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We report two-dimensional simulations of drop dynamics on a substrate subject to a
wetting gradient and an external pressure gradient along the substrate. A phase-field
formulation is used to represent the drop interface, and the moving contact line is
modelled by Cahn–Hilliard diffusion. The Navier–Stokes–Cahn–Hilliard equations are
solved by finite elements on an adaptively refined unstructured grid. For a single drop
and a pair of drops, we consider three scenarios of drop motion driven by the wetting
gradient only, by the external flow only, and by a combination of the two. Both the
capillary force and the hydrodynamic drag depend strongly on the shape of the
drop. Since the drop adapts its shape to the local wetting angles and to the external
flow on a finite time scale, hysteresis is a prominent feature of the drop dynamics
under opposing forces. For each wetting gradient, there is a narrow range of the
magnitude of the external flow within which a single drop can achieve a stationary
state. The equilibrium drop shape and position depend on its initial shape and the
history of forcing. For a pair of drops, the wetting gradient or external flow alone
tends to produce catch-up and coalescence. The flow-driven coalescence arises from
a viscous shielding effect that relies on the asymmetric shape of the trailing drop
once it is deformed by flow. This mechanism operates at zero Reynolds number, but
is much enhanced by inertia. With the two forces opposing each other, the external
flow favours separation while the wetting gradient favours coalescence. The outcome
depends on their competition.
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1. Introduction
The present study has been motivated by efforts to optimize the air–water transport

through the gas diffusion layer in hydrogen fuel cells. This is a porous medium
through which air flows to the reaction site while water, a product of the reaction, is
discharged (Wang 2004; Nam et al. 2009). Water vapour condenses in the hydrophobic
pores, and small droplets are believed to coalesce and then be driven out partly by
wetting gradients, typically produced by hydrophobic coatings or a microporous layer.
Meanwhile, the incoming air creates a counterflow, which tends to drive the water
droplets in the opposite direction (Gurau & Mann 2009). How do sessile drops move
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and coalesce on a substrate subjected to a wetting gradient and an external flow?
This is the question that we set out to investigate.

Considerable work has been done on drop motion driven by wetting gradients. Early
theoretical models (Greenspan 1978; Brochard 1989) balance the driving force, the net
capillary force due to the asymmetry in contact angles, against the viscous friction to
predict the drop velocity. These models typically neglect drop deformation and assume
the shape of a spherical cap for the drop, its footprint being a circle of radius R. Then
they posit a driving force proportional to SR2 and a viscous friction proportional to
UR, where S=d(cos θ)/dx is the wetting gradient, θ being the local contact angle, and
U is the drop velocity. Thus, U turns out to be proportional to SR. The models differ
mostly in the treatment of the contact-line singularity and determination of the viscous
friction. One can estimate the friction locally from Tanner’s law (Brochard 1989), or
calculate it using the wedge-flow solution of Cox (1986) or a lubrication solution
(Subramanian, Moumen & McLaughlin 2005). In the end, the difference amounts to
a different prefactor. As an example, Subramanian et al. (2005) derived the following
approximate formula for vanishing contact angles and a linear dθ/dx:

U = σRθ 2

6ηd ln(2ls)

(
dθ
dx

)
, (1.1)

where σ is the surface tension, ηd is the drop viscosity and ls is the slip length.
Recently, Xu & Qian (2012) presented phase-field simulations of the motion of a
sessile drop on a wetting gradient. Their approach is more sophisticated than prior
theoretical models, with the drop deformation properly calculated and the contact-
line singularity regularized by liquid–vapour phase change. However, the results are
qualitatively the same.

Experimentally, the idea of moving droplets by wetting gradients was demonstrated
by Chaudhury & Whitesides (1992). Ito et al. (2007) reported that U increases
nonlinearly with S on a number of substrates. The more recent data of Daniel et al.
(2004) show a linear dependence. Moumen, Subramanian & McLaughlin (2006)
measured drop motion on a nonlinear wetting gradient, and their experimental data
confirmed theoretical predictions based on balancing the driving force and the friction
force. The last two studies have also considered the effects of contact-angle hysteresis.
Based on this brief summary of theoretical, numerical and experimental work, the
motion of a single droplet on a non-uniformly wetting substrate is well understood.

Drop motion driven by an external flow has been investigated by several groups
(Schleizer & Bonnecaze 1999; Dimitrakopoulos & Higdon 2001; Kang, Zhang &
Chen 2005; Zhang, Miksis & Bankoff 2006; Ding, Gilani & Spelt 2010; Dupont &
Legendre 2010; Mognetti, Kusumaatmaja & Yeomans 2010), but only on a substrate
with uniform wettability. Herde et al. (2012) studied the equilibrium configuration and
motion of a drop driven by a body force on substrates with a sinusoidal wettability
pattern. This seems to have come closest to the situation of interest here, except
that our drop will be driven by an external viscous flow. Considerable work has
been done on drop coalescence on homogeneous substrates (Ristenpart et al. 2006;
Narhe, Beysens & Pomeau 2008; Hernández-Sánchez et al. 2012; Karpitschka &
Riegler 2012), with a focus on the asymptotic behaviour of the liquid bridge that
forms between the drops. However, little can be found in the literature on drop–drop
interaction on wetting gradients. The most relevant studies dealt with coalescence
between a drop moving on a wetting gradient and a stationary one resting on an
adjoining substrate of uniform wettability (Lai, Hsu & Yang 2010; Wang et al. 2010).
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FIGURE 1. Schematic of the initial configuration for 2D planar computations. The drops
have an effective diameter D, and the geometry is specified by the length ratios α= L/D,
β =H/D, and for two drops, γ = Lc/D.

Besides, to our knowledge, there have been no studies of drop coalescence driven by
external flow.

