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Abstract

As part of the immune response, leukocytes can directly transmigrate through the body of

endothelial cells or through the gap between adjacent endothelial cells. These are known, re-

spectively, as the transcellular and paracellular route of diapedesis. What determines the usage

of one route over the other is unclear. A recently proposed tenertaxis hypothesis claims that

leukocytes choose the path with less mechanical resistance against leukocyte protrusions. We

examined this hypothesis using numerical simulation of the mechanical resistance during para-

cellular and transcellular protrusions. By using parameters based on human lung endothelium,

our results show that the required force to breach the endothelium through the transcellular

route is greater than paracellular route, in agreement with experiments. Moreover, experiments

have demonstrated that manipulation of the relative strength between the two routes can make

the transcellular route preferable. Our simulations have demonstrated this reversal, and thus

tentatively confirmed the hypothesis of tenertaxis.

⇤Corresponding author. E-mail: james.feng@ubc.ca
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1 Introduction

The immune response requires recruitment of leukocytes to defend the body against foreign mi-

croorganisms such as bacteria and viruses. The leukocytes first form weak adhesion and roll on the

endothelium surface. Then they bind firmly on the endothelial surface, pass through the endothe-

lium in a process called diapedesis, and breach the basement membrane. Finally, they move toward

the chemotactic stimulus in the tissue [1]. Thus, reaction to infections requires frequent crossing of

leukocytes through the layer of endothelial cells (ECs). To initiate the transmigration, leukocytes

extend invadosome-like protrusions (ILPs) into the endothelium [2]. They can transmigrate either

directly through the body of an individual EC (the transcellular route) or through the junction

between ECs (the paracellular route) [2]. It is unclear what determines the path of transmigration.

To address this question, Martinelli et al. [3] conducted three in vitro tests to examine the

correlation between junctional integrity and the route of diapedesis. First, they compared the

diapedesis through rat brain and heart and human heart and lung endothelia. The rat brain

endothelium has stronger junctional integrity than heart and lung endothelia. They observed that

for the rat brain endothelium the number of transcellular diapedesis is higher than the paracellular

diapedesis, while in rat heart and also human heart and lung endothelia, the usage of paracellular

route is dominant. Second, they used drugs and hormones to enhance or disrupt endothelial

junctions in rat brain and heart tissues. They noticed that disrupting junctional integrity leads

to a remarkable increase (about two folds) in paracellular diapedesis accompanied by decrease in

transcellular transmigration. Finally, they exposed human lung endothelium to long-term shear

flow as a mechanical modifying agent to promote the junctional strength and remodeling of the

cytoskeleton. This alteration causes a significant increase in transcellular diapedesis. Based on

these observations, Martinelli et al. [3] concluded that strong junctional integrity is correlated with

dominant transcellular route of transmigration, and the EC junction tightness and local sti↵ness

are the major determinants of the route of diapedesis. They hypothesized that leukocytes choose a

path with the least mechanical resistance during transmigration, a tendency termed tenertaxis [3,4].

Conceptually, the hypothesis appears plausible. But from a physical viewpoint, it raises several

interesting questions. For example, as the leukocyte extends ILPs into the EC, how much resistance

can the EC generate in either the transcellular and paracellular route? Given the typical level of
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protrusion forces in the ILPs, will they be able to overcome the resistance to e↵ect a transmigration

through either route? Will the di↵erence in resistance correspond with experimental observations

of the prevalence of one route over the other, under wild-type conditions and active intervention?

In this study, we test the tenertaxis hypothesis quantitatively by using a computational model of

the endothelium and leukocytes with ILPs. To answer the questions raised above, we perform two

subtasks. First, we review existing data on the mechanical properties of ECs in di↵erent tissues

in their physiologic or altered states, as well as data on the shape and size of the invadosomes

and representative magnitudes of the protrusive forces inside them. Thus we identify a reasonable

range of the mechanical parameters corresponding with prior experimental observations. Second,

we use continuum theories of hyperelasticity and contact mechanics to simulate the penetration of

an ILP through an EC body (transcellular) and through an EC-EC junction (paracellular). Our

model predicts lower resistance in one route or the other depending on the endothelial properties

in its natural or altered state. These outcomes are consistent with experimental observations of the

prevalence of trans- or paracellular diapedesis. Thus, the model tentatively confirms the tenertaxis

hypothesis.

