Furthermore, we assume zero surface charge, thus neglecting translational elec-
trophoretic motion of the particle parallel to the electric field direction. As both
electrophoresis and buoyancy act in parallel, this assumption does not lead to a
substantial change in the qualitative sedimentation behavior. When placed in
an external electric field, a non-conductive elliptic particle will rotate to align
its major axis with the direction of electric field (House et al., 2012). This
in turn leads to different sedimentation behavior when compared to an ellipse
descending in non-electrified medium.

First developed by Lucy (1977) and Gingold and Monaghan (1977), smoothed
particle hydrodynamics (SPH) is a Lagrangian meshless spatial discretization
method. SPH has been used extensively to study particle dynamics in the
absence of an external electric field. Zhang et al. (2018) have simulated the

interaction of multiple discs during sedimentation and later expanded their in-



vestigations to thermal effects (Zhang et al., 2019). SPH coupled with discrete
element method has also been used to simulate the interaction of multiple three
dimensional particles (Robinson et al., 2014; He et al., 2018; Joubert et al., 2020)
under different configurations. In this work, a two dimensional incompressible
SPH (ISPH) method is used to solve the governing equations of fluid flow and
electric fields. The numerical method has been extensively tested in our previous
works for the motion of particles with and without electric fields (Tofighi et al.,
2015). However, to our knowledge, no boundary conditions currently available
in SPH support effortless simulation of infinitely long sedimentation while such
studies are common using other methods (Xia et al., 2009; Swaminathan et al.,
2006). To alleviate this shortcoming, a boundary condition supporting infinite
falling or rising motion is developed here. The method relies on shifting the
computational domain vertically to keep the features of interest close to the
central region. SPH particles are added or discarded near domain boundaries
as bounding walls shift. For a sufficiently long channel, the boundary effects
are negligible and unlimited rising or falling motion of bubbles, drops or rigid
particles may be simulated.

The proposed method for ISPH simulation of unlimited falling or rising mo-
tion is used to simulate the sedimentation of an elliptic disc. The results are
compared to literature data and good agreement is observed. The method is
then used to simulate the motion of an elliptic disc sedimenting in an external
electric field. Our results show that applying the electric field increases the sedi-
mentation velocity in wider channels. Further increase of the field intensity will
only result in an increase in descent velocity until the ellipse aligns its major
axis with the field direction. The rest of this writing is structured as follows: we
describe the governing scales and equations as well as the numerical method in
sections 2-4. Implementation of the boundary condition and its validation are
discussed in section 5. The sedimentation of elliptic disc in an external electric
field is covered in section 6 and concluding remarks are drawn in section 7. From
this point forward, the term “particle” will refer to the SPH particles used to

discretize the computational domain.



2. Geometry and scales

A schematic of the case considered in this study is shown in figure 1. The
ellipse, with major axis a and minor axis b, is placed at the midpoint between
vertical walls at an angle 6 with the horizontal axis. The channel is W wide and
vertically “unlimited”. As a result, channel height is not included as a parameter
here and the boundary treatment will be further clarified in section 5. All side
walls comply with no slip and no penetration conditions. A constant potential
difference is applied to horizontal walls while vertical walls are electrically insu-
lated. The external electric and gravitational fields are aligned with the vertical
axis along the channel.

A typical set of characteristic values for an incompressible, isothermal and
electrically insulating Newtonian fluid subject to an external electric field may

be chosen as

Te =0y, Ge=0goo Pc=PpPf He=p5, Ee=FEs, &c=cuey,
Ue = \/GcTec; Pc = pcuia te = SCC/UC (1)

where p, u, t, u, p, g, F and € denote density, viscosity, time, velocity, pressure,
gravity, electric field intensity and electric permittivity, respectively. Subscript
Oy marks fluid values while subscript [, is used to denote characteristic values.
Additionally, goo, Fxo, €» and €5 are gravitational field intensity, undisturbed
electric field intensity produced by the imposed potential difference between
horizontal walls, permittivity of vacuum and relative permittivity of the fluid.
Based on the characteristic values given in equation (1), we define Reynolds

and Electrogravitational numbers as

Re, = PV I g, _ P90 (2)
P qu ) D Evstgo7

along with the following set of dimensionless numbers to describe the system
D =ps/ps, P=cs/ey, A=a/b, B=W/a, (3)

