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1. Introduction

The subject of this review is at the intersection of two lines of fluid mechanical research: complex fluids and multi-
phase fluids. Complex fluids have microstructures whose conformation can be perturbed by macroscopic flow. Once
out of equilibrium, these microstructures give rise to a non-Newtonian stress tensor that modifies the flow field in return
(Larson, 1999). This behavior contrasts that of “simple fluids” such as water. Although water can be said to possess a
microstructure in its molecular structure, the vibration of the chemical bonds is so fast that this has no bearing on the
macroscopic flow of water. An important class of complex fluids are polymer solutions and melts that exhibit viscoelas-
ticity, with a fading memory determined by the relaxation time of the polymer chains or their entanglements (Birdet al.,
1987a,b; Doi & Edwards, 1986). Liquid crystals are another class of complex fluids (de Gennes & Prost, 1993). Here the
microstructure is the rod-like or disc-like molecules that tend to align with each other. As this alignment extends in space,
a long-range orientational correlation arises, giving rise to distortional elasticity and endowing liquid crystals a fluid-solid
duality. Yet another kind of complex fluids is ferrofluids, colloids with nano-size magnetic particles suspended in an oil-
or water-based liquid matrix. The particles are sufficiently fine that the ferrofluid behaves as a homogeneous continuum,
yet they allow an external magnetic field to apply body forces to the fluid and drive novel phenomena (Odenbach, 2002;
Rosensweig, 1997).

In general, multiphase fluid dynamics deals with mixtures of gases, liquids and solids. Of special relevance here
aremulti-componentliquid-liquid mixtures. An oil-water emulsion, for example, exhibit complex rheology because the
interfaces move, deform, break up and coalesce during deformation, and their location and conformation are not known
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a priori (Larson, 1999). In this review, we will consider multicomponent mixtures of complex fluids, with evolving
interfaces that separate complex fluids. This brings together three length scales, with themicroscopicdynamics within the
bulk fluid producing non-Newtonian stresses, and the interfaces deforming and restructuring on themesoscopicscale in
reaction to such stresses, and ultimately modifying themacroscopicflow. Of course, the flow of information goes in the
reverse direction as well, with macroscopic flow affecting the interfaces and in turn the molecular conformation within
each component.

We are attracted to this kind of fluid systems for two main reasons. The first is a fundamental interest in the fluid
dynamics of such materials. They provide a unique opportunity to probe novel flow phenomena that arise from the
multi-scale coupling. Examples of these will be described in the next section. Often surprising or counterintuitive, these
observations enrich our understanding of fluid dynamics and broaden the research forefront of the field. The second
attraction comes from the practical importance of mixtures of complex fluids in engineering applications. By blending
polymers of complementary properties, for example, one can produce high-performance, light-weight composite mate-
rials for structural applications in automative and aerospace sectors (Thomaset al., 2015). Dispersing droplets of liquid
crystalline polymers in a matrix of isotropic flexible-chain polymers produces polymer-dispersed liquid crystals that is a
promising route to flexible optical displays and “smart glass” (Bloisi & Vicari, 2012). Finally, ferrofluids can be used as
liquid seals and mechanical actuators and dampers, among other applications (Odenbach, 2002).

In the rest of this article, we will use several concrete phenomena to illustrate the unusual interfacial dynamics in
complex fluids. These include suppression of partial coalescence in polymer solutions, interaction and self-assembly of
droplets in a liquid crystal medium and breakup and self-assembly of ferrofluid drops. Needless to say, the choice of
problems largely reflects the authors’ own interests and experiences. If not the “best” examples for the current purpose,
they are illustrative and have the advantage of being familiar to the authors. In the same spirit, the review will not attempt
to be complete or exhaustive. For each process, we will mention certain earlier work that is most relevant to the narra-
tive, but have to omit many other important contributions. After describing experimental observations in each case, we
will also present theoretical analysis and numerical simulations that explore the underlying hydrodynamic mechanisms,
which invariably boil down to the coupling across the microscopic, mesoscopic and macroscopic scales. Finally, we will
highlight existing puzzles in this area and suggest future research directions.