This work is an effort towards filling these gaps in knowledge. Using a diffuse-
interface model and finite elements on an adaptive unstructured grid, we carry out
systematic planar two-dimensional (2D) simulations of drop motion and coalescence
on a substrate. For a single drop and a pair of drops, we consider three scenarios in
which the drop motion is driven by (a) a wetting gradient, (b) an external flow of
the surrounding fluid parallel to the substrate, and (c) a combination of the two. In
particular, we investigate the competition between the two driving forces, and how
they determine drop–drop coalescence. For the simple case of a single drop on a
wetting gradient, we also report a three-dimensional (3D) simulation that helps to
benchmark the numerical parameters used in 2D simulations.

2. Problem set-up and methodology
We examine two related phenomena: the motion of a single sessile drop, and the

coalescence of a pair of sessile drops. Most of the simulations to be reported are in a
2D planar geometry, with a rectangular computational domain of length L and height
H (figure 1). If the contact angle varies monotonically along the substrate, no drop
shape will be at equilibrium. As soon as the drop makes contact with the substrate,
it adjusts to the local contact angles, deforms and starts to move. For consistency,
we have used an initial drop shape of a semicircle in most of the 2D simulations.
The only exception is figure 8, which examines the effect of the initial drop shape.
From the area of the drop A, we define its effective diameter D=√8A/π, which will
be used as the characteristic length throughout the paper. Three domain sizes have
been used. For single-drop simulations, α = L/D = 6.67 and β = H/D = 0.834. The
two-drop simulations have a somewhat larger domain to accommodate the merged
drop: α = 7.88 and β = 0.985. The initial drop separation γ = Lc/D will be given
for individual runs. Numerical experiments show that the domain is long enough so
that α has negligible effect on the drop motion. The domain height β is chosen to
be of order one so as to model a small pore; its value affects drop motion driven by
an external flow, but not that driven by wetting gradients on the substrate. Finally, to
compare with experiments in § 3.1, we have adopted the experimental geometry with
α= 8.11 and β= 0.845. In the 3D simulation, the drop is initially a hemispherical cap.

The problems to be computed involve the deformation and movement of the
interface, a three-phase contact line, and non-uniform wettability. We have chosen a
diffuse-interface formulation with the Cahn–Hilliard model for the purpose. The Cahn–
Hilliard diffusion regularizes the interfacial jump as well as the contact-line singularity,
and provides a convenient means for interface capturing. The Navier–Stokes–Cahn–
Hilliard system is solved using a finite-element method on an unstructured and
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adaptively refined grid. The theoretical model and numerical algorithm have been
described and validated at length in previous publications (Yue et al. 2006b; Zhou
et al. 2010; Ahmadlouydarab, Liu & Feng 2011; Gao & Feng 2011a,b; Mehrabian &
Feng 2011; Yue & Feng 2011a). For brevity, we will only list the governing equations
and boundary conditions and mention a few features of the numerical method.

A phase-field variable φ is introduced such that φ = 1 in one fluid and φ = −1
in the other. The two-phase flow in the computational domain is described by the
Navier–Stokes and Cahn–Hilliard equations:

∇ · u= 0, (2.1)

ρ

(
∂u
∂t
+ u · ∇u

)
=−∇p+∇ · [η(∇u+∇uT)] +µ∇φ + B, (2.2)

∂φ

∂t
+ u · ∇φ =m∇2µ, (2.3)

where m is the Cahn–Hilliard mobility, µ= λ[−∇2φ + φ(φ2 − 1)/ε2] is the chemical
potential and µ∇φ is the diffuse-interface representation of the interfacial tension.
The two parameters λ and ε are, respectively, the interfacial energy density and the
capillary width of the interface, their ratio giving the interfacial tension in the limit of
sharp interfaces (Yue et al. 2006b), σ = (2√2/3)(λ/ε); and B is a constant body force
that is used in the present problem to impose a pressure gradient on the fluids and
produce the external flow. A physical pressure drop 1P over the length of the domain
L is realized through the body force B having the magnitude 1P/L. The viscosity η
and density ρ are averages between the two fluids weighted by their volume fractions
(1+ φ)/2 and (1− φ)/2. For droplets of submillimetre diameters, the Bond number
is much below unity. Thus we have neglected gravity. Similarly, for the operating
conditions that motivated this work, the Reynolds number is typically Re = O(10−2)

(Koido, Furusawa & Moriyama 2008), and we have neglected inertia for most of the
simulations.

On the solid substrate, the following boundary conditions are used:

u= 0, (2.4)
n · ∇µ= 0, (2.5)

λn · ∇φ + f ′w(φ)= 0, (2.6)

where n is the normal vector pointing into the wall, and fw(φ)=−σ cos θ(φ(3− φ2)/4)
is a wall energy (Yue, Zhou & Feng 2010; Yue & Feng 2011b). Equation (2.4)
imposes no slip on the substrate, and contact-line motion is realized via Cahn–Hilliard
diffusion. As a consequence, the ‘contact-line velocity’ is extracted not from the
velocity field u, but from the movement of the point of contact, i.e. the point where
the interface φ = 0 intersects the substrate. Equation (2.5) implies no penetration of
the fluid components into the wall. Equation (2.6) is a natural boundary condition
that follows from the variation of the wall energy, and specifies the local contact
angle θ (Yue et al. 2010). A wetting gradient is represented by the spatial variation
of the local contact angle through this boundary condition.