where D is density ratio, P is permittivity ratio, A is aspect ratio, I3 is blockage

ratio and Oy is used to denote solid values. Following prior works (Xia et al.,



2009; Suzuki and Inamuro, 2011; Khorasanizade and Sousa, 2016), Reynolds
number and aspect ratio are set to A = 2 and Re, = 100 for all simulations in
this study. Unless otherwise mentioned, all variables after this point are given in
dimensionless form based on characteristic scales of equation (1). Additionally,
we will refer to the position and velocity of the center of the ellipse as ellipse
position and ellipse velocity for brevity. To compare with other studies, an
alternative form of Reynolds number based on average velocity is also defined

as

Re; = 2102 (4)
5

where u, is a vertical velocity. For cases with a terminal velocity, u,, is taken
equal to the ellipse descent velocity. When the ellipse descends in an oscillatory

trajectory, the average ellipse descent velocity is used for w,,.

3. Governing equations

Assuming a thin electric double layer and neutral computational domain,

the electric potential ¢ of non-conductive media may be calculated through
V- (eVe) =0, (5)

while the electric field is computed as the gradient of the electric potential,
E = —V¢ (Ai and Qian, 2010; Saville, 1997). The dimensionless form of the

governing equations of the flow may be written as

V-u= O, (6)

Ou 1 1
p<6t+u~Vu> =-Vp+ R—%V~T+E7gpf(e)+f(b)7 (7)
T =p[Vut (V)i ®
foy=(-1e, ©)

where vectors and tensors are shown in bold and superscript O denotes the

transpose operation. Here, 7 is Newtonian stress tensor and f(;) represents the



buoyancy force. The electric force vector f(.) is calculated through divergence

of Maxwell stress tensor (Saville, 1997),
f. = —1E.EVe (10)
(e) — 2 '

Separate color functions ¢ are used to identify each of the phases, where OJ%
may denote fluid OF or solid [J* phases. These functions assume unit value in
phase « and zero in all other phases. Rigidity constraints are applied to ensure
rigid behavior in the ellipse and its viscosity is set to one hundred times the

fluid viscosity (Tofighi et al., 2015).

4. Numerical method

In SPH, the term particle is used to refer to the spatial elements discretizing
the computational domain. The particle of interest i interacts with its neigh-
boring particles j through an interpolation kernel wi; (Monaghan, 2012). The
kernel is a function of smoothing length h and 7j;, the magnitude of distance
vector rjj; = ri — rj. Here, we set h = 1.60, where ¢, is the shortest distance
between fluid particles in the initial arrangement.

The phase properties are interpolated using weighted harmonic mean,

1 ¢ c;

J J
1 "
— =14+ 1 &= Swy;, W = Wi (11)
Xi Xf Xs 1 wi ; J 1] 1 FZI 1)

where x may denote viscosity or permittivity, J,, is the number of neighboring
particles and 1;; is the number density. The smoothed color function ¢ produces
a smoother transition and is calculated using the cubic spline kernel (Morris,
1996).
For the ellipse, center-of-mass velocity us and angular velocity w, are com-
puted by cycling over all particles J; through
1 Ja  2s

Ja  4s
&suy 1 & X 1
J ) J ) Js
ug = _— Wg = — _— (12)
M, J.Zzl n I, Zj:1 n

which are then used to derive individual velocities of each particle as

w =&l w + & [ug + ws x (r — 1)) (13)



Here, M, is the overall volume of particles belonging to the ellipse and I, is
the ellipse’s moment of inertia about its center of mass ry = J‘]il &' (Tofighi
et al., 2015).

A predictor-correcter scheme is used to advance the governing equations
in time where the timestep is calculated according to Courant-Friedrichs-Lewy
condition (Shao and Lo, 2003),

2
o=, (5 ) w
where 17 = 0.25 (Zainali et al., 2013).