2. Suppression of partial coalescence by viscoelasticity

Consider the interface between a polymer solution and a Newtonian viscous fluid. On the polymer side, deformation
will induce viscoelatic stresses that will make the interfacial behavior markedly different from that of Newtonian fluids. A
striking example of this effect is the well-known beads-on-string phenomenon (Fontelos & Li, 2004; Oliveira & McKinley,
2005). On a filament of a viscoelastic polymer solution, the appearance of capillary waves is followed by thinning of the
thread but not rapid breakup by Rayleigh instability. Instead, smaller beads form between the larger ones as the thread
continues to thin. In the end, several generations of beads coexist and persist for a long time before breakup (Oliveira &
McKinley, 2005). The longevity of the thread is due to the long polymer chains in the solution. The thinning of the thread
stretches and aligns the chains, which drastically increases the filament’s elongational viscosity, namely its resistance to
further thinning and breakup. The phenomenon to be discussed below is another manifestation of the power of viscoelastic
stress in modifying interfacial dynamics.

2.1. Experimental observations
Consider a stationary oil layer sitting on top of a water layer that is denser than the oil. Now gently deposit a water

drop on the oil-water interface. The drop squeezes the oil film below and eventually coalesces with the water below.
Under favorable conditions, “partial coalescence” obtains in which a smaller daughter drop is left on the interface (Fig. 1).
It then repeats the film drainage process until coalescence, which may leave a still smaller daughter drop on the interface.
Such a cascade of partial coalescence has been documented with high-speed video both for liquid-liquid systems (Charles
& Mason, 1960; Chenet al., 2006a,b; Giletet al., 2007; Mohamed-Kassim & Longmire, 2004; Nikolov & Wasan, 1995)
and for air-liquid systems (Blanchette & Bigioni, 2006; Honey & Kavehpour, 2006; Thoroddsen & Takehara, 2000).
Furthermore, the partial coalescence occurs only for an intermediate range of drop sizes. Drops too large or too small
coalesce with the underlying liquid in one shot.

What causes a daughter drop to be left behind, and why does this happen for intermediate drop sizes? The answer
can be sought from the interfacial dynamics shown in Fig. 1. The onset of coalescence sends a capillary wave up the

2



2
© 2016 The Japan Society of Mechanical Engineers[DOI: 10.1299/jfst.2016jfst0021]

Feng and Chen, Journal of Fluid Science and Technology, Vol.11, No.4 (2016)

Fig. 1 Partial coalescence in a Newtonian-Newtonian system. The upper fluid is decane, and the lower fluid
and the drop are water. The snapshots are experimental images separated by a constant time interval
∆t = 542µs. For a frame-by-frame comparison between observation and simulation of one cycle of partial
coalescence, we select the numerical images that best approximate the experimental ones, and indicated
the numerical time below each pair of images. Streamlines in the computational plot indicate the local
flow field. From Yueet al. (2006a) with permission,c⃝2006 American Institute of Physics.

drop, turning it into a elongated liquid column. This is a process of surface energy being converted to kinetic and then
gravitational potential energy. The column becomes unstable to Rayleigh instability and a neck starts to form near its
base. Hence two time scales come into competition. If it takes longer to drain the drop through the neck than for the neck
to pinch off, then pinch-offoccurs and leaves a daughter drop behind. Conversely, if the drop drains into the lower layer
before the neck pinches off, complete coalescence results. For drops that are too large, gravity dominates and the drop
practically collapses into the bottom layer in one shot. For drops that are too small, viscosity dominates and slows down
the thinning of the neck so complete merging takes place.

What if one of the liquid phases is viscoelastic? Chenet al. (2006b) explored the same process when the drop or the
underlying liquid is a polymer solution. The non-Newtonian rheology, as it turns out, tends to suppress partial coalescence;
under conditions that would have led to partial coalescence for Newtonian fluids, now the coalescence is completed at
once (Fig. 2). The suppression may occur if the polymer solution constitutes either the drop or the surrounding fluid, and
the effect is stronger in the former case.

This effect can be understood by contrasting the Newtonian and viscoelastic scenarios depicted in Figs. 1 and 2. Up to
the onset of the neck formation, the Newtonian and viscoelastic behaviors are qualitatively the same. For the viscoelastic
column of Fig. 2, the viscoelastic effect evident in the beads-on-a-string formation plays a similar stabilizing role against
Rayleigh instability. The neck turns into a thin filament (Frame 5 of Fig. 2), but it persists without breaking up. In time the
drop fluid drains down the filament and the shrinking drop falls and merges into the underlying polymer solution. Thus,
partial coalescence is suppressed. To explain the inverted case of a Newtonian drop in a polymeric upper liquid, Chen
et al.(2006b) observed the breakup of a Newtonian filament in a polymer solution, and found that it is subject to the same
type of stabilization with the formation of beads on the thinning thread.