2 Problem setup and methodology

According to the tenertaxis hypothesis, leukocytes extend ILPs into the EC to seek the route

of least resistance [4]. Essentially, this amounts to comparing the mechanical resistance of the

two potential routes: one against the formation of a tunnel through the EC body and the other

against a protrusion through the endothelial junctional opening. Therefore, our model is centered

on computing the mechanical resistance of the ECs monolayer against the protrusive force of the

leukocytes in either route. As such, the model needs to represent at least the following three

components (Fig. 1):

(a) The ILP. We model the leukocyte protrusion as a nearly rigid rod with a diameter of 340 nm

based on the average of protrusions observed in experiments [2,4]. To simulate the rod penetrating

the EC cell body or the EC junction, we can either specify the force on the rod or prescribe its

displacement. Most of the results will be presented according to the latter protocol for simplicity

and convenience.
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Figure 1: Schematic of a leukocyte extending invadosome-like protrusions (ILPs) on the endothe-
lium into the EC cell body and through the EC cell junction. The latter consists of transmembrane
adhesive proteins (e.g. VE-cadherins) bridging a gap between the two ECs.

(b) The ECs and the basement membrane underneath. We treat the ECs and the basement

membrane as hyperelastic solid components obeying the neo-Hookean constitutive equation, ignor-

ing the cytosol and other organelles inside the cell [5]. The EC nucleus is very sti↵ and diapedesis

rarely happens in the area around the nucleus [4]. Therefore, we do not consider penetrations

through the nuclear bulge of Fig. 1.

(c) Endothelial cell-cell junctions. We model the EC junction as a preexisting narrow gap

between two neighboring ECs, with an undeformed gap size of 10 nm [6,7]. The gap is bridged by

bonds that consist of transmembrane adhesive proteins such as vascular endothelial cadherins (VE-

cadherins) [8]. We model the molecular bonds as linear springs distributed between two adjacent

EC edges [9, 10].

2.1 Geometric setup

Figure 2 shows the two geometries used for simulating the penetration of an ILP through the EC

junction (Fig. 2a) and through the body of an EC (Fig. 2b). Because the diameter of the ILP is

only about 2% that of the EC [4,11], the penetration is largely a local event that does not involve

the entire EC body. Thus, we circumscribe a small portion or subdomain of the endothelium for

the simulations to reduce the computational cost. The subdomain used for the modeling of the

paracellular protrusion is a three-dimensional cylinder 3 µm in diameter and includes two adjacent

ECs, the junction and the basement membrane underneath (Fig. 2a). The undeformed heights of
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(a) (b)

Figure 2: Geometric setup for the simulations of (a) the paracellular protrusion, and (b) the
transcellular protrusion. Initially, the tip of the rod is 10 nm above the flat apical surface of the
endothelium in (a) and 20 nm in (b).

the EC and the basement membrane are respectively 1 µm and 2 µm [12, 13]. The junctional gap

has an undeformed width of dgap = 10 nm [6, 7]. Its top opens into a groove, with two opposed

circular arcs of radius 200 nm subtending a central angle of 90�. For the transcellular protrusion,

we use a two-dimensional axisymmetric domain 1.5 µm in radius that comprises a part of the EC

body (undeformed height of 1 µm, away from the nucleus and the junction) and the basement

membrane underneath (undeformed height of 2 µm) (Fig. 2b). The protrusion is modeled as a rod

340 nm in diameter [4], with a cylindrical body and a hemispherical head.

To simulate the penetration process, we prescribe the kinematics of the movement of the ILP

into the EC in terms of its tip displacement drod(t). As the EC deforms, the contact force on the

ILP is computed by integrating the traction over the ILP surface in contact with the EC. This

yields the resistance force on the ILP, Fr(drod), as a function of the depth drod. Because the elastic

deformation happens instantaneously, without viscous damping, essentially we are computing a

series of quasi-static states with the rod at di↵erent positions of insertion. Thus, the speed of

motion d0rod(t) plays no role in the result. In addition, we have carried out dynamic simulations

by specifying a constant pushing force on the ILP and tracking its movement in time. The two

protocols essential confirm each other, and we will mostly present data on the quasi-static Fr(drod)
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for simplicity.

The simulation ends when the displacement drod reaches a threshold db for breakthrough. This

threshold is set to the thickness of the EC monolayer (db =1 µm) for the paracellular protrusion

and db = 0.98 µm for the transcellular protrusion. The threshold of 0.98 µm for the transcellular

protrusion was chosen because the thickness of the EC membrane is 10 nm [14,15], and at this point

the apical membrane reaches the basal membrane so they may open up a transcellular tunnel [4].

After breakthrough, the leukocyte tends to spread between the EC and the basement membrane

in vivo [16] or a substrate in vitro [3, 4], and we will not model that spread.