At nth timestep of the predictor step (D(”)), the artificial particle displace-

ment (APD) vector (Sri(") is calculated according to the method used by Tofighi

et al. (2015). The particles are then transferred to an intermediate position

marked by superscript (07 via

rit =1 ui(n)At + éiodri(n). (15)

i i

Number density and transport properties are updated through equation (11)
while electric potential is calculated by solving equation (5). After calculating

the electric forces through equation (10), intermediate velocities are computed

through
+
g™ L L 16
UI UI + p1+ |:Rep Ti + Egp (e)l ) ( )
In the corrector step, Poisson equation subject to zero gradient boundary
condition,
1 V.-u"
V- =vpt ) = 17
(v . (1)

is solved to compute the pressure at timestep n + 1. The pressure is then used

to restore incompressibility to the velocity field through

n ]‘ n
ui( = u - ijpi( AL (18)

After imposing rigidity constraints through equations (12) and (13), the particles

are moved to their final positions using

n n 1 n n ~ n
e (u( )+ uf “’) At + &l or(™). (19)



The first derivative and Laplace operator of vector and scalar functions are

approximated through following expressions

=S U
oor (e ) (24 ) - 8:1 B0 (22)

Here, a quintic spline kernel (Monaghan and Kocharyan, 1995) is employed
to calculate the derivatives and a*! is used to correct discrete kernel behavior
(Zainali et al., 2013). Where appropriate, ¢ may denote density-inversed, vis-
cosity or permittivity. The above method has been successfully used by Tofighi
et al. (2019) to simulate the dielectrophoretic interaction of multiple circular

discs in uniform electric fields.

5. Boundary conditions

There are two common approaches to implementing wall boundary condi-
tions, slip or no-slip, in SPH. The first method is by introducing additional terms
in governing equations to reproduce the desired behavior near the boundaries.
Following this approach, Monaghan and Kajtar (2009) propose a repulsive force
applied to particles approaching the boundaries. Another example is the semi-
analytical method by Ferrand et al. (2013) where renormalization factors are
computed to impose the boundary conditions. The second approach of imple-
menting wall boundary conditions is by employing additional layers of particles.
These auxiliary particles are placed outside the computational domain and com-
plete the support domain of the fluid particles near the boundaries. Morris et al.

(1997) proposed one such method where the auxiliary particle positions were



constant during the simulation and their velocities were interpolated from fluid
particles while their densities were evolved. In another method developed by
Adami et al. (2012), all properties of the static auxiliary particles were inter-
polated from fluid particles. Yildiz et al. (2009) developed multiple boundary
tangent (MBT) method which uses dynamically positioned auxiliary particles
to allow arbitrary boundary geometries.

Despite the large variety of wall boundary implementations in SPH, rela-
tively few methods are developed for flow-through boundaries. While periodic
boundary conditions are fairly simple to implement, the inflow and outflow
boundary conditions require special treatments. Lastiwka et al. (2009) pro-
posed an inflow boundary condition where auxiliary particles were arranged in
layers behind the inlet and entered the computational domain as fluid particles.
Layers of fluid particles exiting the domain were kept as auxiliary particles until
they no longer affected the computational domain. The method of character-
istics was used to compute the properties of the auxiliary particles. Federico
et al. (2012) and Hosseini and Feng (2011) used a similar approach, however,
they specified the properties of the auxiliary particles directly. Hirschler et al.
(2016) used an alternative approach where inflow and outflow boundaries were
simulated as moving walls.

The most straightforward way of simulating long term sedimentation of a
solid object is to use a sufficiently long channel. However, this method imposes
significant computational overhead as the region of interest around the solid
body constitutes a very small portion of the entire computational domain. To
circumvent this problem, one may use a smaller computational domain and move
the region of interest with the falling body. Two different approaches may be
taken to implement this idea. The first approach is to move the entire domain by
the mean velocity u,, of the sedimenting body. In this case, vertical walls move
at u,, and flow-through boundary conditions have to be applied to horizontal
surfaces (figure 1). Periodic boundary conditions are not suitable for horizontal
surfaces as the sedimenting body will face its own wake at later stages of simula-

tion. As such, inflow and outflow boundary conditions are required. A problem

10



with this approach is that w,, is not known a priori and use of variable u,,
requires modifications in governing equations (6-9), complicating the solution
procedure and implementation of inflow and outflow boundaries. Alternatively,
one may compensate for the vertical distance traveled by the sedimenting body
by shifting the entire computational domain in the reverse direction. In this
case, a solid body placed sufficiently far from the horizontal boundaries acts
as if sedimenting in an infinitely long channel. Similar to the first approach,
the periodic boundary condition is not applicable to horizontal walls. However,
to our knowledge, there are no other suitable boundary conditions available in
SPH literature.