The suppression of partial coalescence by viscoelasticity clearly demonstrates how bulk rheology qualitatively mod-
ifies the behavior of the interface. Here the rheology is manifested by “strain hardening”, namely a steep increase in
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Fig. 2 Suppression of partial coalescence by viscoelasticity. The drop fluid is a 0.18% solution of poly(ethylene
oxide) in water, and the surrounding liquid is decane. The initial drop diameterD = 1.8 mm, and the
numbers in the frames indicate the advance in time scaled by the capillary timetc = (ρD3/σ)1/2, ρ and
σ being the fluid density and interfacial tension. From Chenet al. (2006b) with permission,c⃝2006
American Institute of Physics.

elongational viscosity during stretching. Its molecular origin is the stretching and alignment of polymer chains by the
elongational flow. While the qualitative explanation above sounds reasonable, a quantitative study of the fluid mechanical
process is necessary.

2.2. Numerical simulations
To simulate the partial coalescence and its suppression, and interfacial flows of complex fluids in general, we need

to deal with two complications beyond that of solving the Navier-Stokes equations. One is the non-Newtonian stress
tensor and the other is the interfacial motion and deformation. For viscoelastic liquids, the stress tensorτ depends not
only on the deformation at the current moment, but also the history of deformation (Birdet al., 1987a,b; Larson, 1999).
As an example, we write the constitutive equation for the Giesekus model, where the total stress tensorτ is the sum of a
Newtonian contribution and a polymer stressτp, the latter determined by:

τp + λH

[
∂τp

∂t
+ u · ∇τp − (∇u)T · τp − τp · ∇u

]
+ α
λH

µp
τp · τp = µp[∇u + (∇u)T], (1)

whereλH andα are the relaxation time and mobility parameter, andµp is the polymer viscosity.
As the motion of the interfaces has to be solved for along with the fluid flow, we use an interface capturing method

known as the diffuse-interface model (Fenget al., 2005; Yueet al., 2004). A phase-field variable is introduced to de-
marcate the fluid components, and the interfacial motion is extracted from the evolution of the phase field governed by
the Cahn-Hilliard equation. The interfacial tension is treated as a body force that acts within a thin interfacial layer. The
theoretical background of the model and its computational implementation have been discussed in the literature (Feng
et al., 2005; Yueet al., 2006b; Zhouet al., 2010). For the problems at hand, this formalism enjoys the advantage that the
moving interface and viscoelastic rheology can be handled in a unified framework based on the free energy.

To validate the model and the numerical scheme, we reproduce the partial coalescence experiment for Newtonian
liquids, with a water drop above a decane-water interface (Yueet al., 2006a) (Fig. 1). Following the initial rupture
at t = 0, the numerical simulation accurately reproduces the progress of the coalescence, from the propagation of the
capillary wave up the drop (a–e) to the formation of a liquid column (e–g), and finally to the formation of a neck (g–i).
The next 2 frames, however, cover the pinchoffof the neck that generates the daughter drop. This is when the numerical
simulation fails to track the progression in the correct time; the pinchoff occurs some 40% faster numerically than in
reality. After the daughter drop is formed (k), the simulation again captures the real event precisely. The discrepancy for
frames (j) and (k) highlights a fundamental limitation to the diffuse-interface method. Limited by computational capacity,
the interfacial thickness used in the simulation is typically much greater than the real value, which is on the nanometer
scale for small-molecule liquids. This thickness is immaterial as long as the physical length scale of interest is much
larger. Near pinch-off, however, when two interfaces approach each other, interfacial diffusion becomes appreciable.
This makes the pinch-offproceed faster in the simulation. Note, however, that this limitation is by no means specific to
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(a) (b)

Fig. 3 Suppression of partial coalescence by viscoelasticity. The drop and lower fluid is a viscoelastic Giesekus
fluid, while the upper layer is a Newtonian fluid. (a) From left to right and then top to bottom, the snapshots
are at dimensionless timest = 0.740, 0.837, 0.934 and 1.04, scaled by the capillary timetc. (b) Flow and
stress fields near the neck for the viscoelastic drop att = 0.837. The left half shows contours of the vertical
velocity scaled byD/tc. The right half shows contours of the polymer stress componentτpyy scaled by
σ/D. From Yueet al. (2006a) with permission,c⃝2006 American Institute of Physics.

the diffuse-interface method. All numerical methods struggle to cover a large separation of length scales. That partial
coalescence occurs only for a range of drop sizes, being suppressed by gravity and viscosity on either end of the range,
has also been reproduced numerically (Yueet al., 2006a).