We impose stress-free boundary conditions on the top, the left and the right sides of
the domain. To simulate an external flow driven by a horizontal pressure gradient, we
impose the body force B on both fluids. Thus a Poiseuille velocity profile develops
at the entry and exit of the domain, as they are sufficiently far from the drops. We
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α β Cn Λ M

One-drop simulations 6.67 0.834 6.7× 10−3 8.33× 10−3 50
Two-drop simulations 7.88 0.985 6.7× 10−3 8.33× 10−3 50

TABLE 1. Parameter values used in most of the simulations reported in this paper. A
few computations have tested different values, and these will be noted individually.

use the Galerkin finite-element method on a triangular grid, with an implicit time-
marching scheme and Newton iterations at each time step. The grids near the fluid
interface are adaptively refined and coarsened as the interface moves. The algorithm
has been validated previously using 2D and 3D drop-motion problems as benchmarks
(Yue et al. 2006b; Zhou et al. 2010).

In presenting results, we use the effective drop diameter D as the characteristic
length, and the capillary time tc = ηdD/σ as the characteristic time, ηd being the
drop viscosity. The dimensionless parameters of the problem include the length ratios
indicated in figure 1, the drop-to-medium viscosity ratio M = ηd/ηm and the density
ratio ρd/ρm. As mentioned above, most of the simulations are inertialess; the density
ratio is relevant only to one set of inertial results in § 4.2. Besides, the wetting
gradient S= d(cos θ)/dx is made dimensionless as G=DS, and the maximum contact
angle at the hydrophobic end of the substrate is specified as θm. When external flow
is present, we have an ‘effective Bond number’ F=BD2/σ that indicates the strength
of the external flow relative to the surface tension. Note that F is defined using the
body force B driving the flow; it has nothing to do with gravity, which is neglected
in this study.

Besides these, the Cahn–Hilliard model introduces two mesoscopic dimensionless
parameters: the Cahn number Cn= ε/D, and the diffusion parameter Λ= ld/D. The
former is the ratio between the interfacial thickness and the macroscopic length, while
the latter is that between the diffusion length ld= (ηdηm)

1/4m1/2 and D. These must be
chosen judiciously; and Cn should be small enough so that the sharp-interface limit is
approached (Yue et al. 2006b; Zhou et al. 2010). For 2D drop motion on a substrate,
we have found that reducing Cn from 2× 10−2 to 6.7× 10−3 causes at most a 0.5 %
difference in the drop position throughout the simulation. Hence all subsequent 2D
results are computed using Cn= 6.7× 10−3. As ld is the counterpart of the slip length
ls commonly used in sharp-interface models (Yue et al. 2010; Yue & Feng 2011b), Λ
represents the strength of Cahn–Hilliard diffusion in moving the contact line, and is
closely related to the contact-line speed. Thus, it should in principle be determined
by fitting an experimental datum for the specific fluids and substrate material (Yue
& Feng 2011a,b). The selection of the Λ value will be discussed next in § 3.1. The
parameter values used in most of the simulations are summarized in table 1.

We should note that the sharp-interface limit of diffuse-interface models for moving
contact lines is still under active investigation (Wang & Wang 2007; Yue et al. 2010).
Alternative choices of the mobility m have been explored, for example by Magaletti
et al. (2013) and Sibley, Nold & Kalliadasis (2013a). For moving contact lines
in a one-component liquid–vapour system, Sibley et al. (2013b) have analysed the
asymptotic limit of the diffuse-interface model at the contact line. A similar analysis
has been presented by Sibley et al. (2013a) for binary-fluid Cahn–Hilliard and Allen–
Cahn systems. Although the present study does not focus on the sharp-interface limit
itself, it is important to recognize that ours is one of several possible approaches to it.
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FIGURE 2. Experimental conditions of Moumen et al. (2006) used to benchmark our
simulation: (a) contact-angle profile along the solid substrate; (b) profile of the dimension-
less wettability gradient G.

3. Results: the motion of a single sessile drop
3.1. Single drop driven by wettability gradient

This subsection has two objectives. The first is to use the prior theoretical and
experimental results (Subramanian et al. 2005; Moumen et al. 2006) to benchmark
our simulations and to determine the parameter Λ, and the second is to examine the
motion of a single sessile drop driven by a uniform wetting gradient.

Moumen et al. (2006) conducted an experiment on the motion of sessile drops on
a substrate bearing a prescribed profile of the wetting angle, which is reproduced
in figure 2 along with the dimensionless wetting gradient G. They compared
their experimental results with the prediction of slip-based theoretical models of
Subramanian et al. (2005) applied to the wetting gradient of figure 2. We will
simulate the drop motion under the same wetting gradient. Yue et al. (2010) have
previously shown that our diffusion length ld is related to the slip length ls by
ls ≈ 2.5ld. The same relationship has been confirmed for the sliding drops in the
current study. This is the basis for evaluating our ld and Λ.

Figure 3 compares our 2D simulations using two values of Λ with the model
predictions of Subramanian et al. (2005) based on Cox’s wedge-flow approximation.
Inertia is neglected in all four calculations. The drop centre xc is the midpoint between
the two contact lines, scaled by the effective drop diameter D. The instantaneous drop
velocity U, taken to be the average between the velocity of the two contact lines, is
non-dimensionalized into a capillary number Ca = ηdU/σ . Our diffusion lengths are
matched to their slip lengths by ls= 2.5ld. Thus our computations at Λ= 2.14× 10−3

and 8.33 × 10−3 correspond, respectively, to slip lengths of ls/D = 5.35 × 10−3 and
2.83 × 10−2. The drop velocity roughly mirrors the profile of the wetting gradient
G (figure 2b); the drop accelerates first, and then decelerates as it spreads out on
the increasingly hydrophilic substrate. As expected, the drop moves faster at the
larger Λ value or slip length. The slip-model predictions are somewhat lower than
our numerical results. This quantitative discrepancy is not surprising since the model
is based on various simplifications and approximations, e.g. the assumption of a
spherical cap and the wedge-flow approximation. Moreover, the Cox solution was
based on matched asymptotics over an inner, an intermediate and an outer region,
and such a structure was not maintained in the model of Subramanian et al. (2005).
Although this model is not a perfect benchmark for our calculation, it appears to be
the closest that can be found in the literature. The comparison in figure 3 offers a
basis on which to choose our numerical diffusion length.
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FIGURE 3. Comparison of the droplet centre velocity, non-dimensionalized into a
capillary number, between our 2D computations and the wedge-flow model predictions
of Subramanian et al. (2005). For each Λ value, a slip length ls = 2.5ld = 2.5ΛD is used
in the theoretical model. The geometric parameters α= 8.11 and β = 0.845 correspond to
the experimental geometry.