2.2 Governing equations and numerics

We treat the ECs and the basement membrane as neo-Hookean hyperelastic materials that can

capture the strain-sti↵ening behaviour of biological materials [17], both obeying the following con-

stitutive equation with di↵erent material properties:

� = GJ� 5
3
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where Fij = @xi/@Xj is the deformation gradient tensor, with X and x being the undeformed and

current positions of a material point, and J = det{F }. The coe�cients G and K are the shear and

bulk modulus, respectively, connected via the Poisson ratio ⌫: K = 2G
3

1+⌫
1�2⌫ . Finally, the governing

equation of solid deformation is given by:

r · � = 0. (2)

In terms of boundary conditions, the basal surface of the basement membrane has zero dis-

placement, while all the other surfaces are free to deform with no load or constraint (Fig. 2). In

the paracellular geometry of Fig. 2a, we deploy distributed elastic springs between the opposite

lateral surfaces of the two adjacent ECs to model the cell-cell adhesion force because of VE-cadherin

bonds. Details of the junction model will be given below.

We use the augmented Lagrange method and the penalty method to model the normal contact

force between the rod and the EC surface during transcellular and paracellular penetration, respec-
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tively [18]. Also we assume a frictionless contact between the protrusion and the ECs [19]. The sets

of equations were solved using COMSOL Multiphysics. A special numerical challenge is to capture

the very large strain under the ILP in the transcellular setup, and we meet it by employing a very

high aspect-ratio rectangular mesh in the surrounding area with quintic Lagrange shape function

for the elements. Details can be found in the online Supplemental Information (SI).

2.3 Parameter estimation

To test the tenertaxis hypothesis, a prerequisite is to estimate the mechanical rigidity of the EC body

as well as the EC junctions. These bear directly on the resistance against transmigration through

the transcellular and paracellular routes, and hence the preference for one route or the other. In

the following we estimate the elastic modulus of the human lung microvascular endothelial cells

and the mechanical properties of their junction. The outcome of this exercise is the baseline values

summarized in Table 1 for some key mechanical parameters.

Symbol Description Value Sources
Epara Elastic modulus of EC body for paracellular route 1800 Pa [20]
Etran Elastic modulus of EC body for transcellular route 180 Pa [20,21]
EBM Elastic modulus of the basement membrane 5000 Pa [17]
⌫ Poisson’s ratio 0.3 [17]
L0 Rest length of junctional bonds 10 nm [10]
kb Spring constant of junctional bonds 2⇥ 10�5 N/m [9]
Nb Areal density of junctional bonds 20 µm�2 [22, 23]

Table 1: Baseline values for key parameters used in our model, estimated for human lung microvas-
cular endothelial cells.

2.3.1 Endothelial cells

The elastic modulus of ECs has most often been measured from the response of the cells to inden-

tation, e.g., by the tip of an atomic force microscope (AFM) [24]. Generally, the elastic modulus

tends to be higher above the nucleus and lower toward the periphery. For di↵erent types of hu-

man tissues, the EC body modulus, away from the nucleus, falls in the range E = 1000 ⇠ 5800

Pa [17, 20, 24–27]. For example, Viswanathan et al. [20] reported E = 1800 Pa near the periphery

of human lung microvascular endothelial cells (HLMVECs). For human umbilical vein endothelial

cells (HUVECs), E varies from 6800 Pa on the top of the nucleus to 1400 Pa near the cell edge [25].

For human aortic endothelial cells (HAECs), E = 5800 Pa is recorded above stress fibers while
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E = 1500 Pa away from stress fibers [27]. To propose the tenertaxis hypothesis, Martinelli et al. [3]

quoted data on HLMVECs among other types of ECs. Accordingly, we adopt the HLMVEC cell-

body modulus [20] for simulating the paracellular protrusion: Epara = 1800 Pa. This value is also

close to the modulus of the cell body of HUVECs and HAECs.

To estimate the EC modulus during transcellular diapedesis, a complication arises from the fact

that a leukocyte, upon adhering to the apical surface of an EC, actively remodels the EC cortex

underneath [21,28]. Thus, the e↵ective EC modulus is much reduced in comparison to areas away

from the leukocyte attachment site. After removing an attached leukocyte by nano-surgery, Isac

et al. [21] observed depolymerization of F-actin and remodeling of the EC cytoskeleton underneath

the site of attachment. Barzilai et al. [28] showed similar disassembly of actin filaments underneath

a leukocyte protrusion. Furthermore, Isac et al. [21] measured the EC elastic modulus at the

attachment site using AFM indentation. The site can be up to 10 times softer than its surrounding

area, with E dropping from ⇠ 3000 Pa to ⇠ 300 Pa for HUVECs. This trend is consistent with

the observation that indenting HAECs above stress fibers would yield a much sti↵er modulus than

away from stress fibers [27]. Unfortunately, we have found no quantitative data on the softening

of HLMVEC modulus. Since we wish to model the HLMVEC-based experiments of Martinelli

et al. [3], we borrow the softening factor of 10 from the HUVEC data [21]. Based on the modulus

of 1800 Pa for the intact HLMVEC, we adopt an e↵ective Etran = 180 Pa for the transcellular

simulation.