To explore how viscoelasticity suppresses partial coalescence, we use the Giesekus constitutive equation (Eq. 1),
with model parameters fitted roughly to the rheology of the polymer solutions. Figure 3(a) shows the evolution of the
interfaces for a polymer drop surrounded by a Newtonian oil. The neck forms but the thin thread persists without breaking,
as seen experimentally in Fig. 2. The evolution of the interface also occurs on roughly the same dimensionless times as
in the experiment. To confirm the explanation proposed before, we plot the flow and polymer stress fields when the neck
is at its thinnest (Fig. 3b). It is evident that the strong polymer tensile stress, due to the strain-hardening rheology, resists
continued stretching and thinning of the neck, and suppresses partial coalescence.

3. Droplet self-assembly in nematic liquid crystals

When drops of an isotropic liquid are dispersed in a nematic liquid crystal (LC), surface anchoring—the tendency
for LC molecules to orient in a certain direction relative to the interface—affects the near-field orientation and potentially
disrupts the far-field orientation imposed on the bulk LC. This has two implications in our current context. First, the
near- and far-field orientation may come into conflicts, with the result of producing orientational defects in the nematic
(de Gennes & Prost, 1993; Larson, 1999). Second, the droplets can interact with each other through the distortional
elasticity in the bulk, and self-assemble into patterns. In the process discussed below, the defects turn out to be the agent
for self-assembly.

3.1. Experimental observations
Poulin and coworkers (Poulinet al., 1997b) reported that water droplets suspended in a nematic liquid crystal (LC)

organize themselves into a chain, with a more or less constant spacing between neighboring droplets. This was later
confirmed by spectacular pictures of parallel chains that form by self-assembly of silicone oil droplets in a nematic
medium (Loudetet al., 2000) (Fig. 4a). More recently, 2D colloidal crystals have been made via self-assembly of colloidal
particles in a nematic LC (Musevicet al., 2006) (Fig. 4b).

In these observations, water and silicone-oil droplets possesshomeotropicanchoring on the interface, perpendicular
to the surface. When droplets line up into regular chains, each is always accompanied by a satellite point defect (Feng &
Zhou, 2004). Poulinet al. (1997b) proposed an explanation for the self-assembly based on an analogy to electric dipoles.
The droplet and its satellite point defect form a dipole, say pointing from the drop center to the defect. When two droplets
are nearby, they interact through the equivalent of dipole-dipole attraction in electrostatics. The physical origin of the
attraction is distortional elasticity in LC. When two such dipoles are lined up in the same direction, distortional energy is
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(a) (b)

Fig. 4 (a) Silicone oil droplets, about 2µm in size, arrange themselves into roughly equally spaced lines along the
directionof the nematic director (indicated by the black arrow). Adapted from Loudetet al. (2000) with
permission,c⃝2000 Macmillan Magazines Ltd. (b) Chains of silica particles, 2.32µm in diameter, form a
regular 2D crystal in a nematic LC. From left to right, the frames at advancing times show the interaction
between the single particle and the chains. Adapted from Musevicet al. (2006) with permission,c⃝2006
by the American Association for the Advancement of Science.

(a) (b)

Fig. 5 Attraction between two droplets bearing satellite point defects placed in the parallel configuration. (a)
The distance between the centers of the droplets decreasing as the two droplets attract each other. The
two insets show the birefringence patterns around the defects computed from the director field. The point
defect sits at the tip of the two bright lobes. (b) The attraction force as a function of the droplets’ separation,
compared with the dipole formula (Lubenskyet al., 1998) and experimental data (Noël et al., 2006; Poulin
et al., 1997a). Note that both axes are in logarithmic scale and the long-range attraction exhibits aF ∼ R−4

power law. Adapted from Zhouet al. (2008) with permission,c⃝2008 by the American Chemical Society.

reducedwhen the two move toward each other until an optimal center-to-center separation of roughly 2.6a, a beingthe
drop radius (Poulinet al., 1997b). Thus, droplets form a line with uniform spacing between neighbors along the direction
of the background nematic director. The same analogy also explains the repulsion between two chains in parallel, with
their dipoles pointing in the same direction. Thus, the parallel chains maintain a more or less equal distance from each
other in Fig. 4a. Furthermore, two chains with their dipolar directions opposite to each other (anti-parallel) should attract
each other, and this explains the formation of the regular 2D arrays in Fig. 4b consisting of chains of alternating dipole
directions. But the dipole analogy only holds when neighboring drops are far apart, and fails as they approach each other.
Toward a rigorous understanding of the physics underlying the self-assembly, we use numerical computations to probe
the pairwise interaction between two droplets and the self-assembly of many droplets.