In this study, we use a simplified form of MBT method to impose the no-slip
boundary condition on vertical walls. We use the second approach of shifting the
entire domain to simulate infinite sedimentation. For this purpose, a “shifting”
boundary condition is developed and tested here. This boundary condition is
also suitable for the simulation of falling droplets as well as rising solid bodies

and bubbles.

5.1. Definition of the shifting boundary

Figure 2 shows a schematic of the shifting boundary condition for a de-
scending feature. The particles near horizontal boundaries are shown with black
outlines while the auxiliary particles are shown with gray outlines. Internal par-
ticles are shown as black squares. Incoming particles are shown with green fill
while outgoing particles are marked with red fill. The feature of interest, shown
as a large circle, is placed at an appropriate distance away from the horizontal
walls. In this study, we place the ellipse at the midpoint between horizontal
walls.

When released from its initial position, the ellipse is allowed to travel up to
one particle spacing 6, toward the bottom wall. During this time, the MBT
method is used to apply the no-slip boundary condition on horizontal walls.
Figure 2-a shows a configuration where the ellipse’s center of mass has moved

beyond one particle spacing from its initial position. At this point, the position
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of all particles within the computational domain are shifted up by d,, to bring the
ellipse close to the midpoint between horizontal walls. All other properties of
the particles remain unchanged during this operation. The shifted configuration
is shown in figure 2-b. Any particle transfered out of the computational domain
and the particles residing closer than d,/2 to the upper wall are discarded.
These particles are shown as red filled squares in figure 2. To fill the gap left
near the bottom wall, one row of auxiliary particles adjacent to the boundary
are moved inside the computational domain and made into regular particles.
These particles are shown in green before (figure 2-a) and after (figure 2-b) the
operation.

To remove the wake effects near the upper boundary and avoid possible
disturbances near the lower boundary, a hyperbolic tangent damping function
is used to nullify particle velocity near the boundaries. Here we used a damping
function with an effective range of 10d,. As the particle arrangement adapts to
the wake structure, more particles may leave through the top boundary than
added at the bottom. However, due to the use of APD, the particle arrangement
is fairly uniform in the undamped region and the reduction in the number of
particles is less than 0.1% of the initial number of particles. For sufficiently
distant horizontal boundaries, the wall effects on the sedimentation process
become negligible. As a result, the repeated shifting of the ellipse allows us to
reuse the computational domain and simulate the sedimentation in an essentially

infinite channel.

5.2. Validation of the boundary implementation

To ensure an accurate simulation, proper resolution, time step and domain
height need to be determined. While the time step is chosen via CFL condition,
appropriate resolution and domain height are found by simulating the sedimen-
tation of an ellipse in a domain with B = 4. The ellipse is placed in the middle
of the channel at an angle 6; = 45° while the initial particle arrangement is
similar to the one given by Tofighi et al. (2015). The results are shown in figure

3. Since the boundaries are shifted vertically to follow the ellipse’s descent,

12



the vertical position of the ellipse is calculated by integrating its infinitesimal
movements in time. Figure 3-a plots the horizontal position of the ellipse versus
its vertical position for different particle spacings of d,/a = 1/15, 1/20, 1/25
and 1/30 while density ratio is set to D = 1.1. These cases are simulated in
a fixed domain of height H with H/a = 32 where the ellipse center lies at a
distance of 8a away from the top wall before release. The difference between
vertical positions become negligible for d,/a < 1/25 and ellipse orientation (not
shown here) follows a similar trend. As such, we use d,/a = 1/25 for the rest of
the simulations in this study. To determine the appropriate domain height, we
compare the results of three shifting boundary simulations with H/a = 8, 16
and 32 with the fixed domain results at H/a = 32. Figure 3-b plots horizontal
versus vertical position for D = 1.01, 1.1 and 1.5. The results of shifting bound-
ary are identical to fixed boundary for D = 1.01 and 1.1, even for the smallest
domain size with H/a = 8. The trajectories for D = 1.5 simulated in shifting
boundaries converge for H/a > 16. However, there is a slight difference between
trajectories of fixed and shifting boundaries in this case. This may be attributed
to the boundary effects at higher Re; in the fixed boundary configuration. We
use H/a = 16 for the remaining simulations in this study.

