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Temporal evolution of microstructure and rheology of sheared

two-dimensional foams

Hadi Mohammadigoushkia and James J. Fengbc∗

We measure the shear rheology of two-dimensional liquid foams in a Couette device, and correlate the vari-

ation of the shear stress with the evolution of the foam microstructure. For a monodisperse foam, inception

of shearing results in a rapid rise of the shear stress, which then saturates into a quasi-steady state of fluctu-

ations about a time-independent mean value. The dominant frequency of the oscillation correlates closely

with the time scale of one row of bubbles sliding past the next row. The mean stress decreases with increas-

ing bubble size. In bidisperse foams, the shear stress exhibits two regimes of transient behavior. If the shear

rate and the large-to-small bubble size ratio are both below certain thresholds, the stress behaves similarly

to that in a monodisperse foam. Above these thresholds, however, the instantaneous shear stress oscillates

around a mean value that declines gradually over several minutes. The foam eventually approaches a quasi-

steady state similar to that of a monodisperse foam. This gradual decrease in shear stress can be attributed to

the size-based segregation of bubbles. Finally, we propose a mixing rule that relates the effective viscosity

of a bidisperse foam in the quasi-steady state to those of monodisperse foams made of the two constituent

bubble sizes.
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1. Introduction

Liquid foams are made of simple ingredients—air, a Newtonian liquid and surfactants—and yet exhibit

complex flow and rheological behavior [1, 2]. Broadly speaking, the key to their mechanical properties

should be sought in the microstructure on the scales of individual bubbles and clusters. Much has been

learned about this structure-property connection in the past few decades [3, 4, 5, 6], but much remains to be

illuminated.

It is well known that a liquid foam is intrinsically unstable. For instance, the structure of a static foam

may coarsen over time as the liquid film drains and ruptures, causing bubble coalescence [7]. Gravity

may aid the liquid drainage [8]. The gas may also diffuse from smaller to larger bubbles through Ostwald

ripening [9]. Finally, bubbles at the foam surface may burst and become lost [10, 11]. When subject to

deformation and flow, foam structure undergoes more dynamic changes [12, 13, 14]. A hallmark event is

the so-called T1 process, when a cluster of four bubbles swap neighbors [15]. Besides, the breakup, coales-

cence, lateral migration and shear-induced diffusion of bubbles may also contribute to the morphological
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evolution of liquid foam [12, 13, 16, 17, 14].

Previous studies on foam rheology have revealed a similar degree of complexity. For instance, liquid

foams typically exhibit yield stresses, shear thinning, elasticity and normal stress differences [2, 5, 18, 19,

20]. Furthermore, local velocity measurements have indicated that the rheology of foam is non-local; using

the bulk rheology of the foam as a whole may not predict the correct velocity profile [21, 19]. The mismatch

has been ascribed to cooperative motion of bubbles under shear, perhaps in the form of bubble clusters that

move and deform coherently [22, 21]. A potentially related issue is shear banding [23], whose existence in

foam is still controversial [24].

Most of the work cited above investigated either the structure or the rheology of liquid foam. To our

knowledge, only three studies have probed the correspondence between structural and rheological evolu-

tions in sheared liquid foam. Lauridsen et al. [25] demonstrated that for a two-dimensional (2D) foam

undergoing small deformations, T1 events lead to oscillation of the shear stress. Herzhaft [12] sheared a

three-dimensional (3D) polydisperse foam between parallel plates. Upon start of shearing, the shear stress

jumps up almost instantaneously, and then gradually declines in time. The rate of decline seems to be-

come smaller in time, but at the end of the experiment, after 10 minutes of shearing, the stress has not yet

reached steady state. Comparing the foam morphology before and after the shearing, Herzhaft reported

the prevalence of larger bubbles in the middle of the gap and smaller ones at the plates. There is no fur-

ther investigation of the cause of this morphology, e.g., whether the bubbles have segregated according to

size, broken up near the walls or coalesced in the middle. Moreover, it is unclear how the morphological

change has led to the decline in the shear stress. Golemanov et al. [13] performed similar experiments in

a parallel-plate geometry, but reported very different results. If the shear rate is below a certain threshold,

the shear stress quickly attains a constant value after the startup of shear, and shows no further temporal

evolution. Above the threshold, however, the instantaneous stress exhibits a gradual increase over a time of

about 5–10 minutes. At the end, it may or may not have approached a steady state depending on the shear

rate and makeup of the foam. In the meantime, visual observations show that large bubbles tend to break

up into smaller ones because of the shearing. Therefore, they concluded that the breakup of bubbles had

caused the rise in the shear stress.