3.2. Numerical simulations
The drop interfaces are again represented as diffuse interfaces as in Sec. 2.2. But the LC bulk rheology requires a new

constitutive theory. We use the Ericksen-Leslie theory for LC hydrodynamics, with a unit vectorn, called the director,
representing the average molecular orientation field (de Gennes & Prost, 1993). Homeotropic anchoring is imposed on
the drop surfaces. The numerical algorithm is essentially the same as used in Sec. 2.2, although locally refined grid is
needed for accurate resolution of the sharp gradientsn near defects (Yueet al., 2006b; Zhouet al., 2007a, 2008, 2007b).

To study pairwise interaction, we place two droplets in the so-called parallel configuration in an axisymmetric com-
putational domain, with their “dipoles” in the same direction and along their line of centers. Under the effect of distortional
elasticity, the droplets start to move toward each other (Fig. 5a). From this motion, one can estimate the elastic driving
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t = 6.38 t = 17.2 t = 33.1 t = 547.8

Fig. 6 Self-assembly of 8 drops in a doubly periodic domain. Timet is made dimensionless byηa2/K. Adapted
from Zhouet al. (2008) with permission,c⃝2008 by the American Chemical Society.

force on each droplet from the Stokes drag by neglecting inertia. This estimate turns out to be slightly below the true
force computed from integrating the stress over the interface. Both forces are compared with prior theoretical and exper-
imental results in Fig. 5b. The long-range attraction manifests aR−4 scaling, as is expected from the attraction between
two electric dipoles (Lubenskyet al., 1998). As the separation decreases, however, the attraction force decreases sharply,
falling below the dipole formula, and approaches zero towardR = 2.45a. The two experimental data sets indicate that
theF ∝ R−4 power-law persists to smaller separations. But the equilibrium separation corresponding toF = 0 is in close
agreement between computation and observations.

The dynamic simulation of droplet interaction thus confirms the idea that the long-range attraction between droplets
in the parallel configuration resembles dipolar attraction. For smaller separations, the idea of dipole-dipole attraction no
longer applies, and it certainly cannot account for the equilibrium separation and the repulsion between droplets that are
too close to each other. This is where the dynamic computation provides results and insight that cannot come from the
heuristic argument. Going beyond pairwise attraction, Zhouet al. (2008) have confirmed that a group of droplets in a
2D domain indeed form a chain along the undisturbed nematic director. To probe sidewise interactions between chains
of droplets, they arrange two chains with their “dipoles” either in the same direction (parallel) or reversed (anti-parallel)
initially. Results show that the parallel chains repel each other, while the anti-parallel chains attract each other. These
trends are in qualitative agreement with the experimental observations in Fig. 4b.

Finally, we place 8 identical droplets in random positions in a doubly periodic 2D domain, and observe their self-
assembly (Fig. 6). The drop-drop interaction is dominated by longitudinal dipole-like attractions (when nearby droplets
have their satellite defects on their line of centers) and sideways repulsions (when their dipoles are in the parallel config-
uration). For example, drops 3, 5 and 7 initially move away from each other sideways. Then drop 5 is attracted by drop 6,
and is eventually pulled in between drops 3 and 6 to form a diagonal chain. Drops 1, 4 and 2 seem to form a vertical chain
by themselves. Since the domain is doubly periodic, there is no prescribed background nematic orientation to which a
chain may align. Thus, the two chains spontaneously assume different angles. Conceivably, they will eventually line up
into a single long chain. Despite the small number of droplets in the simulation, the dynamic scenario of self-assembly ex-
hibits the main features observed in reality (cf. Fig. 4a), and confirms that pairwise attraction (longitudinal) and repulsion
(lateral) are the dominant mechanisms at play.

4. Interfacial behavior of ferrofluids

Ferrofluids are complex in the sense that additional magnetic force can be imposed on the fluid to drive exotic pat-
terns. The magnetic stress tensor takes the formσm = − 1

2µmH2I +µmHH , whereµm andH are the magnetic permeability
and the magnetic field, respectively,H = |H |, andI is the unit tensor. In the following, we discuss two scenarios where
σm can be tuned to produce regular patterns of ferrofluid droplets.