It remains to be determined whether the Λ values tested above are realistic. As
noted before (Fermigier & Jenffer 1991; Yue & Feng 2011a,b), the slip lengths for
real materials are usually in the nanometre range, much below the typical resolution
of continuum computations. Thus, previous computations using sharp-interface and
diffuse-interface models alike have adopted computable slip lengths ls/D = O(10−2)
(Schleizer & Bonnecaze 1999; Dupont & Legendre 2010), comparable to those in
figure 3. To illustrate this limitation, we have done a 3D simulation and compared it
with the experimental result of Moumen et al. (2006) (figure 4). The 3D computational
domain has a width of W = 2D, and the drop is located in the centre plane. The
front half of the box is computed with symmetry conditions imposed on the centre
plane that cuts the drop in half. At Λ= 6.76× 10−3, close to the minimum diffusion
length that we can readily compute in three dimensions, our phase-field simulation
overpredicts the drop velocity by a factor of roughly 5. The wedge-flow model
overpredicts by a smaller amount at the corresponding slip length. Moumen et al.
(2006) also tested the model at a much smaller slip length, ls= 0.5 nm, corresponding
to Λ= 1.35× 10−7. Now the prediction is within a factor of 2 of the measurement.
Thus, it is clear that we will have to settle for a larger computable Λ value as
others have done. To achieve quantitative agreement with experiments, Yue & Feng
(2011a,b) introduced wall-energy relaxation in the Cahn–Hilliard model to compensate
for using an unrealistically large diffusion length. However, such relaxation allows
the dynamic contact angle to deviate from the static one, and this may complicate
the representation of the wetting gradient. In this study we will not strive to match a
specific experiment, and thus have used Λ = 8.33 × 10−3 for all the 2D simulations
presented hereafter. This needs to be kept in mind when interpreting the numerical
results quantitatively.

We now turn to the more general question of the behaviour of a sessile drop
on a constant wetting gradient G. As the drop experiences viscous friction on the
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FIGURE 4. Comparison of the drop centre velocity among our 3D computation,
experimental measurement and theoretical predictions of the wedge-flow model (Moumen
et al. 2006). Our computation is based on Cn = 2.03 × 10−2 and Λ = 6.76 × 10−3, and
one of the wedge-flow predictions is at the corresponding slip length. A much smaller
ls/D = O(10−7) is needed to predict the experimental data. The geometric parameters
α = 8.11 and β = 0.845 correspond to the experimental geometry.

substrate as well as on its upper surface, its motion turns out to be sensitive to the
viscosity of both the drop and the surrounding fluid. Figure 5 shows the evolution
of the instantaneous drop velocity for four different M values as the drop traverses
the substrate with a fixed G. The capillary number Ca exhibits a gentle acceleration
for M = 1 but a deceleration for large M. As inertia has been neglected, the drop
velocity is determined by the balance between two forces: the driving force due to
the differing contact angles at the leading and trailing edges, and the hydrodynamic
drag. The latter consists of an internal friction between the drop and the substrate,
and an external drag due to the surrounding medium. As the drop moves downstream
into more hydrophilic areas, the driving force increases with the lengthening footprint
of the drop. The change in the drag, on the other hand, depends on M. For M = 1,
the medium is as viscous as the drop and the external drag is significant. As the
drop spreads, the internal friction increases not only because the footprint of the
drop lengthens, but also because the decreasing height induces greater shear rates
inside. In the meantime, the external drag declines with the height of the spreading
drop. The balance between the driving force and the total drag is such that the drop
sees a slight acceleration in this case. For larger M, achieved by reducing the outer
viscosity, the external drag becomes insignificant and the drop moves faster. Now
the increasing internal friction overwhelms the increasing driving force to produce
the gentle deceleration. Note also that the effect of M diminishes for larger M; the
medium viscosity becomes negligible. For all subsequent results, we have used a fixed
M= 50 to approximate the viscosity ratio between water and air at room temperature.
For such an M, the external drag can be neglected in analysing the results.

To explore the effect of the wetting gradient G, we track the average velocity of
the drop from the inception of its motion at xc = 2.08 till xc = 4.17, and plot the
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FIGURE 5. Instantaneous velocity of the sessile drop on a substrate with a constant
wettability gradient for four values of the viscosity ratio M= ηd/ηm = 1, 10, 50 and 100;
for G= 0.144, θm = 92.3◦.
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FIGURE 6. The average velocity of the drop measured between xc = 2.08 and xc = 4.17
as a function of the dimensionless wettability gradient G. Our computation is compared
with the wedge-flow model of Moumen et al. (2006).

capillary number based on this average velocity as a function of the wetting gradient
G (figure 6). As expected, the drop velocity increases with G. The driving force, due
to the differing contact angles at the two contact lines, is proportional to G. As the
drop moves downstream, however, its changing shape affects the viscous friction in a
nonlinear fashion. Thus, the Ca∼G relationship is not strictly linear. This is supported
by the wedge-flow approximation, whose prediction is also plotted for comparison.

3.2. Single drop driven by external flow
The motion of a sessile drop driven by an external flow has been studied by several
groups before, for example Schleizer & Bonnecaze (1999) and Ding et al. (2010), and



Motion and coalescence of sessile drops 223

Ca

0.150.10

F
0.050

0.03

0.06

0.09

0.12

FIGURE 7. Dependence of the steady-state drop velocity, in terms of the capillary number
Ca, on the driving force F for two contact angles. The insets indicate the degree of drop
deformation at the largest F value in each case.

the physics is more or less well understood. The objective of this brief subsection is
to reprise the basic features of the motion as they are relevant to the more complex
scenarios to be discussed later in the paper.