Figure 4 compares the horizontal position and orientation of the ellipse com-
puted in this study with the results of et al. Xia et al. (2009), Suzuki and Inamuro
(2011) and Khorasanizade and Khorasanizade and Sousa (2016). All results are
in good agreement for D = 1.1. The position and orientation from the cur-
rent simulation lie between those by Xia et al. (2009) and Suzuki and Inamuro
(2011) for D = 1.01. Our results show similar behavior to those available in the
literature for D = 1.5 and the quantitative difference falls within the acceptable
range. The changes in direction (figure 4-a) are more frequent in the results
of Xia et al. (2009) compared to those bySuzuki and Inamuro (2011) and Kho-
rasanizade and Sousa (2016), while our results lag behind. On the other hand,
when compared to the work of Suzuki and Inamuro (2011) and Xia et al. (2009),
the simulations by Khorasanizade and Sousa (2016) predict the smallest range

for horizontal displacement and change in orientation while our results exhibit
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the largest range. Table 1 shows the average Reynolds number Re; for the cur-
rent simulation and literature data (Xia et al., 2009; Suzuki and Inamuro, 2011;
Khorasanizade and Sousa, 2016). As it is seen, the current simulation results
are in agreement with Re; values of other numerical simulations. As such, it is
possible to infer that the proposed method is able to capture the behavior of a

sedimenting ellipse in an essentially infinite channel accurately.

6. Results

6.1. Blockage ratio and initial orientation

Depending on the blockage ratio, a sedimenting ellipse may have significant
interactions with lateral walls of the channel. These interactions become more
complicated when an external electric field is present. In their study, Xia et al.
(2009) identified five different sedimentation regimes for aspect ratios of B >
9/13. Here, we simulate the sedimentation behavior for blockage ratios of B = 1,
2 and 4 at a density ratio of D = 1.1. Initially, the ellipse is positioned at the
center of the channel at an angle 6; = 45°. We set the permittivity ratio
to P = 0.05, 0.2, 0.5, 1, 2, 5 and 20 with an Electrogravitational number of
Eg, = 40.

Our simulations for non-electrified cases exhibit the same behavior observed
by Xia et al. (2009). During the later stages of the simulation, the ellipse
follows an oscillating path for B = 1 while it descends maintaining a horizontal
orientation for B > 2. The presence of an external electric field alters the
sedimentation pattern by imposing a torque which tends to rotate the ellipse to
align its major axis with the electric field. Table 2 shows the average Reynolds
number Re; for the cases considered here. The simulations are carried out
until the ellipses descend up to 10, 20 and 40 major axis lengths for B = 1,
2 and 4, respectively. We observe four different patterns in the sedimenting
ellipses. These are (i) vertical, (ii) oscillating, (iii) slanted and (iv) horizontal
sedimentation. As evidenced by higher Re;, wider channels result in faster

sedimentation.
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Following table 2, it is observed that for the narrowest channel, the fastest
descent happens when no electrical field is present. The overall difference in Re;
for various P is rather small for B = 1. However, as the channel widens, the
effect of P on Re; becomes more significant. At both ends of P, the ellipses sed-
iment vertically and have the largest Re; while the ellipse descends horizontally
at P = 1. The vertical sedimentation at P = 0.05 and 20 persists even for B = 8
(not shown here). In addition to horizontal and vertical descent orientations,
for B = 4, the ellipses show an oscillating behavior as well. The ellipses at B = 2
show both slanted and oscillatory motion as P approaches unity.

Examining each column of table 2, we are not able to identify a clear re-
lationship between Re; and blockage ratio, except for vertical sedimentation
cases at P = 0.05 and 20. As B increases, the difference between consecutive
Re; values decreases. At B = 8, Re; is equal to 22.76 and 22.18 for P = 0.05
and P = 20, respectively. It may seem that Re; is approaching an asymptotic
value in columns leading to oscillating descent, however, increasing B further to
8 leads to considerable increase in Re;. For example, at P =5 and B = 8, Re;
is equal to 17.01. It is possible for a clear trend to emerge at higher blockage
ratios for non-vertical sedimentation, however, we have not investigated this
matter any further in this work.