4.1. Breakup and fingering in a steady magnetic field
The best known such pattern is the Rosensweig instability, which occurs in a layer of ferrofluid subject to a uniform

vertical magnetic field. When the magnetic stress, perpendicular to the free surface, overcomes the surface tension,
a regular pattern of pointed protrusions obtains (Cowley & Rosensweig, 1967; Richter & Barashenkov, 2005). This
instability is governed by the magnetic Bond numberBom = µmH2/(γκ0), γ andκ0 being surface tension and effective
curvature, which indicates the ratio between magnetic and surface tension forces. If the ferrofluid layer is thin at the start,

7



2
© 2016 The Japan Society of Mechanical Engineers[DOI: 10.1299/jfst.2016jfst0021]

Feng and Chen, Journal of Fluid Science and Technology, Vol.11, No.4 (2016)

Fig. 7 Side and top views of ordered breakup of circular ferrofluid layers of various initial diameters under a
vertical fieldH = 765 Oe. Top row: initial state; bottom row: final equilibrium state. From Chen & Li
(2010) with permission,c⃝2010 American Institute of Physics.

Fig. 8 Time evolution of a circular ferrofluid layer subjected first to a perpendicular magnetic field, and then to
a purely radial field starting att = 6.2 s. The initial drop diameterD = 7.5 mm, andH0 = 211 Oe. From
Chenet al. (2010) with permission,c⃝2010 American Society of Physics.

it is possible for the valleys between the Rosensweig peaks to dewet on the substrate, thereby breaking up the liquid film
into micro-drops. Such a scenario was first reported by Chen & Cheng (2008). Given the non-uniform thickness of the
initial liquid layer, larger drops typically appear in the middle. To produce micro-droplets of uniform size, Chen & Li
(2010) achieved a flatter initial interface by tuning the wetting condition. Thus, orderly breakup of the ferrofluid film
proceeds to produce numerous droplets of a uniform size (Fig. 7). The drop sized depends solely on the external field:
d ∼ 1/H2. This scaling is as expected from the magnetic magnetic Bond number.

As the Rosensweig peaks or drops are magnetized by the vertical field, they may repel one another so their footprint
expands radially on the substrate. To explore such radial expansion further, Chenet al.(2010) first used a vertical magnetic
field to produce the drops as in Fig. 7, and then switched to a purely radial magnetic field of field strengthH = H0r/L,
H0 being the characteristic field measured atr = L, the radius of the coil. This induces a radial body forcefm ∼ µmrH2

0

that scales linearly with the radial coordinater. The subsequent dynamics forms an interesting analogy to spin-coating,
where a thin fluid layer is driven radially outward by centrifugal force (Spaid & Homsy, 1997). Similar to spin-coating,
there exists a critical radius beyond which axisymmetric spreading gives way to a fingering instability. Fig. 8 illustrates
this magnetically induced fingering process. Moreover, by varying the magnetic Bond number in the initial Rosensweig
instability, one can control the number of droplets and subsequently the fingering pattern.
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Fig. 9 Dynamics of doublets and triplets of drops in a magnetic field that is rotating counter-clockwise with a
frequency of 1 revolution/s. (Top row) a doublet in a fieldHm = 47 Oe; (middle row) a doublet with
Hm = 56.4 Oe; (bottom row) a triplet withHm = 56.4 Oe. The drop initially on the right is marked by
letter R to show the orbital motion. The ferrofluid has a mineral oil base and the surrounding fluid is a
glycerin-water mixture. From Chenet al. (2015) with permission,c⃝2015 Springer.

4.2. Drop dynamics in a rotating magnetic field
Now we turn to the dynamics of multiple ferrofluid drops in a spatially uniform magnetic field that is applied in the

plane of the centers of the drops. While the droplet formation and fingering of the last subsection take place on a solid
substrate, now we consider drops suspended in an immiscible liquid of matching density. As is well known, a single
ferrofluid drop elongates in the field direction in a static uniform magnetic field (Afkhamiet al., 2010; Zhuet al., 2011).
In a rotating field, the drop elongates and also rotates or oscillates depending on the frequency (Lebedevet al., 2003).
Most of the earlier studies focused on a single ferrofluid drop. In recent experiments, Chenet al. (2015) explored the
interaction among multiple drops in a rotating field, and discovered intriguing patterns such as “planetary motion” and
self-assembly. We will summarize these newer findings in the following.