Consider a drop on an ideal substrate with a uniform contact angle θ . In the absence
of contact-angle hysteresis, such a drop moves with the slightest external forcing. We
impose a constant body force on both the drop and the surrounding fluid; this is
equivalent to applying a fixed pressure drop over the length of our computational
domain. A shear flow develops and sweeps over the drop, which deforms and starts
to move. In roughly 10tc both the external flow and the drop motion approach a
steady state. Our geometric set-up of figure 1 is such that a parabolic velocity profile
develops at the entry and the exit. Because of the additional dissipation incurred by
the sessile drop, the steady-state centreline velocity is lower than that expected in a
Poiseuille flow, which is um=BH2/(2ηm) in dimensional form, and the deficit depends
on the drop size and the contact angle.

The steady-state velocity of the drop, in terms of the capillary number Ca= ηdU/σ ,
is plotted in figure 7 against the dimensionless driving force F for two contact
angles, θ = 45◦ and 135◦. Note that an ‘external capillary number’ can be defined
using the characteristic velocity um of the external flow, the medium viscosity ηm

and the effective drop diameter D: Cam = ηmum/σ = 1
2 Fβ2, which ranges from 0 to

5.22× 10−2 for the F values in figure 7. In our inertialess flow, the drop velocity is
determined by a balance between the driving force on the drop surface due to the
external flow and the viscous friction on the substrate. The deformation of the drop,
which is appreciable in the parameter range of figure 7 (see insets), should have
introduced nonlinearity into the problem. Yet, surprisingly, Ca scales more or less
linearly with the driving force F. A similar linear dependence has been reported in
the literature (Schleizer & Bonnecaze 1999; Ding et al. 2010). Furthermore, the drop
moves faster on a more hydrophobic substrate; it has a smaller footprint and is also
taller, and thus experiences a larger driving force and a smaller friction. At higher
flow rates and with inertia, the drop may become entrained by the flow and pinch
off from the wall (Schleizer & Bonnecaze 1999; Kang et al. 2005), but such regimes
are not directly relevant to the current study.
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FIGURE 8. Trajectory of drops starting from three initial shapes with instantaneous contact
angles of 45◦, 90◦ and 135◦. The drop is initially centred at x0 = 3.33. The constant
wetting gradient, with G= 0.245 and θm = 130◦, drives the drop towards the right, while
the external flow at F = 6.12× 10−2 goes to the left. The insets illustrate the initial and
final shapes of the drop.

3.3. Competition between external flow and wetting gradient
If the external flow and the wetting gradient push the drop in the same direction, the
two effects reinforce each other and the outcome is faster drop motion. If the two
oppose each other, their competition can be quite subtle; the drop dynamics exhibits
a sensitivity to initial conditions and forcing history, and is therefore hysteretic. This
can perhaps be anticipated from the fact that both the capillary force and the external
force depend intimately on the shape of the drop. For example, the drop’s footprint
on the substrate defines the magnitude of the capillary force, and its hump determines
the hydrodynamic drag that the external flow exerts on it. In addition, the viscous
friction depends on the shape of the drop as well. Thus, depending on the initial drop
configuration and the flow history, the outcome of the competition may vary. Note that
this hysteresis is unrelated to wetting angle hysteresis.

We have probed this hysteresis by numerical experiments. Figure 8 compares the
trajectory of three drops starting from the centre of the domain (initial drop centre
position at x0 = 3.33) with different initial shapes, the instantaneous contact angle
being 45◦, 90◦ and 135◦. The initially tallest drop experiences the greatest drag from
the external flow, and starts to move downstream (to the left). As the contact lines
adjust to the local wetting angles, however, the drop spreads out. Consequently, the
hydrodynamic drag on the drop declines, while the wetting force increases. The
two eventually reach a balance when the drop comes to rest at xr = 3.25, having
moved approximately 8.4 % of its effective diameter D. Similarly, the initially most
spread-out drop favours the wetting gradient and moves to the right (final position
xr = 3.39), and the intermediate drop winds up at an intermediate position (xr = 3.31).
If F and G are grossly mismatched, the drop may find no stationary state at all. This
scenario will be examined shortly. We have also tested the dependence on the history
of the control parameters, and confirmed that, depending on how F varies in time,
the drop can be driven to different equilibrium positions and shapes even though the
final F is the same.
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FIGURE 9. Final position for a single drop that has come to rest under the opposing
actions of F and G. The y-axis shows the displacement of the drop centre scaled by the
effective drop diameter. Initially the drop is centred at x0 = 3.33.

This hysteretic behaviour, i.e. dependence on initial configuration and history of the
control parameters, is rooted in the fact that it takes a finite time, of the order of the
capillary time tc, for the drop to adjust its shape. It is a fundamental feature of the
F∼G competition in the current flow set-up. Perhaps unfortunately, this implies that
the quantitative results of the simulations, if not the qualitative trends, are specific to
the initial conditions used. In the following, we will use a consistent initial condition
to investigate the F∼G competition, with the drop being a semicircle centred at x0=
3.33, the substrate bearing a constant G towards the right, and the external flow at
a fixed F being turned on at t = 0 in the opposite direction. When comparing such
numerical results with experiments, one needs to beware of the initial conditions in
the latter, and to keep the hysteretic effects in mind.