For both paracellular and transcellular simulations, the elastic modulus of the basement mem-

brane is taken to be EBM = 5000 Pa, similar to the elastic modulus of extracellular matrix [17].

2.3.2 Endothelial junctions

The EC junction consists of a narrow gap bridged by molecular bonds (Fig. 1). As an ILP penetrates

through the gap, it widens the gap by separating the EC surfaces and stretching the bonds. Fol-

lowing earlier studies, we represent the bonds by linear elastic springs [9,10,14], with the following

elastic force on each bond:

fb = kb(Lb � L0), (3)

8



where kb is the spring constant, Lb is the bond length and L0 is the equilibrium bond length. The

spring constant kb was reported to be kb = 10�5 ⇠ 10�2 N/m for cell-cell adhesion bonds [9], and

the equilibrium bond length L0 = 10 ⇠ 20 nm [6, 10]. We have taken kb = 2 ⇥ 10�5 N/m and

L0 =10 nm to be our baseline values, the latter being consistent with the undeformed gap width

at the junction.

The areal bond density Nb has been modeled by a kinetic equation for the formation and

dissociation of bonds, with the rate constants being functions of tension in the bonds [10, 14]. For

simplicity, we ignore the kinetics of Nb and adopt a constant equilibrium value based on prior

observations. The total number of bonds between two ECs falls in a wide range, and the areal

density of bonds can be estimated as Nb = 5 ⇠ 50000 µm�2 [6, 9, 10]. Furthermore, from the

measured normal stress (⇠ 1 nN/µm2) at the junction [22] and the maximum force (⇠ 50 pN)

that each bond can sustain [23], one can estimate Nb = 20 µm�2. This is the value that we have

adopted.

In our finite-element simulation, the bond force is applied to each mesh point on the portion of

the EC surface that forms the junction. Each mesh point is assigned an associated surface area Ai

based on the mesh configuration. The bond length Lb at the mesh point is the horizontal distance

to the opposite cell face. Thus, we calculate a horizontal bond force Fi = AiNbkb(Lb � L0), and

apply it onto the mesh point.

For the parameters estimated above, the junctional springs turn out to contribute a small

amount of the resistance to paracellular diapedesis; most of the resistance comes from the deforma-

tion of the EC cells. This is because the bond forces are horizontal, and only contribute indirectly

to the resistance by a↵ecting the EC surface shape. In particular, its contribution vanishes toward

the end, when the junctional gap becomes widened more or less uniformly to the size of the rod.

The minor role of the junctional springs alleviates the concern about uncertainties in estimating

the above parameters.

We have carried out a parametric study to examine how the model predictions vary with the

key geometric and mechanical parameters. Details are given in the online SI.
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3 Results and discussion

We focus on the resistance force on the ILP as it extends across the endothelium through the tran-

scellular or paracellular route. This resistance force is used to predict which is the preferred route

with the smaller resistance. We first present results using the baseline parameters corresponding to

wild-type HLMVECs, and then investigate the e↵ects of manipulating the elastic modulus of the

endothelium.

3.1 Transmigration predicted using the baseline parameters

3.1.1 Paracellular route

In our quasi-static protocol, we move the rod representing the ILP downward into the junctional

gap by 10 nm each time, and compute the resistance force Fr on it from the contact surfaces

between the rod and the two neighboring ECs. Figure 3(a) plots the force as a function of the

displacement of the tip of the rod drod. Because of the geometry of the problem, the rod travels

downward by about 75 nm before it makes contact with the EC surfaces at the top of the junctional

gap. Initially, the rod deforms the upper edges of the ECs at the junction and opens it up into a

wedge. The resistance force Fr rises sharply as a result. It peaks at 35 pN, for drod ⇡ 0.25 µm,

when the rod pushes the edges of the ECs apart so that the tip of the wedge reaches the basal

EC surface (Fig. 3b). As the rod pushes further down, it opens an increasingly larger portion of

the junction into a cylindrical hole, which does not provide much upward resistance. Therefore,

Fr starts to decline with drod. This suggests a discontinuous jump in a dynamic simulation, and

we will return to this point later. The minimum resistance Fr = 20.3 pN occurs at drod ⇡ 0.54

µm (Fig. 3c). Afterwards, the basal face of the EC starts to cause appreciable deformation in the

basement membrane, which is much sti↵er than the EC (Table 1). Thus, Fr starts to increase again

with displacement. This increase continues till the end of the penetration, when the rod reaches

the basement membrane (drod = db = 1 µm). Thus, the maximum resistance force Fmax = 45 pN

occurs at the end of the paracellular transmigration. The process is illustrated in Movie 1 in the

SI.