These experiments offer tantalizing hints at a direct connection between the structural evolution of the

liquid foam and its rheology. Yet, they fail to form a coherent framework for understanding that connection.

In fact, two of the main results on the temporal variation of the shear stress appear to contradict each other

[12, 13]. Hence the motivation for the present study. We will examine the morphology-rheology relation-

ship in well-defined 2D foams under carefully controlled experimental conditions. The two-dimensionality

affords easy visualization of the foam morphology. The main finding of our work is that size-based segrega-

tion in bidisperse foams produces a gradual decline in the shear stress, in apparent agreement with Herzhaft

[12]. This decline happens from all initial foam morphologies tested, somewhat to our surprise.

2. Materials and methods

The preparation of the foams, the setup of the shear cell and the methods of visualization and stress mea-

surement are all similar to those used in recent studies [17, 14, 26]. Therefore we only give a brief overview

in the following. The liquid is a mixture of deionized water, glycerol and dish washing liquid, the com-

position being such as to produce the desired viscosity and foam stability. Bubbles are generated by in-

jecting nitrogen through a micro-needle that is driven by a pico-pump (WPI, model PV-820). The flow
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rate can be controlled to high precision to yield bubbles of uniform size. Thus the foam is generated one

bubble at a time. Monodisperse foams are made with four different bubble radii: R1 = 0.26± 0.01 mm,

R2 = 0.37±0.02 mm, R3 = 0.44±0.03 mm and R4 = 0.55±0.04 mm. The bidisperse foams are made from

combining two of these bubble species at areal fractions Φi for species Ri, i = 1, . . . ,4. The bubble size ratio

κ is defined as the ratio of the larger bubble to the smaller one. Different initial spatial distributions of the

bubbles can be realized with ease, e.g., with the larger bubbles concentrated at one of the walls or roughly

uniformly distributed throughout the gap. The foam quality, i.e. the total areal fraction of the bubbles, is

kept constant at φ = 0.84 for all the monodisperse and bidisperse foams tested in this study.

The present paper focuses on two aspects of the flow of liquid foam: rheology and microstructural evo-

lution. The custom-made Couette flow cell consists of co-axial cylinders with the inner cylinder mounted

on a commercial rheometer (Malvern Kinexus). The radius of the inner cylinder is Ri = 22 mm and that of

the outer cylinder is Ro = 35 mm. The wide gap allows a large number of bubbles and captures the bulk

rheology and large-scale structure of the foam. Sand papers are glued on both the inner and outer cylin-

ders to prevent slippage of bubbles during measurements. Shear stress is measured at the inner cylinder

with the 2D foam floating on the surface of the Newtonian soap solution. A separate measurement is done

on the liquid alone, without the bubble raft. The latter stress is then subtracted from the former to obtain

the shear stress for the foam. Simultaneously, the microstructure of the foam is monitored using a high-

speed camera (Megaspeed, MS 70K). Moreover, we measure the bubble velocity profile across the gap by

a type of particle image velocimetry. It tracks the bubble position in consecutive exposures and calculates

the bubble velocity via image analysis using PIVlab, an open-source code developed by W. Thielicke and

E. J. Stamhuis [27].

We define a characteristic shear rate as that at the inner cylinder of the Couette device according to the

following formula [28, 26]:

γ̇ = 2Ω
Γ

1−Ri
2/Ro

2
−Ω

1−Γ

ln(Ri/Ro)
, (1)

where Ω is the rotational rate of the inner cylinder in radians per second, and Γ = d(lnΩ)/d(lnM), M being

the torque on the inner cylinder. In cases where M evolves in time, we have used the time-averaged torque

over the duration of the experiment. The foams yield across the entire gap at shear rates around 0.3 s−1, and

all results to be reported are for higher shear rates in the fully yielded regime. In the following we present

experiments on monodisperse and bidisperse foams in turn.