Figure 5 shows position, orientation and ellipse profiles for P = 0.05, 0.2,
0.5, 1, 2 and 20 for B = 2. The ellipse paths, plotted in figure 5-a, converge to
the channel center for P = 0.05, 1 and 20 at the early stages of the simulation
and later for P = 0.5 (not shown here). In contrast, P = 0.2 and 2 show
a very low amplitude oscillation over a path to the left of centerline. The
orientation of the sedimenting ellipse is highly dependent on the permittivity
ratio (figure 5-b). The ellipse sediments vertically for P = 0.05 and 20 while it
descends horizontally when P = 1 and 0.5. Setting P = 0.2 results in a slanted
sedimentation at an average angle of 77.2° at x = —0.133 while at P = 2,
the ellipse descends at § = 22.8° and = = —0.178. Xia et al. (2009) have also
observed such slanted descent in non-electrified cases and identified a strong

dependence in sedimentation behavior with respect to the initial angle. We
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repeated the simulation at P = 0.2 for 6; = 15°, 30°, 60° and 75° to investigate
this effect. However, we found negligible difference in sedimentation angle and
position compared to 6; = 45°. The profiles of the ellipses shown in figure 5-c
provide a clearer picture of the ellipse behavior during the sedimentation.

To assess the effects of initial orientation on the ellipse behavior, we simu-
lated the sedimentation for a density ratio of D = 1.1 for P = 20, 5 and 0.05 at
Eg,
B = 4 and 8 are investigated and initial angles are set to #; = 15°, 30°, 45°, 60°

= 40. The ellipse is released from channel center. Two blockage ratios of

and 75°. The cases with P = 20 and 0.05 become vertical soon after release,
regardless of their initial orientation. As for P = 5, all initial orientations result
in the same oscillating pattern, however, the vertical distance traveled to reach
the periodic angular motion is different in each case. Table 3 shows the distance
traveled until a periodic angular oscillation is obtained. As expected, the ellipse
reaches periodic oscillation at a further distance when released at larger initial
angles. There is a significant jump in traveled distance for 6; > 45° at B = 4
which is not as significant for B = 8. For the narrower channel, the ellipse
released at 6 > 45° approaches the vertical wall and descends briefly alongside
it before returning to the channel center. While close to the wall, the oscillatory
motion is suppressed and the amplitude starts to increase only after the ellipse
returned to the middle of the channel. Since the ellipse-wall interaction in the
wider channel is not as significant as the narrower channel, the jump in required

distance is less pronounced for 5 = 8.

6.2. The effect of electric field intensity

Changing field intensity provides a direct method to influence the ellipse
behavior and the sedimentation trajectory depends on the interplay of hydro-
dynamic and electrical forces. To observe these effects, we simulate the sedi-
mentation behavior for three density ratios of D = 1.01, 1.1 and 1.5 for B = 4.
The ellipse is released from channel center at an initial angle of 8; = 45°. With-
out an external electric field, the ellipse sediments in a horizontal orientation

for D = 1.01 and 1.1 while it shows an oscillatory behavior at D = 1.5. Permit-
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tivity ratios for electrified cases are similar to those of previous section while
Eg, = 40, 10 and 5. According to the definition of Eg, (cf. equation (2)), a

larger electric intensity results in a smaller Eg,,.

6.2.1. Average quantities

Table 4 shows average Reynolds number Re; for the cases studied here. All
cases with D = 1.01 descend vertically for P # 1 and have similar Re;. This
means that electric torque is dominant and rotates the major axis to align with
the electric field. As the behavior is similar for lower Eg,, we do not tabulate
the results here. An increase in density ratio to D = 1.1 leads to comparable
hydrodynamic and electrical torques. For Eg, = 40, the range of sedimentation
patterns was discussed in the previous section. An increase in the field intensity
results in a shift from oscillating to vertical sedimentation pattern for P = 0.2
and 5 while it induces a shift from horizontal descent to oscillatory motion for
P = 0.5 and 2. It is worth mentioning that Re; have similar values for all vertical
sedimentations. A further decrease in Eg, results in vertical sedimentation for
P # 1 at D = 1.1 and is not shown here. Since the non-electrified sedimentation
pattern at D = 1.5 is oscillatory itself, the sedimentation patterns of electrified
cases remain oscillatory for a wider range of Eg,. A general observation is that
Re; increases slightly further away from P = 1 for oscillatory motion and a
significant increase occurs when the ellipse descends vertically.