Is it reasonable to expect the ILP to produce a protrusive force large enough to overcome such

a resistance? Earlier studies showed that the protrusive force is mainly due to actin filaments
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(a)

(b)

Figure 3: (a) The vertical contact force as a function of the rod displacement during paracellular
protrusion. The dashed arrow suggests how the rod will pass over an unstable portion of the
curve in a dynamic simulation with a prescribed force. Penetration occurs when drod reaches the
breakthrough threshold db = 1 µm. (b) Cross-sectional view of the mid-plane normal to the groove
atop the EC junction (see Fig. 2a) at several points of the transmigration, with contours of the
von Mises stress in Pa. The ECs and the basement membrane are colored dark blue and light blue,
respectively.

polymerizing in the core of the ILP, with little direct contribution from myosin [29]. The force

generated by a single polymerizing actin filament ranges between 1.3 and 9 pN [30, 31]. Each

protrusion may contain between 10 and 30 actin filaments [32]. Thus, the ILP can easily generate

a protrusive force that matches the resistance of the paracellular route.

Because of the quasi-static setup of the problem, in which we prescribe the displacement of

the rod, the force-displacement curve of Fig. 3(a) has interesting implications for a “dynamic

simulation” where we prescribe the pushing force Fr on the rod, and compute its displacement

drod(t). If Fr is below 35 pN, the rod will stop on the first up-slope of the curve in Fig. 3(a). With
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(a)

(b)

Figure 4: (a) The vertical contact force as a function of the rod displacement during transcellular
protrusion. The vertical dashed line marks the breakthrough threshold db = 0.98 µm. (b) The
meridian plane of the axisymmetric geometry (see Fig. 2b) at several points of the transmigration,
with contours of the von Mises stress in Pa. The ECs and the basement membrane are colored
dark blue and light blue, respectively.

larger forces, the rod passes the peak, and then jumps over an unstable portion of the curve to

land on a larger displacement on the second up-slope of the curve. This is indicated by the red

dashed arrow in Fig. 3(a). In fact, we have done such dynamic simulations to confirm the above

scenarios. Details are discussed in the SI, with a simulation shown in Movie 2. Of course, there

would be a jump in the opposite direction if we start with an initial state of full penetration and

then gradually decrease the protrusion force. But such a scenario is not relevant to the diapedesis

process.
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3.1.2 Transcellular route

To test transcellular protrusion, we again adopt a quasi-static approach by moving the ILP down-

ward by small increments and compute the elastic resistance by the EC. Figure 4(a) plots the

vertical contact force during the progression of the rod, while Fig. 4(b) depicts the contours of the

von Mises stress on the meridian plane at several points of the transcellular penetration of the EC.

The protrusive force on the EC produces a transcellular tunnel similar to the finger-like protru-

sions of leukocytes observed in the experiments [3, 4]. The force Fr increases monotonically but

non-linearly with the depth of penetration drod, owing to the geometric non-linearity of the defor-

mation and the hyperelastic behaviour of the EC. Thus, when the protrusion reaches the threshold

of db = 0.98 µm, the resistance force attains its maximum during the transcellular penetration:

Fmax = 72 pN.

Prior experiments show that paracellular transmigration is the preferred mode for HLMVECs

[3, 4] and HUVECs [33]. Across an HLMVEC monolayer, for example, paracellular diapedesis

occurs about 65% of the time in vitro [3, 4]. Based on baseline parameters corresponding to

HLMVECs, our model predicts a maximum mechanical resistance of 45 pN and 72 pN in the

paracellular and trancellular routes, respectively. This shows that the penetration is easier using

the paracellular route, in agreement with experimental observations [3,4]. To probe the tenertaxis

hypothesis further, however, we need to manipulate the relative level of resistance in the EC body

and junctional areas. This was achieved in prior experiments by drug or hormone treatment, shear

flow e↵ect, and comparing di↵erent cell types that o↵er di↵erent levels of junctional resistance. In

the following, we will simulate such changes by manipulating the endothelial resistances at the cell

junctions.

3.2 E↵ect of manipulating endothelial sti↵ness at the junction

In a series of experiments, Martinelli et al. [3,4,34] demonstrated two interesting trends. First, for

HLMVECs in their natural physiologic state, the paracellular route is preferred and accounts for

65% of the total transmigration events. Second, by strengthening the EC sti↵ness near junctions, a

reversal in this preference can be achieved, with a majority (70%) of the transmigration occurring

through the transcellular route. This has motivated us to manipulate the junctional strength in
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Figure 5: E↵ect of raising the EC modulus near the cell edges on the resistance force during
paracellular penetration. The baseline value is Epara = 1800 Pa (see Table 1), and the two higher
values correspond to experimental manipulations of EC edge rigidity [3, 20].

our model to see how that modifies the relative resistance of the two routes.