When two ferrofluid drops of equal size are placed in a static uniform field, both elongate in the field direction.
They also attract each other and eventually align themselves into a doublet as shown in the top and middle row of Fig. 9
at t = 0. There is a thin film of the suspending fluid that prevents coalescence. The film drains at a rate that depends
on the field strength, liquid viscosity and surface tension, and coalescence may or may not occur within the duration of
observation. This alignment behavior can be understood by thinking of each drop as a magnetic dipole. At a separation
of r, the dipole-dipole attraction has a radial and an azimuthal component (Banerjeeet al., 2012; Melleet al., 2003):

Fr ∼
(1− 3 cos2∆θL)

r4
, Fθ ∼

sin(2∆θL)
r4

, (2)

where∆θL is the instantaneous angle from the line of centers to the external field direction. These forces eventually result
in an equilibrium alignment of particles along the external field, with∆θL = 0 andFθ = 0. Of course, this point-dipole
model cannot predict the deformation of drops. Similarly, three drops form a triplet (bottom row of Fig. 9).

If the field rotates, doublets and triplets of drops exhibit interesting behavior (Fig. 9). First, each drop undergoes
synchronized spin with the external field as commonly observed in the cases of single drop (Lebedevet al., 2003).
Meanwhile, the interaction between the drops results in an orbital rotation around the centroid of the array. Averaged over
time, this “planetary revolution” is in the same sense as the external magnetic field, but at a much lower rate. Besides, the
speed of the orbital motion is not constant, but tends to fluctuate periodically as the hydrodynamic resistance on the drops
changes with the relative position and orientation of the drops. Figure 10 plots the orientation of the line of centers at
different times. The orbital motion consists of counterclockwise rotation interspersed with short episodes of reversal. The
average rate of orbital motion is higher for shorter chains and stronger fields. The above observations can be understood
from the azimuthal force in the point-dipole model. As the field rotates continuously, the line of centers always lags the
field in phase (∆θL > 0). The azimuthal force thus induced (see Eq. 2) drives the drops to revolve around each other in
an orbital motion. The intermittent reverse rotation occurs at times when the phase lag exceeds 90◦, which temporarily
changes the sign of the azimuthal force prescribed by the point-dipole mode. This fluctuating orbital motion is similar to
the “trajectory shift” observed for magnetic particle chains in an oscillating field (Liet al., 2013a,b).

Longer chains with a greater number of drops tend to break up in the rotating field. The magnetic field promotes
the integrity of the chain by the dipolar attraction. However, its orbital rotation incurs hydrodynamic drag that is higher

9
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Fig. 10 Planetary revolution of drop arrays. For comparison, rotation of the external field (at 360◦/s) is indicated
by the black solid line. Forward (counterclockwise) rotation is interspersed with brief intervals of
backward rotation. From Chenet al. (2015) with permission,c⃝2015 Springer.

Fig. 11 The most stable patterns of rotating arrays with various numbers of ferrofluid drops. Longer chains
cannot be sustained because of significant variations of the hydrodynamic drags among the drops. From
Chenet al. (2015) with permission,c⃝2015 Springer.

on the drops nearer the end of the chain, which revolve at higher speed. Thus, a long chain often breaks up into shorter
chains. Figure 11 illustrates stable configurations that develop following such breakup for up to seven droplets. Re-
markably, the drops arrange themselves into regular patterns. Each drop still spins in synchrony with the external field,
and the regular array as a whole rotates slowly as well, with forward (counterclockwise) rotation punctuated by brief
periods of reverse rotation, similar to Fig. 10. A movie showing the rotation of a six-drop array can be viewed online:
https://www.youtube.com/watch?v=8nFUTeZxSBU

5. Concluding remarks

In this brief review, we have demonstrated the variety of novel interfacial dynamics for complex fluids. The mi-
crostructure of these fluids affords us the opportunity to manipulate the bulk and interfacial flows, thereby producing rich
patterns unseen in simple fluids. The key insight from these observations is that the coupling among different length
scales, from the microstructural to the interfacial and in turn to the macroscopic, can dictate the outcome of the flow.

A review of the literature shows that little quantitative analysis has been done on ferrofluid drop dynamics. Single-
drop deformation has been studied before (Afkhamiet al., 2010; Zhuet al., 2011), but much remains to be explored
for drop-drop interaction and pattern formation. Open questions include the hydrodynamic mechanisms for drop-drop
alignment, the planetary motion of drops in arrays and clusters, and self-assembly of a larger number of drops in rotating
fields. Also notable is the non-coalescence among drops during planetary revolution, despite the magnetically induced
attraction between the drops (see Eq. 2) and their close proximity (see Fig. 11). In principle, one has to overcome two