Starting from this initial condition, we simulate the motion of the drop at different
combinations of (F, G) values. The final resting position of the drop centre, xr, is
plotted in figure 9 as a function of F for a series of G values. This figure paints
a rather delicate picture about the F ∼ G competition. For each G value, there is
a narrow range of F within which a stationary state can be achieved. Within this
range, the drop stops further to the hydrophilic area (larger xr) for larger G and
smaller F, and to the hydrophobic area (smaller xr) for smaller G and larger F. The
stationary drop assumes such a shape that the hydrodynamic and capillary forces
balance each other. It is a fragile balance. For an F value outside the narrow range,
the hydrodynamic force will never be balanced by the capillary force. The drop
moves continually to the left or right, and no state of rest is achieved.

It is somewhat surprising that the drop attains a stationary state at all. One may
imagine shifting the drop slightly to the left by external perturbation. Then the
substrate becomes more hydrophobic and the drop is supposed to bulge upwards.
This would reduce the capillary force and increase the hydrodynamic drag, and the
drop would then continue to move to the left. This argument seems to suggest a
linear instability of any resting position. What makes the rest state possible is again
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the hysteretic nature of the system. After the imagined slight shift to the left, the
drop shape does not immediately adapt to the local contact angle; that process takes
a finite time of the order of the capillary time tc. The ensuing change in drop shape
and hence the hydrodynamic drag cannot be anticipated from the simple ‘equilibrium’
argument posed above. In fact, there is no equilibrium shape to which to relax
on a wetting gradient. We have carried out further numerical experimentation on the
delicate balance between F and G. Taking one of the curves in figure 9 corresponding
to a fixed G, we vary F in small increments, each time after a new stationary position
has been established. In this way, we have managed to reach a much wider range of
equilibrium positions for a much wider F range than indicated in figure 9, where all
stationary states have been reached from the same initial position under a fixed F.
This confirms the central role of hysteresis in defining the stationary state for the drop.

It is instructive to note the similarity between the drop dynamics discussed above
and that described by Herde et al. (2012). Their drop is driven by a body force, and
the wetting gradient has a sinusoidal pattern with a period much smaller than the
drop size. Thus, multiple equilibrium states can be predicted from the energetics. They
have identified certain ranges of initial positions that will lead to a rest state. Those
ranges narrow and eventually disappear with increasing driving force. Once in motion,
the drop exhibits hysteresis and bistability much as our flow-driven drop. Despite the
difference in the driving mechanism, the hysteresis has essentially the same origin in
both cases. Herde et al. (2012) summarized it as such: ‘Hysteresis is . . . because the
moving droplet is never at its equilibrium shape for the given positions of the back
and front contact points.’ The same holds for our drop.

4. Results: drop–drop coalescence
4.1. Coalescence driven by wettability gradient

On a substrate with a constant wetting gradient, the merging of two sessile drops can
be anticipated from the motion of each drop alone. Figure 5 has shown that, in a low-
viscosity medium (M > 10), a single drop will decelerate as it moves into increasingly
hydrophilic regions, thanks to the increasing viscous friction on the substrate. When
two identical drops are placed on such a substrate with an initial separation, the one
initially on the more hydrophobic area will catch up with the other, and coalesce
with it. Figure 10 demonstrates such a process. In fact, this merging can hardly be
called ‘interaction’, as it arises mostly from the behaviour of single drops at different
positions on the substrate. Since the surrounding fluid has low viscosity, the two drops
move more or less independently of each other. As one may expect, the time for
catch-up increases with initial separation and decreases with the wetting gradient G.

4.2. Coalescence driven by external flow
Now we place two drops on a substrate of uniform wetting angle θ = 105◦, at an
initial separation of γ = 1.035. After turning on an external flow driven by F= 0.309,
the two drops both start to move downstream (figure 11). Based on the characteristic
velocity of the external flow um and the medium viscosity ηm, the external capillary
number for each drop is Cam = 0.150, large enough to produce considerable drop
deformation. In time, the trailing drop catches up with the leader, and the two merge
into one. The coalescence of two interfaces is a subtle process in the phase-field
model that involves Cahn–Hilliard diffusion and short-range attractive forces (Yue
et al. 2005; Yue, Zhou & Feng 2006a). Note that the point of initial contact is a small
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FIGURE 10. Coalescence of two identical drops on a substrate with a constant wetting
gradient G= 0.244 and maximum contact angle θm= 164◦. The drops are initially centred
at x= 3.30 and 4.44 (γ = 1.14), and the solid and dashed curves indicate the trajectories
of the rear contact line of the leading drop and the front contact line of the trailing drop.
After merging at t= 30, the centre of the new drop moves according to the dotted line.
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FIGURE 11. Flow-driven coalescence of two identical drops on a substrate with contact
angle θ = 105◦; F = 0.309 points towards the right. The drops are initially centred at
x= 1.46 and 2.48 (γ = 1.035), and the curves indicate drop positions in the same way as
in figure 10. Coalescence starts at t = 164. To magnify the view of the trajectories near
the point of coalescence, we have omitted the initial period until t= 150.

distance above the substrate. Thus a small air bubble is trapped in the merged drop
(t= 165), a common phenomenon when two curved surfaces collide (Yue et al. 2005).
Interfacial diffusion can lead to the disappearance of the entrapped bubble, as occurs
here between t= 165 and t= 167.5 (not shown). The reader may consult Yue, Zhou
& Feng (2007) for detailed discussions of this process. The merged drop moves with
a steady-state velocity U that corresponds to a capillary number Ca= ηdU/σ = 0.147.
Note that the catch-up takes rather a long time, and the drops have moved through
the length of the domain a few times. To accommodate the long simulation in this
case, we have adopted periodic boundary conditions at the two ends of the domain.