Using the hormone adrenomedullin, Martinelli et al. [3] managed to increase the level of cortical

F-actin near the HLMVEC edges. As a result, the EC elastic modulus rose to 1.75 times of

its baseline value. Moreover, Viswanathan et al. [20] reported increase of HLMVEC modulus

by a factor of 2.33 after treatment with hepatocyte growth factor. Away from the cell edge,

the EC body modulus is not a↵ected by the chemical treatment, and neither is the transcellular

migration [3, 20, 35, 36]. In view of these experimental data, we will increase Epara by a factor of

1.75 and 2.33 from its baseline value of 1800 Pa, to Epara = 3150 Pa and 4200 Pa, respectively.

None of the experiments indicated modifications of the VE-Cadherin-based molecular bonds at the

EC junctions. Thus, we have kept the baseline values of kb = 2⇥ 10�5 N/m.

Figure 5 depicts the e↵ect of sti↵er EC-edge modulus on the resistance force during ILP penetra-

tion. The maximum resistance force Fmax has increased markedly for the strengthened junctions,

from Fmax = 45 pN for the wild-type EC to 74 pN for Epara = 3150 Pa, and further to 90 pN

for Epara = 4200 Pa. For both cases of elevated Epara, the resistance of paracellular transmigra-

tion now surpasses that of the transcellular route. Thus, the model reproduces the observations

of Martinelli et al. [3] that sti↵ening the EC near cell junctions can make the transcellular route

preferable. Our mechanical tests have tentatively confirmed the hypothesis of tenertaxis.
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4 Conclusion

As part of the immune reaction, leukocytes transmigrate across the endothelium either directly

through the body of an endothelial cell (EC) (transcellular route) or through the junction between

adjacent ECs (paracellular route). To rationalize the preference between the two routes, Martinelli

et al. [3] hypothesized that leukocytes seek the path of least mechanical resistance in a process

called tenertaxis. In this study, we have examined this hypothesis using numerical computation

of the mechanical resistance encountered by the leukocyte protrusion during paracellular or tran-

scellular penetration. Model predictions show that normally the paracellular route is the preferred

route for human lung endothelia. Using model parameters corresponding to the human lung mi-

crovasculature, our computations show that the required force to penetrate the endothelium in the

transcellular route (Fmax = 72 pN) is greater than that of the paracellular route (Fmax = 45 pN).

This rationalizes the preference of leukocytes to use the paracellular route most of the time.

Motivated by experiments that enhanced the junctional integrity of endothelium through the

use of modifying agents, we have demonstrated that by increasing the elastic modulus of the EC

near the junction, the mechanical resistance of the paracellular route may surpass that of the tran-

scellular route. This will make the transcellular route preferable, in agreement with experimental

observations [3]. Thus, our mechanical tests have tentatively confirmed the hypothesis of tenertaxis.

Our model is purely mechanical, and aims at testing the mechanical feasibility of the tener-

taxis hypothesis. Thus, it has incorporated many assumptions and simplifications. First, we have

ignored all biochemical signaling in the complex process of diapedesis. In particular, we have ne-

glected the kinetics of F-actin polymerization, which determines the force generation inside the

invadosome-like protrusion (ILP), and the breakage of molecular bonds in the EC junction during

paracellar transmigration. A more complete model should integrate such biochemical kinetics with

the mechanical deformation of the EC. Second, our model does not account for the leukocyte nu-

cleus. Instead, we follow the experimental work [2–4] in focusing solely on the ILP as the “probe”

for measuring the resistance of various endothelial components. Because of the complex morphol-

ogy and dynamic behavior of the leukocyte nucleus, its role in diapedesis is an open and actively

debated question [37, 38]. Third, we model the EC as hyperelastic, and disregard the cytoplasm

and potential viscoelastic responses of the endothelium [39]. Finally, we have treated the ILP as an
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inert solid object. Experimental evidence suggests that there is a dynamic interaction between the

leukocyte and the ECs. Through mechanical and chemical signaling pathways, the leukocyte may

induce cortical contraction inside the EC to open up the cell junctions and facilitate paracellular

passage [40, 41]. In return, the EC appears to modulate the lifetime of the ILP through an active

feedback mechanism, such that unsuccessful protrusions retract quickly while more successful ones

grow and persist much longer [33]. Thus, it is clear that leukocyte diapedesis is a complex process

that involves a rich array of biochemical and mechanical processes. Tenertaxis is a simple but

promising idea that explains the outcome from predominantly mechanical factors. Our modeling

o↵ers quantitative support for this concept.

We end by noting the clinical relevance of the above discussion. Endothelial barrier function is

perturbed in many disease states (e.g. sepsis, COVID-19 and atherosclerosis, to name a few) that

involve endothelial activation and enhanced leukocyte transit through the paracellular space. Once

in the tissue, the leukocytes activate and promote inflammation and cause organ damage. The use

of glucocorticoids, which “sti↵en” the endothelial cell junctions by enhancing synthesis of junction

proteins such as occludin and VE-cadherin, reduces leukocyte entry and dampens inflammation

[42]. Endothelial barrier function is thus an important target of therapeutic discoveries for many

inflammatory conditions.
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1 Numerical techniques

We used COMSOLMultiphysics to solve the system of governing equations. The simulations consist

in solving for the elastic deformation of the endothelial cells (ECs) and the basement membrane as

the invadosome-like protrusion (ILP) penetrates into the ECs or the junctional gap under prescribed

displacement or force.