3. Experimental results: monodisperse foam

3.1. Temporal evolution of shear stress

Figure 1 shows the typical behavior of the instantaneous shear stress τi of monodisperse foams after in-

ception of shearing at a constant Ω. The shear stress quickly increases to a “quasi-steady state” in which

it oscillates around a mean value that is more or less constant in time. However, if we perform similar

experiments with the liquid soap solution alone, the shear stress exhibits no oscillation. This implies that

the oscillation originates from the discrete nature of the foam, possibly from bubble rearrangement. The

amplitude of the oscillation is on the order of 10% of the mean stress.

Similar oscillations in the shear stress have been reported by Lauridsen et al. [25] on a polydisperse 2D

foam. They attributed the oscillation to local bubble rearrangement during T1 events. Our experimental
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Fig. 1 Temporal evolution of the instantaneous shear stress for two monodisperse foams of different bubble sizes at

different shear rates. The shear stress of the liquid alone is also shown for comparison.

setup differs somewhat. First, in our monodisperse foam, bubbles slide past each other in rows, following a

zig-zag path. This can be viewed as T1 transition happening for rows of bubbles in a synchronized fashion,

and is thus more regular than in polydisperse foams. Second, Lauridsen et al. used much lower shear rates

down to 10−3 s−1, the lower bound approaching the so-called quasi-static limit where viscous dissipation

becomes negligible. Thus, the stress oscillation in their experiment is mostly due to the cyclic buildup and

release of elastic stresses. In our experiments, the shear rates are much higher and viscous dissipation is

important. Nevertheless, the sliding between rows periodically squeezes, shears and stretches the liquid

film between rows of bubbles, thus producing the oscillatory stress.

The above discussion suggests that the oscillating stress should exhibit a dominant frequency related

to that of one row of bubbles sliding past the next row. Because of the non-uniformity of the shear rate

across the gap of the Couette device, this frequency differs among different rows, being the highest at the

innermost row. As the stress is measured at the inner cylinder, one expects the sliding between the two

innermost rows to dominate the stress oscillation. To confirm this, we carry out Fast Fourier Transform

on the stress-time signal over a time window of about 100 s with a sampling frequency of 10 Hz. For all

data analyzed, the stress oscillation exhibits a dominant frequency, and an example for R1 = 0.26 mm at

γ̇ = 8.45 s−1 is shown in Fig. 2a. The dominant frequency increases with the shear rate γ̇ roughly linearly.

To be more precise, we scale the dominant frequency by the frequency of T1 events between the two

innermost rows of bubbles. To estimate the period of a T1 transition, we divide the bubble diameter by the

difference in velocity evaluated at the center of the two rows. Figure 2b plots the dimensionless dominant

frequency ωd against the shear rate γ̇ . The dominant frequency agrees with the frequency of the T1 neigh-

bour swap within a factor of 2. The lack of a precise correspondence probably reflects the contribution of

the outer rows in the bubble raft. The scatter in the data may also be partly due to the fact that the bubbles
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Fig. 2 (a) The power spectrum for the stress signal shows a dominant frequency. R1 = 0.26 mm and γ̇ = 8.45 s−1.

(b) Variation of the dimensionless dominant frequency ωd with the shear rate γ̇ for different bubble sizes. The

horizontal line marks the frequency of the T1 transition between the innermost two rows of bubbles.

are slightly deformed and thus the length scales in estimating the frequency of T1 transition are subject to

errors.

3.2. Average shear stress

Now we examine the average shear stress τ as a function of the shear rate and bubble size. Prior rheological

measurements on 2D and 3D foam [19, 20, 26] have shown that the shear stress is well represented by the

Herschel-Bulkley model:

τ = τ0 +Kγ̇n, (2)

where τ0 is the yield stress, and K and n are the consistency factor and power-law index. Our monodisperse

2D foam conforms to this model as well. A single power index n = 0.54 applies to all four bubble sizes

(Fig. 3). Furthermore, Fig. 1 indicates a strong dependence of τ on the bubble size, larger bubbles apparently

producing a lower stress. We have found that across the range of bubble sizes tested, the dependence on

bubble size R can be represented by τ − τ0 ∝ R−2. Scaled thus, all the data collapse around a straight-line

in the log-log plot of Fig. 3. The inset shows that the yield stress τ0 also decreases with increasing bubble

size, observing a scaling of τ0 ∝ R−3/2. Since τ0 and τ −τ0 exhibit different scalings with R, we have found

it convenient to examine the two parts separately in the above. Of course, one may also define an effective

viscosity η = τ/γ̇ as a rheological property of the foam. Then the data indicate that η decreases with bubble

size, with a scaling well approximated by η ∝ R−1.85 over the entire γ̇ range tested.