228 M. Ahmadlouydarab and J. J. Feng

(a)

1801501209060300

1801501209060300
0

0.1

0.2

0.3

0.4

0.5

Trailing
Leading

–1.5

–1.0

–0.5p

u

0

0.5(b)

FIGURE 12. Comparison of (a) the x component of the velocity and (b) the pressure
distribution on two drops at a dimensionless time t=123. The velocity and pressure values
are taken along the contour of φ = 0.9, just outside the interface, and are plotted against
the polar angle θ measured from the midpoint between the two contact lines. Velocity and
pressure are made dimensionless by σ/ηd and σ/D, respectively.

The coalescence implies that, despite the absence of inertia, the trailing drop
experiences a greater hydrodynamic drag than the leading one. To investigate this,
we have analysed the velocity, pressure and stress distributions around the two
drops. As the drops start to move, both deform, with the top tilting downstream
(figure 11, t= 155). This is similar to the shape of a single pinned bubble predicted
by asymptotic theories (Feng & Basaran 1994; Sugiyama & Sbragaglia 2008). Such
bubble deformation creates a relatively narrow gap between the drops, where the
velocity of the surrounding fluid is suppressed by viscosity. This is demonstrated in
figure 12(a) by comparing profiles of u, the x component of the velocity, around the
two drops. At the contact lines, u exhibits very large gradients within an effective ‘slip
layer’ produced by Cahn–Hilliard diffusion (Yue et al. 2010). However, the feature of
interest here is that the leading drop experiences a lower velocity on its upstream side
than the trailing drop. This can be thought of as a viscous shielding effect due to the
asymmetric shape of the trailing drop. In Stokes flow around an object with fore–aft
symmetry, no such shielding is expected. A direct consequence of the shielding is a
lower pressure on the upstream side of the leading drop (figure 12b). Note that the
pressure also varies sharply within the slip layer. Since this layer contributes little
to the overall hydrodynamic drag, we have matched the two pressure profiles at a
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small distance of 4.16ε off the substrate at the upstream contact line. This distance
is roughly the interfacial thickness (Yue et al. 2004), and corresponds to a polar
angle of 3.4◦ off the substrate. The pressure being set to zero at this point, the
rest of the profile shows clearly that the shielded drop experiences much reduced
dynamic pressure on its upstream side. This explains the greater driving force on
the trailing drop, and the eventual merging of the two. We have also analysed the
viscous shear and normal stresses around the drops. The pressure contributes roughly
85 % of the total drag, and is therefore the dominant factor. At the instant analysed
in figure 12, the pressure force on the trailing drop is 35 % greater than that on the
leading one, and the total drag is 32 % greater. Numerical experiments show that, if
the two drops are initially farther apart, the shielding effect will be weaker, and the
flow-driven coalescence will take longer. In principle, the drops will always interact
hydrodynamically because of the elliptic nature of the Stokes flow.

Recall that our study was motivated by drop motion in hydrogen fuel cells, and the
typical operating conditions correspond to negligible inertia. But since inertia is known
to affect hydrodynamic interaction among particles and drops (Feng, Hu & Joseph
1994; Olapade, Singh & Sarkar 2009), we carried out a set of simulations to explore
the effect of finite Reynolds numbers. At Re=ρmumD/ηm=13, with a drop-to-medium
density ratio of 100 and a viscosity ratio of 50, the merging of the two drops happens
much more quickly. Under the same conditions as in figure 11, the two drops first
touch at a dimensionless time of 17.0, down from 164 without inertia. Evidently, the
shielding effect is much enhanced by inertia. For the rest of the results to be presented,
inertia will again be omitted.

4.3. Competition between external flow and wetting gradient
Let us consider the interaction of two sessile drops when a wetting gradient G and an
external flow F are both at work. As in § 3.3, we expect the drop dynamics to exhibit
hysteresis, i.e. sensitivity to initial conditions and forcing history. For simplicity and
brevity, we will not explore hysteresis at length in this subsection, and will use the
same initial drop shape (semicircle) and constant F and G forcing in the following.

The situation is simpler if F and G are co-current, i.e. oriented in the same
direction. Both F and G promote catch-up in this case, and it is no surprise that
the catch-up time decreases monotonically when either driving force is increased.
Figure 13 demonstrates this effect for an increasing F. Note that F exerts a larger
force on the trailing drop not only because of viscous shielding, as discussed in
figure 12, but also because the trailing drop sits in a more hydrophobic area, and
thus presents a taller hump to the external flow. On the other hand, the catch-up
distance d, defined as the distance travelled by the centre of the trailing drop up to
the instant of coalescence, shows a non-monotonic dependence on F (figure 13). A
larger F produces faster motion on both drops. For the G value used, increasing F
beyond roughly 0.05 will cause the catch-up distance to increase as the gain in drop
velocity more than compensates for the loss in catch-up time. This non-monotonicity
may have already been present for the F-only scenario of figure 11. Since coalescence
happens slowly when driven solely by F, we have not carried out the numerous long
runs required to confirm this. We have also tested the effect of varying G at a
fixed F. For increasing G, both the catch-time and the catch-up distance decrease
monotonically. This is because the leading drop spreads out more rapidly downstream,
and thus decelerates more quickly.

Now we consider the counter-current situation, with the external flow towards
the left and the wetting gradient driving the drop towards the right. In this case,
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FIGURE 13. Drop coalescence under co-current F and G: the catch-up time t and catch-up
distance d as functions of F for a fixed G= 0.183 and θm = 136◦. Initially the drops are
centred at x = 3.30 and 4.44, with initial separation γ = 1.14. The catch-up distance d
is defined as the distance travelled by the centre of the trailing drop up to the time of
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FIGURE 14. Drop coalescence under opposing effects of the external flow (towards the
left) and the wetting gradient (towards the right); for G= 0.244, θm = 164◦ and F= 0.01.
The initial configuration is identical to that of figure 10, and the curves have the same
meanings. Coalescence occurs at t= 46.