Typical finite-element meshes are shown in Fig. S1. For the paracellular simulations, we used a

grid with about 360,000 tetrahedral elements. Note the refinement in the junctional gap to ensure

adequate spatial resolution (Fig. S1a). The ILP is essentially rigid. But it turned out to be more

convenient to model it as elastic in the COMSOL module. Thus, we have meshed it as a circular

cylinder with a hemispherical end, with a very high elastic modulus E = 205 GPa.

For the transcellular simulations, we typically deployed about 12000 quad and triangular ele-

ments. To capture the very large strain in the transcellular setup, we utilized very high aspect-ratio

elements (Fig. S1b) with quintic Lagrange shape function near the site of protrusion. These ele-

ments appear as highly elongated rectangles in the region below the tip of the ILP. As the ILP

compresses this region, the elements eventually take on more moderate aspect ratios toward the

later stage of the simulation.

We have done numerical experimentation to check the convergence of the results with respect

to spatial resolutions, and the meshes shown in Fig. S1 turned out to be su�cient. With a coarse

mesh of about 140,000 elements, for example, the paracellular simulation predicted a resistance

⇤Corresponding author. E-mail: james.feng@ubc.ca
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(a)

(b)

Figure S1: Grids used for computing the penetration of the leukocyte protrusion into the EC
through (a) the paracellular route and (b) the transcellular route. Note the highly elongated initial
mesh in the region below the rod in (b).

force within 1.8% of that of the finer mesh of 360,000 elements. Besides, we found a maximum

time step of �t = 0.001 s to be adequate for resolving the transients in the dynamic simulations.

2 Parametric study

For the simulation results presented in the main paper, we have used the baseline parameters that

tabulated in Table 1. Moreover, we have carried out parametric studies to investigate how the

mechanical resistance depends on the key parameters, including the undeformed gap size between

two adjacent ECs, the spring constant of VE-cadherin bonds, the diameter of the ILP, and the

elastic modulus for transcellular protrusion.
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Figure S2: E↵ect of the EC junctional gap size on the resistance force during paracellular protrusion.

Figure S3: E↵ect of the spring constant kb of the VE-cadherin bonds on the resistance force during
paracellular protrusion.

2.1 E↵ect of the undeformed junctional gap size

Figure S2 depicts the e↵ect of undeformed gap size on the resistance force during paracellular

protrusion. As the gap size dgap increases from the baseline of 10 nm to 20 nm, a reasonable range

based on experimental data [1], the resistance force decreases only slightly. As the diameter of the

ILP is 340 nm, much wider than the gap size, the paracellular protrusion entails a great elastic

deformation on the EC next to the gap. The range of dgap, therefore, corresponds to a relatively

small percentage change in the amount of elastic strain in the ECs.

2.2 E↵ect of the spring constant of VE-cadherin bonds

Figure S3 shows the e↵ect of sti↵ness of the VE-cadherin bonds on the resistance force of paracellular

protrusion. The key observation is that although the first peak of the resistance force increases

with increase in kb, the maximum resistance force at the breakthrough is a very weak function of
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(a) (b)

Figure S4: E↵ect of the rod diameter in resistance force in (a) the paracellular setup and (b) the
transcellular setup.

the spring constant. Even if we eliminate these bonds altogether (kb = 0), the maximum resistance

force decreases by less than 0.1%. As discussed in the main text, this is because the bond force is

aligned across the gap, perpendicular to the direction of the ILP protrusion. Thus, its e↵ect is felt

by the ILP only indirectly through modifying the EC surface shape. This explains why the relative

sensitivity at the first peak of Fr, when the apical part of the gap is opened, and the lack thereof

toward the breakthrough at the end, when the gap is mostly expanded uniformly.

2.3 E↵ects of the diameter of the leukocyte protrusion

Experimental observations have suggested a range for the diameter of the protruding ILP (or “the

rod”) as between 200 nm and 1 µm [2,3], and we have chosen 340 nm as our baseline value. To see

the e↵ect of protrusions thickness on the mechanical resistance, we have increased the diameter of

the rod in our paracellular and transcellular simulations (Fig. S4). As can be expected, a thicker rod

requires a larger force for the successful protrusion in both the paracellular and transcellular routes.

Although this variability changes the magnitude of the forces, it probably would not qualitatively

a↵ect the comparison between the two routes or modify the tenertaxis argument.