Why do large bubbles produce lower effective viscosity for the foam? This question can be examined

in the frame work of the Princen-Kiss model [29]. Fitting rheological data to a theoretical model based

on the viscous dissipation in liquid films between bubbles, Princen and Kiss [29] arrived at the following
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Fig. 3 The average shear stress as a function of the shear rate for monodisperse foams of different bubble sizes. The

dash line corresponds to the Herschel-Bulkley model (Eq. 2), with a power law index n = 0.54. The inset shows the

dependence of the yield stress on bubble size, the dash line having a slope of −3/2, and the solid line showing the

prediction of the Prince-Kiss model (Eq. 4).

equations for 3D concentrated emulsions and foams:

τ = τ0 +
32σ

R
Ca1/2(φ −0.73), (3)

τ0 =
σ

R
φ 1/3[−0.08−0.114log10(1−φ)], (4)

where φ and σ are the areal fraction and the surface tension of the bubbles, respectively, and Ca= µRγ̇/σ is

the capillary number defined using the liquid viscosity µ . The main role of the bubble size is in defining the

number of dissipating borders per unit volume. Increasing the bubble size would result in fewer dissipating

borders per unit volume and reduce the total length of these borders. Hence lower viscous dissipation.

Therefore, the larger the bubble size of a foam, the smaller its effective viscosity.

Our measurements in 2D foam bear out the same trend, but there are quantitative differences (c.f. Fig. 3).

For instance, according to Princen and Kiss [29], the stress τ − τ0 should be proportional to γ̇1/2 and R−1/2

in a 3D foam. In our 2D foam, τ − τ0 shows a similar scaling to the shear rate (τ ∝ γ̇0.54) but a stronger

scaling to the bubble size (τ ∝ R−2). Furthermore, the yield stress τ0 scales with R−1 in the Princen-Kiss

model, while our data show τ0 ∝ R−3/2. The different scalings with respect to the bubble size probably

reflect the dimensionality of the foam. In our 2D foams, the key parameter is the number of neighboring

bubbles per unit area rather than unit volume.
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Fig. 4 Evolution of the large-bubble distribution at two shear rates for a bidisperse foam with Φ1 = 80% and

Φ4 = 20%. The large-bubble areal fraction φ4 at each radial position s is scaled by Φ4 such that the area under the

distribution is unity. The inner and outer walls are at s = 0 and 1. (a) At γ̇ = 5.53 s−1, outward migration leads to an

equilibrium large-bubble distribution after 10 minutes of shearing. Insets show snapshots of the foam. (b) At

γ̇ = 1.66 s−1, no such migration occurs.

4. Experimental results: bidisperse foam

In this section, we report on the rheology of bidisperse foams in combination with their microstructural

evolution. First, we study the transient shear stress as the foams undergo size-based segregation. Then we

examine how the average shear stress in the quasi-steady “equilibrium state” depends on the shear rate,

sizes of the small and large bubbles and their areal fractions.

4.1. Size-based bubble segregation and stress decline

Recent experiments from our laboratory have demonstrated size-based segregation in sheared polydisperse

foam, provided that the shear rate and the bubble size ratio both exceed threshold values [14, 26]. The

segregation consists in the large bubbles migrating away from each of the walls, and an example of the

lateral migration is shown by the initial and final bubble distributions of Fig. 4a. The migration is due to

three forces. The first is a wall repulsion similar to the Chan-Leal force on a suspended drop under shear
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Fig. 5 Transient shear stress for a bidisperse foam with Φ1 = 80%, Φ4 = 20%, subject to five different shear rates.

The initial configuration is roughly the same in all cases, with the large bubbles concentrated at the inner cylinder.

[30, 17]. The second is a lateral force due to the non-Newtonian rheology of the foam under inhomogeneous

shear in a wide-gap Couette device [31, 26]. Finally, the interaction among the large bubbles produce an

effective diffusion that tends to spread out their spatial distribution [14]. These forces come into balance

as the foam approaches an equilibrium morphology, with the large bubbles concentrated around a radial

position inside the mid-point of the gap. If the shear rate or the bubble size ratio is too low, the driving force

on a large bubble cannot overcome the capillary pressure of bubbles in the next row [14]. Then the large

bubble cannot break into the next row, and no migration or size segregation occurs (Fig. 4b).