To further investigate the range of oscillatory motions observed in D = 1.5,
figure 6 plots average Reynolds Re;, oscillation frequency wt., oscillation am-
plitude Az and angular sweep A/ for all cases with oscillatory sedimentation
pattern. As mentioned before, Re; increases as P goes further away from unity.
As the electrical torque counters the hydrodynamics torque on the ellipse, the
oscillation frequency is reduced for lower Eg, as well (figure 6-b). Figure 6-c
shows that larger Eg, and [1 —P| result in higher oscillation amplitude. A
similar trend is observed for the angular sweep in figure 6-d. An increase in
channel width to B = 8 results in similar trends (no shown here). In compar-

ison to B = 4, the ellipse sedimenting in a channel with B = 8 shows reduced
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oscillation frequency, amplitude and swept angle while it has larger Re;.

6.2.2. Transient behavior

Figure 7 shows sedimentation path and ellipse profile for y = 0 to 20 as
well as a closeup of streamlines at y = 20 for D = 1.5 and P = 0.2. As it is
seen in figure 7-a, for lower Eg,, the angle between the major axis of ellipse
and the tangent line to sedimentation path remains small for larger portions of
the trajectory. While the major axis of the ellipse is mostly perpendicular to
its trajectory for Eg, = 40, the angle between major axis and sedimentation
path remains small for large portions of the descent at Eg, = 5. This results
in the wider path and larger oscillation amplitude observed. Furthermore, as
the ellipse rotates between two highly slanted orientations, a larger angular
oscillation amplitude is observed for Eg, = 5. The effects of sedimentation
trajectory on vortical structures in the vicinity of the ellipse is shown in figure
7-b where the vortices are further stretched at smaller Eg,,.

To further investigate the effects of electric field on the sedimentation pat-
tern, the electric (T()), hydrodynamic (T)) and total (T ) torques applied
to the ellipse as well as position and orientation of the ellipse are shown in figure
8. The torques per unit depth are made dimensionless using prgocaA where A
denotes the ellipse area. To calculate the electric torque, the moment due to the
force applied to each particle through equation (10) is summed over the ellipse
particles. The hydrodynamic torque is calculated in a similar fashion while the
total torque is the summation of electric and hydrodynamic parts. Each column
in figure 8 plots two oscillation cycles for Eg, = 40, 10 and 5, corresponding to
cases shown in figure 7. In all cases, the electric torque counteracts the dominant
hydrodynamic term. While the overall magnitude of the total torque remains
comparable, the profiles differ significantly, especially at Eg, = 5. This may be
traced to the electric torque applied to the ellipse. It is known that the maxi-
mum electric torque happens at 6 = 45° (House et al., 2012). For Eg,, = 40, the
magnitude of electric torque is sufficient to rotate the ellipse beyond 6 = 45°,

however, it is not enough to reach a vertical orientation. As 6 increases beyond
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the 45° mark, the electric torque is reduced and the hydrodynamic term rotates
the ellipse back toward # = 45°. This momentarily increases the electric torque
opposing the rotation as 6 decreases, passing the 45° mark. The overall effect
is the longer slanted sedimentation periods observed in figure 7-a, contributing

to a faster descent (figure 6-a).

7. Conclusions

An incompressible smoothed particle hydrodynamics method for two dimen-
sional simulation of unlimited sedimentation of rigid bodies in Newtonian fluids
is presented. The scheme uses viscous penalty and rigidity constraints to im-
pose the rigid behavior. The unlimited descent or ascent is achieved by periodic
shifting of computational domain to center on the feature of interest. Modi-
fied boundary conditions are introduced to add or discard particles after each
shift in the computational domain. The method is tested for sedimentation of a
single elliptic disc and the results are in quantitative agreement with literature
data. This shows that the proposed method is capable of simulating unlimited
descent or ascent of features of interest (bubbles, drops or rigid bodies) using
smoothed particle hydrodynamics method.

The proposed method is further used to simulate the sedimentation of a
single elliptic disc in an external electric field. Our results show that it is possible
to increase the ellipse sedimentation velocity for wider channels by applying the
electric field. While the sedimentation path at the early stages was highly
affected by the initial orientation, we observed no particular difference between
sedimentation pattern at the later stages of simulation. Introduction of the
electric field at larger density ratios, where a non-electrified ellipse sediments
in an oscillatory pattern, reduces the oscillation frequency while sedimentation

velocity, oscillation amplitude and swept angle are increased.
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Table 1: Comparison of average Reynolds number Re; for non-electrified ellipse sedimentation

at B =4 and 6; = 45°.