2.4 E↵ect of the endothelial elastic modulus on transecllular protrusion

As mentioned in the main paper, the leukocyte protrusion is known to induce local remodeling

of the EC cortex and softening of the local modulus [4]. The maximum softening is estimated

to be about 10 folds during transcellular penetration. In this section, we vary the degree of this

softening and examine its e↵ect on the resistance of the transcellular route. Thus, the EC modulus

is raised from the baseline value of Etran = 180 Pa to 360 Pa and 1800 Pa. Figure S5 plots the

resistance force Fr during transcellular penetration for these three values of Etrans. The peak forces

for the penetration to the EC body with Etran = 1800 Pa is 635 pN, much higher than that of

72 pN predicted for the baseline modulus of Etran = 180 Pa. Therefore, successful transcellular

transmigration depends critically on the cortex disassembly and softening.

The stronger resistance at the elevated EC sti↵ness of Etran = 1800 Pa can be appreciated in
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Figure S5: The e↵ect of the endothelial modulus Etran on the resistance force during transcellular
penetration.

an experimental context. Ng et al. [5] used the tip of the cantilever in an atomic force microscope

(AFM) to indent the cell body of human umbilical vein endothelial cells (HUVECs). Depending on

the location, to produce a transcellular tunnel about 2 µm in diameter required a force between 5

and 100 nN. Hence, the normal stress for the formation of this tunnel was between 1600 and 31800

Pa. In our model predictions, the average normal stress required to penetrate the cell body for

Etran=1800 Pa is about 7000 Pa, which is within the experimental range of Ng et al. [5]. Obviously,

their AFM cantilever does not induce EC cortical remodeling as an attached leukocyte would [4].

Thus, a much greater force or pressure is needed on the AFM cantilever to produce the transcellular

tunnel than the protrusive force required of a leukocyte in vivo.

3 Dynamic simulation

Most of the results in the main paper are based on quasi-static calculations of the resistance force

on the ILP that penetrates into the EC junction or the cell body with prescribed movement. To

demonstrate that such results are relevant to the dynamic process of ILP protrusion driven by a

constant force, we have carried out such dynamic simulations as well.

We applied a constant driving force of Fd = 100 pN on the ILP rod, which exceeds the maximum

resistance expected from the quasi-static calculations. In the paracellular route, the EC resistance

peaks when the tip of the rod reaches about 1/4 of the EC thickness (see Figs. S2 and S3, and Fig. 3

of the main paper). Afterwards, we anticipate an abrupt acceleration of the rod as the resistance

drops with penetration depth. Such a sudden movement causes problems with the dynamic time-

stepping of the simulation, especially because the very small mass of the ILP (estimated at mrod =

1.6 ⇥ 10�12 g). To avoid this di�culty, we have added a damping force on the rod: Fd = kdvrod,

where vrod is the instantaneous velocity of the rod, and kd = 10�4 N·s/m is a damping coe�cient.

Under the driving force, the EC resistance and the damping force, the rod moves according to

Newton’s second law. The process is shown in Movie 2.
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Figure S6: Contact resistance force by the endothelial cells during paracellular penetration: com-
parison between the dynamic simulation and the quasi-static calculation. The former tracks the
movement of the ILP under a constant driving force Fd = 100 pN, whereas the latter prescribes
the displacement of the ILP.

For a more quantitative comparison between the quasi-static and dynamic calculations, we

have backed out the EC resistance force Fr from the equation of motion for the ILP in the dynamic

simulation, and plotted it together with the resistance force previously computed from the quasi-

static problem (Fig. 3 of the main paper). Figure S6 shows that the quasi-static and dynamic

results practically coincide with each other. This support our claim in the main paper for the

validity of the quasi-static protocol in calculating the EC resistance.

4 Supplemental movies

Three supplemental movies can be downloaded from the article’s home page. Below are their cap-

tions.

Movie 1: Animation of the quasi-static paracellular protrusion. The color contours indicate

von-Mises stress in Pa. The downward movement of the rod is prescribed with a step size of 10 nm.

The numbers on the upper left corner indicate, in micron, the displacement of the tip of the rod

from its initial position, which is 10 nm above the flat portion of the EC apical surface. Thus, the

displacement is 1.01 µm on the final frame when the tip reaches the breakthrough depth of db =1

µm.

Movie 2: Animation of the dynamic simulation of paracellular protrusion driven by a constant

driving force of 100 pN on the rod. The color contours indicate von Mises stress in Pa. To represent

the ILP as a nearly rigid rod, we have assigned a very high modulus (205 GPa) to it, and the stress

inside the rod reflects the driving force applied on its upper end and its contact with the ECs at

the tip.
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Movie 3: Animation of the quasi-static transcellular protrusion. The color contours indicate

von Mises stress in Pa. The downward movement of the rod is prescribed with a step size of 5 nm.
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