The most important finding of the current study is that the size segregation among the bubbles gives

rise to a gradual decline of the shear stress. This is demonstrated in Fig. 5 by the instantaneous shear

stress of a bidisperse foam under five different shear rates. For lower shear rates (γ̇ ≤ 1.66 s−1), the shear

stress oscillates around a time-independent mean value, a behavior similar to that of monodisperse foams.

For higher shear rates (γ̇ ≥ 2.76 s−1), the shear stress still oscillates, if less regularly, but its mean value

declines gradually in time toward a quasi-steady equilibrium. Examining the foam morphology shows that

the decline in stress is concomitant of the size-based bubble segregation (Fig. 4a).

The bubble size ratio shows a similar effect on the transient behavior of shear stress. Figure 6 depicts

the instantaneous shear stress measured for different bubble size ratios at γ̇ = 2.76 s−1. For the smallest

bubble size ratio κ = R2/R1 = 1.42, the shear stress fluctuates but shows no consistent trend of rising or

declining over the duration of the experiment. This resembles the quasi-steady equilibrium that a bidisperse

foam achieves after prolonged shearing at high rate (cf. Fig. 5). For κ = R3/R1 = 1.69 and κ = R4/R1 =
2.11, on the other hand, the shear stress decreases gradually over 5–10 minutes toward a quasi-steady

value. Not surprisingly, size-based segregation happens for the larger κ values but not the lowest one. This
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Fig. 6 Effect of the bubble size ratio on the evolution of the shear stress for bidisperse foams with 90% of the small

bubble R1, and 10% of large bubbles of three different sizes. The shear rate is the same γ̇ = 2.76 s−1.

provides additional evidence on the correspondence between size-based segregation and temporal evolution

of rheology.

Based on our earlier studies [17, 14], the threshold shear rate for a bubble size ratio R4/R1 = 2.11 is

roughly γ̇ = 1.8 s−1. Figure 5 shows stress decline for γ̇ = 2.76 s−1 but not 1.66 s−1, in agreement with

the previously determined threshold. Similarly, the threshold bubble size ratio for γ̇ = 2.76 s−1 is κ = 1.85.

This is somewhat above κ = R3/R1 = 1.69 for which stress decline occurs in Fig. 6. But considering

the uncertainties in the bubble sizes, R1 = 0.26± 0.01 mm and R3 = 0.44± 0.03 mm, the difference is

insignificant, and the overall behavior of Fig. 6 is consistent with the threshold in bubble size ratio. Also

note that larger κ produces faster approach to the final equilibrium; this is due to faster bubble migration

and segregation [14]. Increasing the shear rate does not seem to have a similar effect in Fig. 5. Although

the large bubbles migrate faster at higher γ̇ , they also have a longer distance to go to reach the more peaked

equilibrium distribution [14]. The two effects tend to cancel each other.

Conceivably, different foam morphologies, i.e., different distributions of the large bubbles in the sea

of small bubbles, entail larger or smaller viscous dissipation in the system when sheared. Thus, when the

morphology evolves, so should the measured shear stress. Then the question arises as to which morpholo-

gies are the most and least costly in terms of energy dissipation. In monodisperse foam, the shear stress

decreases with bubble size (Fig. 1), and larger bubbles seem to be less dissipative. Based on this, one may

expect that placing the large bubbles at the inner cylinder, where the shear rate is the highest, should mini-

mize energy dissipation. To test this hypothesis, we monitor the stress transient for foams of different initial

morphologies, with the large bubbles initially concentrated near the inner cylinder, the outer cylinder, or

more or less uniformly distributed throughout the gap (Fig. 7). As we have anticipated, having the large

9



J. Non-Newtonian Fluid Mech. 223, 1-8 (2015) http://dx.doi.org/10.1016/j.jnnfm.2015.05.001

0 200 400 600 800

6

8

10

t (s)

τ i
(P

a
)

Fig. 7 Effect of the initial foam morphology on the evolution of the shear stress for a bidisperse foam with

Φ1 = 90% and Φ3 = 10% at a fixed shear rate γ̇ = 5.53 s−1. The symbols +, ⋄ and × denote respectively initial

configurations in which the larger bubbles are concentrated at the inner cylinder, roughly uniformly distributed and

concentrated at the outer cylinder.

bubbles near the inner (or outer) cylinder does produce the lowest (or highest) initial stress. Surprisingly,

however, the shear stress declines monotonically from this initial stress in all cases, approaching the same

equilibrium value. In the mean time, the large bubbles migrate and the foams approach the same equilib-

rium morphology. If we use the equilibrium morphology as initial condition, the shear stress fluctuates but

its mean shows no decline or rise.