D 1.01 1.1 1.5
Current Simulation 215 135 3338
Xia et al. (2009) 2.08 129 334
Suzuki and Inamuro (2011) 1.92 12,6 329
Khorasanizade and Sousa (2016) -  14.6 36.1

Table 2: Average Reynolds Re; for different blockage ratios at D = 1.1, Eg,, = 40 and 0; = 45°.
Data in table cells indicate that the ellipse is in (roman) vertical descent, (italic) oscillating

descent, (italic underline) slanted descent or (roman underline) horizontal descent.

P 0.05 0.2 0.5 1 2 5 20
B=1 198 205 225 251 216 211 2.24
B=2 1217 11.61 540 513 6.33 11.97 11.88
B=4 1988 1368 13.55 13.50 13.46 13.43 19.44

Table 3: Vertical distance required to achieve a periodic oscillation for sedimenting ellipses

released from different initial orientations at D = 1.1, P = 5 and Eg, = 40.

0; 15°  30° 45° 60° 75°
B=4 34 347 1469 160.3 1664
B=8 276 294 40.7 448 499

Table 4: Average Reynolds Re; for different field intensities for B = 4 and 6; = 45°. Data in
table cells indicate that the ellipse is in (roman) vertical descent, (italic) oscillating descent

or (roman underline) horizontal descent.

P 0.05 0.2 0.5 1 2 5 20
D=1.01, Eg, =40 3.13 3.15 3.10 2.22 3.04 2.97 3.03
D=11,Eg,=40 1988 13.68 1355 13.50 1346 1343 19.44
D=11,Eg,=10 2007 20.01 137 13.50 13453 19.92 19.85
D=15,Eg,=40 34.68 34.03 3381 33.75 33.76 3391 36.42
D=15,Eg, =10 40.02 35.64 3394 3375 3388 37.26 56.14
D=15,Eg,=5 56.52  39.56 34.16 33.75 34.58 56.99 56.71
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Figure 1: Schematic of a sedimenting elliptic disc
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Figure 2: Schematic of the shifting boundary condition.
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Figure 3: Horizontal position of the ellipse versus its vertical position for B = 4 and 6; = 45°;
(a) for different particle spacings at D = 1.1; (b) for different density ratios at H/a = 32
and fixed boundary (8WF), H/a = 8 and shifting boundary (2WS), H/a = 16 and shifting
boundary (4WS) and H/a = 32 and shifting boundary (8WS).
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Figure 4: Horizontal position (a) and orientation of the ellipse (b) versus its vertical position
at different density ratios for B = 4 and 6; = 45°; (lines) current simulation, (circles) Xia et al.

(2009), (triangles) Suzuki and Inamuro (2011), (squares) Khorasanizade and Sousa (2016).
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Figure 5: Sedimentation for D = 1.1, B = 2 and Eg, = 40; Horizontal position (a) and
orientation of the ellipse (b) versus vertical position at different permittivity ratios; (c) Sedi-

mentation trajectory and ellipse profile for different permittivity ratios.

30



40 4 A =
(@ ©1% v gm0 | (b) 00
\ A Ege10 4000
\'\ ."'~.__ = Eg,=5
‘ ' 3750 -

o Y
3500 -
3250

T T T T T T T T

20 0.05 02 05 1 2 5 20

x

T

20

Figure 6: Effect of change in Eg, and P on average Reynolds number Re; (a), oscillation

frequency wt. (b), oscillation amplitude Az (c) and swept angle Af/m (d). The data belong
to the cases in table 4 where the ellipse is sedimenting in an oscillatory pattern at D = 1.5,

B =4 and 6; = 45°.
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Figure 7: Ellipse sedimentation at D = 1.5, B =4, P = 0.2 and 6; = 45°; (a) sedimentation
trajectory and ellipse profile for different Eg,,; (b) closeup of the ellipse profile and streamlines
at y = 20 for different Eg,.
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Figure 8: Electric (T ()), hydrodynamic (T yy) and total (T(y)) torques applied to the ellipse
versus vertical position for different field intensities for D = 1.5, B =4, P = 0.2 and 6; = 45°.

Horizontal position and orientation of the ellipse are plotted in lower rows.
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