10

For the first two problems reviewed, suppression of partial coalescence by viscoelasticity and self-assembly of 
drops driven by distortional elasticity in the suspending liquid crystal, we have presented fluid-dynamic computations 
that provide a detailed and quantitative analysis of the phenomena. For the drop dynamics in ferrofluids, on the other 
hand, we contented ourselves with rough analogies to dipolar interactions. Although capable of rationalizing the most 
salient features of the flow, the dipole analogy is at best a qualitative guideline. For one, it fails at short distances, and 
the ferrofluid drops do approach each other to such a degree that their separation becomes much smaller than the drop 
size. The dipole analogy, strictly speaking, cannot be used for such situations. 
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difficulties in carrying out full-field flow simulations of these phenomena. First, one needs a highly accurate and efficient
computational scheme to handle the interfacial deformation and motion. The phase-field method described here is one of
several options. Second, one also needs to solve for the induced magnetic field together with the flow field, such that the
two-phase Navier-Stokes equations can be solved with the magnetic stressσm taken into account. Such simulations will
contribute to a thorough understanding of interfacial dynamics in ferrofluid.

As mentioned before, we have not strived to be comprehensive in this review. Instead, we have selected a few
representative examples to illustrate the anomalous interfacial dynamics of complex fluids. Our hope is that this may
stimulate new research in this area, which covers a very wide range of materials of scientific and practical interest.
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Noël, C. M., Bossis, G., Chaze, A.-M., Giulieri, F. & Lacis, S. 2006 Measurement of elastic forces between iron colloidal
particles in a nematic liquid crystal.Phys. Rev. Lett.96, 217801.

Odenbach, S., ed. 2002Ferrofluids: Magnetically Controllable Fluids and Their Applications. New York: Springer.

Oliveira, M. S. N. & McKinley, G. H. 2005 Iterated stretching and multiple beads-on-a-string phenomena in dilute
solutions of highly extensible flexible polymers.Phys. Fluids17, 071704.

Poulin, P., Cabuil, V. & Weitz, D. A. 1997aDirect measurement of colloidal forces in an anisotropic solvent.Phys. Rev.
Lett.79, 4862–4865.

Poulin, P., Stark, H., Lubensky, T. C. & Weitz, D. A. 1997bNovel colloidal interactions in anisotropic fluids.Science
275, 1770–1773.

Richter, R. & Barashenkov, I. V. 2005 Two-dimensional solitons on the surface of magnetic fluids.Phys. Rev. Lett.94,
184503.

12



2
© 2016 The Japan Society of Mechanical Engineers[DOI: 10.1299/jfst.2016jfst0021]

Feng and Chen, Journal of Fluid Science and Technology, Vol.11, No.4 (2016)

Rosensweig, R. E. 1997Ferrohydrodynamics. Mineola, New York: Dover.

Spaid, M. A. & Homsy, G. M. 1997 Stability of viscoelastic dynamic contact lines: An experimental study.Phys. Fluids
9, 823–832.

Thomas, S., Grohens, Y. & Jyotishkumar, P., ed. 2015Characterization of Polymer Blends: Miscibility, Morphology, and
Interfaces. New York: Wiley.

Thoroddsen, S. T. & Takehara, K. 2000 The coalescence cascade of a drop.Phys. Fluids12 (6), 1265–1267.

Yue, P., Feng, J. J., Liu, C. & Shen, J. 2004 A diffuse-interface method for simulating two-phase flows of complex fluids.
J. Fluid Mech.515, 293–317.

Yue, P., Zhou, C. & Feng, J. J. 2006aA computational study of the coalescence between a drop and an interface in
Newtonian and viscoelastic fluids.Phys. Fluids18, 102102.

Yue, P., Zhou, C., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2006b Phase-field simulations of interfacial dynamics
in viscoelastic fluids using finite elements with adaptive meshing.J. Comput. Phys.219, 47–67.

Zhou, C., Yue, P. & Feng, J. J. 2007aThe rise of Newtonian drops in a nematic liquid crystal.J. Fluid Mech.593,
385–404.

Zhou, C., Yue, P. & Feng, J. J. 2008 Dynamic simulation of droplet interaction and self-assembly in a nematic liquid
crystal.Langmuir24, 3099–3110.

Zhou, C., Yue, P., Feng, J. J., Liu, C. & Shen, J. 2007bHeart-shaped bubbles rising in anisotropic liquids.Phys. Fluids
19, 041703.

Zhou, C., Yue, P., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2010 3D phase-field simulations of interfacial dynamics
in Newtonian and viscoelastic fluids.J. Comput. Phys.229, 498–511.

Zhu, G. P., Nguyen, N. T., Ramanujan, R. & Huang, X. Y. 2011 Nonlinear deformation of a ferrofluid droplet in a uniform
magnetic field.Langmuir27, 14834–14841.

13