the presence of the wetting gradient fundamentally modifies the shielding effect,
and the F ∼ G competition cannot be anticipated from the effect of each alone.
Keeping G fixed and increasing F gradually, we have observed two distinct scenarios,
with coalescence or separation of the drops. Coalescence occurs for a sufficiently
small F such that it weakens but does not overwhelm the G-driven catch-up and
coalescence discussed in § 4.1. An example is shown in figure 14 for G = 0.244,
θm = 164◦ and F = 0.01. Both drops are driven by G to move towards the right.
Since the leading drop sits on a more hydrophilic surface, it spreads out more and
consequently experiences less hydrodynamic drag from the external flow. Thus, the
trailing drop (on the left) receives a greater drag due to the external flow, which
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FIGURE 15. The catch-up time t and catch-up distance d both increase with F, other
conditions being the same as in figure 14.
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FIGURE 16. Drop separation under opposing effects of the external flow (towards the
left) and the wetting gradient (towards the right); for G = 0.244, θm = 164◦. The initial
configuration is identical to that of figure 10. (a) At F= 0.051, the right drop continues
to the right but the left one moves to the left. (b) At F= 0.154, both drops move to the
left while separating from each other.

hinders its motion and delays the catch-up and coalescence. The catch-up time and
distance both increase monotonically with F in this scenario (figure 15).

Since F exerts a larger drag on the left drop, a sufficiently large F will prevent
coalescence altogether. This is the second scenario, drop separation. Depending on the
relative strength of F and G, each of the two drops may continue to move to the right,
come to rest, or reverse course and move to the left, according to the single-drop
dynamics of figure 9. In principle, therefore, one may envision several sub-scenarios
of non-coalescence. Figure 16 illustrates two of those. At the moderately large F =
0.051 (figure 16a), the drag on the left drop overpowers the G-induced driving force.
It stops, and then reverses direction and moves slowly to the left. In the meantime, the
right drop continues to move to the right, and the two separate. For the even larger
F = 0.154 (figure 16b), the hydrodynamic drag on both drops is able to overcome
the wetting force. Thus, both drops are driven towards the left. Since the right drop
spreads out more, it receives a smaller driving force from F, a greater resistance from
G, as well as a larger viscous friction on the substrate. Thus it lags behind the left
drop, and the two separate in time.

In the above we have largely anticipated the separation and coalescence between
drops from the movement of each alone. Their hydrodynamic interaction plays a
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secondary role and does not affect the qualitative features of the process. This forms
an interesting contrast to § 4.2, where coalescence is entirely due to viscous shielding.

5. Conclusion
Using a diffuse-interface formalism, we have carried out a numerical investigation

of the motion and coalescence of sessile drops driven by a wettability gradient, an
external flow along the substrate, or both. Even with one of the two forcing agents
at work, the drops exhibit interesting dynamics. When the two are set against each
other, their competition can produce subtle and sometimes unexpected effects on the
dynamics of sessile drops, including hysteresis and either coalescence or separation
of the drops. The new findings of the study, within the parameter ranges investigated,
are summarized as follows:

(a) A single sessile drop on a constant wetting gradient decelerates in its motion
provided that the viscosity of the surrounding medium is much lower than that
of the drop. This is due to the increasing viscous friction on the drop as it moves
into more hydrophilic areas.

(b) When the wetting gradient is opposed by an external flow, the motion of
a single drop exhibits a strong dependence on the initial condition and the
history of forcing. The hysteresis arises because both the wetting force and
the hydrodynamic drag depend strongly on the drop shape, and the drop shape
adapts to local contact angles and external flows not instantaneously but on a
finite time scale.

(c) Two identical drops driven by a constant wetting gradient will coalesce into one.
This is a direct result of the deceleration of each drop, with the leading one
suffering a greater reduction in speed.

(d) Two identical drops driven by an external flow will coalesce, thanks to a viscous
shielding effect associated with the asymmetric shape of the upstream drop. This
occurs even at zero Reynolds number, but is greatly enhanced by inertia.

(e) When the wetting gradient is opposed by an external flow, two drops may
coalesce or separate, depending on the relative strength of the two forcing agents.
Coalescence is favoured by a stronger wettability gradient, and separation by a
stronger external flow.

These results may have practical implications for microfluidic devices and micro-
fabrication processes that rely on the manipulation of droplets. For example, the
sensitivity to initial conditions and forcing history may lead to new strategies for
controlling drop motion, coalescence and deposition. By balancing the effects of
external flow and substrate wettability, one may design gas diffusion layers for
optimal air–water transport in hydrogen fuel cells, the engineering application that
has served as our initial motivation.

In the meantime, we point out several limitations of the present work that should be
kept in mind when interpreting the numerical results quantitatively. First, most of the
simulations are in two dimensions. Comparisons with our own limited 3D simulations
and with 3D experiments show qualitative agreement but quantitative differences. One
may well expect, for instance, the viscous shielding effect to be attenuated in three
dimensions relative to its 2D counterpart. Second, we do not yet have a satisfactory
physical model for the moving contact line, and its numerical simulation invariably
requires additional ad hoc input. In our case, it is the Cahn–Hilliard diffusivity, which
produces a diffusion length that is the counterpart of the slip length in sharp-interface
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models. Third, we have not strived for a comprehensive description of the hysteretic
effect. After testing a few scenarios to demonstrate the sensitivity of drop motion
to initial conditions and forcing history, we have limited subsequent simulations to
a uniform initial condition for ease of analysis. Potentially there may exist other,
more exotic, regimes of drop dynamics that can be realized through different initial
conditions and forcing history. Finally, we have ignored surfactants and Marangoni
flows in our simulations and discussions, which often play important roles in reality.
For example, Karpitschka & Riegler (2012) presented interesting observations and
analysis on the merging of dissimilar but miscible sessile drops, where temporary
non-coalescence may be maintained by a surface tension gradient and Marangoni
flow. Such scenarios remain to be explored in future work.
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