At present we have no solid explanation for the curious fact that size segregation of the bubbles always

leads to decline of the shear stress, never a rise, regardless of the initial foam morphology and the direction

of the lateral migration for the large bubbles. We offer one speculation on the cause. The lateral migration

of large bubbles among smaller ones incurs additional energy dissipation, regardless of the direction of the

lateral movement. This is in addition to the viscous dissipation due to the streamwise shearing of the foam.

Thus, any lateral movement of large bubbles increases the effective viscosity of the foam. Note that the

amount of stress decline in Fig. 7 far exceeds the initial difference among the three samples. This supports

the notion that the act of migration is more important than the large-bubble distribution. If this argument

holds, the size-segregated equilibrium morphology corresponds to minimum dissipation in bidisperse foams

for no other reason than the lack of lateral bubble motion. This recalls a similar phenomenon in sheared

micellar solutions, which may exhibit bands of nematic and isotropic micelles. Upon shear startup, the shear

stress exhibits a series of transitions, one of which being a stress relaxation that resembles that observed in

our foam [32]. This has been attributed to the radial shift of the boundary between nematic and isotropic

bands toward an equilibrium configuration.
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Fig. 8 The dimensionless dominant frequency of stress oscillation over the range of the shear rate for six bidisperse

foams of different bubble sizes and area fractions. The horizontal line shows the frequency of the T1 transition

between the two rows of bubbles next to the inner cylinder.

Finally, Herzhaft [12] reported similar stress relaxation in polydisperse 3D foam sheared between par-

allel plates. Initially, the bubbles of different sizes are well mixed and randomly positioned in space. At the

end of roughly 10 minutes of shearing, the morphology of the foam, viewed at the edge of the parallel-plate

device, shows a predominance of larger bubbles in the middle of the gap and smaller ones near the two

plates. Herzhaft [12] did not explore the cause of the morphological change, nor the mechanism for the

stress decline. In the light of our findings in the 2D foams, size-based segregation may have occurred in

the 3D foam as well, and that may have caused the gradual decline in the shear stress reported by Herzhaft

[12].

4.2. Equilibrium state

Once the foam morphology has evolved into an equilibrium state, the shear stress fluctuates around a mean

value that no longer changes in time. This behavior resembles that of monodisperse foams as well as

bidisperse foams that do not experience size segregation. As for monodisperse foams, the stress fluctuation

can be quantified by Fast Fourier Transform. Figure 8 shows the dominant frequency for six bidisperse

foams over the range of shear rates tested. Similar to Fig. 2b, the dominant frequency ωd has been made

dimensionless by the frequency of T1 transition between the two innermost rows of small bubbles. In the

equilibrium morphology, the large bubbles are concentrated in the middle of the gap and stay clear of these

inner rows. We again see an agreement between the two frequencies to within a factor of 2, for foams

of different large-bubble sizes and area fractions. The largest bubbles (R4) appear to produce the highest

frequencies. But the intermediate bubbles (R3) have a slightly lower frequency than the smallest ones (R2).

Thus, there is no clear-cut trend in how ωd varies with the large-bubble size.
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Fig. 9 The average shear stress of four bidisperse foams (symbols) as a function of the shear rate. In each plot, the

shear stresses of the bidisperse foams are bounded by those of the monodisperse foams made of the small and large

bubbles (dashed lines). The solid curves represent predictions of the mixing rule (Eq. 6) for each of the bidisperse

foams.

We now examine how the mean stress or the effective viscosity depends on two attributes of foam

morphology, the bubble sizes and the area fraction of each species. First, our results show that the effective

viscosity of a bidisperse foam is always bounded by those of the two constituent monodisperse foams. This

is illustrated by the two plots in Fig. 9, but holds generally for all bidisperse foams tested in this study.

For example, at the same shear rate, bidisperse foams made of R1 and R3 bubbles have stresses above

that of the monodisperse foam of R3 bubbles and below that of the monodisperse foam of R1 bubbles.

Second, the effective viscosity increases when the fraction of the small bubbles increases and that of the

large bubbles decreases. This is consistent with our observations of monodisperse foams, whose effective

viscosity decreases with increasing bubble size. Third, with the area fractions of the two bubble species

fixed, increasing the size of the large bubble lowers the effective viscosity. This effect can be seen from

comparing the data sets represented by circles in Fig. 9a and Fig. 9b. Conceivably, increasing the size of

the smaller bubbles may have a similar effect, but at present we have no data to support it.

To quantify these observations, we have tested various “mixing rules” to relate the effective viscosity

of a bidisperse foam to those of the two monodisperse foams containing each of the bubble species. If the

small and large bubbles were completely segregated, one could compute the total viscous dissipation by

summing that in each bubble population. This would suggest a simple weighted average for the effective

viscosity of the bidisperse foam:

η = ΦIηI +ΦIIηII. (5)

As it turns out, this formula over-predicts the viscosity of the bidisperse foams in our study, by 20% –

50%. Thus, a degree of mixing appears to lower the effective viscosity, perhaps by virtue of large bubbles
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shielding smaller ones as observed before [17]. In the end, we find the “harmonic weighted average”

1

η
=

ΦI

ηI
+

ΦII

ηII
(6)

to predict accurately the effective viscosity of a bidisperse foam. Its predictions have been shown for the

four bidisperse foams in Fig. 9, and it applies equally well to the other compositions that we have tested.

5. Summary

We have studied the rheological and structural evolution of monodisperse and bidisperse 2D foams in a

wide-gap Couette shear cell. We are interested in the morphology-rheology relationship in fully yielded

foams. The main experimental findings can be summarized as follows.

(a) In a monodisperse foam, the shear stress oscillates about an average stress that does not change

in time. The oscillation stems from the zigzag motion of a bubble over the next row of bubbles,

as neighboring rows slide past each other. Its frequency correlates closely with that of neighbor-

swapping T1 transitions between the first two rows of bubbles next to the inner cylinder.

(b) In a monodisperse foam, the average shear stress varies with the shear rate according to the Herschel-

Bulkley model. Moreover, with the bubble areal fraction kept constant, the effective viscosity of the

foam decreases with increasing bubble size. This is because increasing the bubble size decreases the

number of dissipating borders between bubbles.

(c) Bidisperse foams exhibit two regimes of dynamics under shear. If the shear rate and large-to-small

bubble size ratio are both below threshold values, the shear stress behaves similarly to that of a

monodisperse foam. Above these thresholds, however, the shear stress oscillates about a mean that

decreases in time toward a constant equilibrium stress.

(d) The decline of the mean stress or effective viscosity corresponds to the spatial segregation of the

two bubble species, and the quasi-steady state reached in the end corresponds to the equilibrium

morphology of the foam, with small bubbles at the two walls and large bubbles concentrated in the

middle. The thresholds in shear rate and bubble size ratio agree with those previously established for

bubble segregation.

(e) The decline in effective viscosity has been observed from all initial bubble distributions tested, except

when the initial morphology is the equilibrium one already. We hypothesize that the lateral migration

of large bubbles incurs viscous dissipation and contributes to the shear viscosity. Thus, the effective

viscosity declines as the intensity of lateral migration falls in time.

(f) In the quasi-steady state of a bidisperse foam, the dominant frequency of stress fluctuation correlates

well with that of the T1 transition of the innermost two rows of small bubbles. The effective viscosity

falls between those of two monodisperse foams made of each of the two constituent bubble species.

We propose a mixing rule that predicts the effective viscosity of the bidisperse foam from those of

the monodisperse foams.

Harking back to the motivation and objective of this study, we have established a clear connection be-

tween one type of morphological evolution—bubble segregation by size—and changes in foam rheology.
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This is achieved in a purposely simplified geometry where the two-dimensionality of the foam allows un-

ambiguous observation and interpretation of the foam structure. In this light, we surmise that shear-induced

bubble segregation may have caused the stress relaxation in the 3D polydisperse foam of Herzhaft [12] as

well. The same methodology may be extended to 3D foams undergoing other types of structural changes in

more complex flows. Such experiments will lead to a more coherent understanding of how microstructural

and rheological changes are coupled together in this quintessential type of soft matter.
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