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Abstract

We report finite-element simulations of gas-liquid two-phase flows through
a model porous medium made of corrugated tubes. By resolving the pore-
scale fluid dynamics and interfacial morphology, we compute the relative per-
meability of the porous medium by averaging over a pore-size-distribution of
a real porous medium. A constant pressure gradient is applied on both fluids
to simulate a pressure-driven creeping flow, and a diffuse-interface model is
used to compute the interfacial evolution and the contact line motion. We
observe a number of flow regimes in the micropores, depending on the pore
size, imposed pressure gradient and other geometric and physical parame-
ters. The flow rates vary nonlinearly with the pressure gradient, and the
extended Darcy’s law does not hold in general. The interaction between the
two phases, known as viscous coupling, is a prominent feature of the process.
As a result, the relative permeability depends not only on saturation, but
also on the capillary number, viscosity ratio, wettability of the solid wall,
pore geometry, and the initial configuration. The effects of these factors are
explored systematically and compared with previous studies.
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1. Introduction

Conventionally, two-phase flow in porous media is modeled by generaliz-
ing Darcy’s law into a linear relationship between the velocity and pressure
gradient for each phase:

vi =
κκr,i

µi
∇pi, (1)

where vi, pi, and µi are the velocity, pressure and viscosity of fluid i, i = w
or n for the wetting or nonwetting phase. κ is the intrinsic permeability of
the porous medium, and κr,i is the relative permeability of phase i. This
extended Darcy’s law is based on a physical picture of each phase flowing as
if in a single-phase flow with the other phase serving only to reduce the size
of the flow passage (Muskat and Meres, 1936). Fluid-fluid interaction across
the interface is ignored, and κr,i is taken to be only a function of the average
volume fraction in the pores, known as the saturation S.

Though appealing for its simplicity, the extended Darcy’s law has limited
success in representing reality. For one, the two fluids generally do not follow
bicontinuous pathways that remain invariant (Avraam and Payatakes, 1999).
Instead, the interface evolves dynamically as a result of viscous and capillary
forces, and undergoes morphological changes such as rupture and coalescence
to produce slugs and bubbles (Ahmadlouydarab et al., 2011). Second, the
hydrodynamic interaction between the two fluids introduces viscous coupling
(Kalaydjian, 1990), such that the flow of one phase affects the other by
viscous shearing, for example. Finally, transient flows, such as occur in water-
oil displacement, produce temporal and spatial variations of the interface that
cannot be predicted by the extended Darcy’s law (Avraam and Payatakes,
1999). Alternatively, Eq. (1) may be viewed as the definition of the relative
permeabilities. Then κr,i must be understood as a convenient catchall into
which all the complexities of the interfacial fluid dynamics have been lumped.
Taking it to be a function of the saturation S alone is indefensible.

Then it comes as no surprise that measurement of κr,i(S) has produced
not only large quantitative scatter but sometimes qualitative contradictions
in the literature (Demond and Roberts, 1987). For instance, the assumption
of separate, uncoupled single-phase flow implies κr,n + κr,w ! 1 (Demond
and Roberts, 1987). This seems to be confirmed by some measurements
(e.g. Dana and Skoczylas, 2002) but violated by others (e.g. Avraam and
Payatakes, 1995a, 1999). Notably, Ehrlich (1993) and Yiotis et al. (2007)
reported a κr,n that varies with S non-monotonically, with a maximum above
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1 at an intermediate saturation. There are also long-running controversies
over whether the interfacial tension and viscosity ratio between the two fluids
affect the relative permeability (Amaefule and Handy, 1982; Demond and
Roberts, 1987; Avraam and Payatakes, 1995a). A more general review of the
experimental data can be found in Demond and Roberts (1987) and Avraam
and Payatakes (1999).

An obvious interpretation of this discrepancy is that two-phase transport
in porous media depends strongly on the interfacial morphology and fluid
dynamics near the interface. In turn these depend on an array of param-
eters, including the volume fraction of the fluids, pore geometry, capillary
number, wetting angle, viscosity ratio, and flow history (e.g., imbibition vs.
drainage). Hence the relative permeabilities κr,i must be functions of these
parameters as well. Several groups have explored the functional dependence
of κr,i on such parameters, e.g., Demond and Roberts (1987); Avraam and
Payatakes (1995b); Dana and Skoczylas (2002). In particular, κr,n > 1 can
be explained by lubrication of the high-viscosity non-wetting fluid by the less
viscous wetting fluid (Yiotis et al., 2007). Gustensen and Rothman (1993)
and Avraam and Payatakes (1995a, 1999) emphasized the importance of the
interfacial morphology by correlating κr,i with the flow regimes, and Li et al.
(2005) highlighted the special role of the interfacial area.

It is difficult to capture the interfacial morphology and flow behavior in
real porous media. The pores typically have an irregular and complex geom-
etry, and the solid is opaque. Direct flow visualization is therefore impossi-
ble. So far, experimental evidence on the flow field has come mostly from
model porous media with regularized pore geometry. One particularly suc-
cessful model is a 2D network of pore chambers and throats etched into glass
(Avraam and Payatakes, 1995a, 1999), which made it possible to correlate
κr,i with the interfacial flow. Similarly, computation of relative permeabil-
ity has largely relied on simplified geometries, e.g. the tube bundle model
(Ehrlich, 1993) and pore-network model (Blunt et al., 2002). Such calcula-
tions assume quasi-static interfaces and postulate local solutions based on
Poiseuille flow, and thus do not account for interfacial dynamics.

Recently, more realistic pore-scale computation by solving the Navier-
Stokes equations has become possible. Accurate pore-scale knowledge of
the flow field and interfacial morphology would be the ultimate solution for
two-phase transport in porous media. But there are formidable numerical
challenges in such computations. First, the interface constitutes an inner
boundary whose position has to be solved together with the Navier-Stokes

3



Ahmadlouydarab et al., Int. J. Multiphase Flow 47, 85–93 (2012)

equations for both phases. Second, the interfacial curvature and interfacial
force have to be accurately computed using high resolution. Otherwise the
interfacial deformation is subject to large errors (Yue et al., 2004) and even
numerical instabilities (Ye et al., 2001). So far, the lattice Boltzmann method
has met with some success (e.g. Gustensen and Rothman, 1993; Li et al.,
2005; Yiotis et al., 2007; Hao and Cheng, 2010). However, resolution of the
interface remains a numerical bottleneck because the regular lattice precludes
adaptive refinement at the interface.

In the present study, we propose an alternative method for computing
the pore-scale flow and the relative permeability of a model porous media.
By using a diffuse-interface representation and adaptive refinement of finite
elements at the interface, we have developed a highly accurate computational
toolkit for simulating interfacial flows (Yue et al., 2006b; Zhou et al., 2010),
which has been successfully applied to a host of interfacial flow problems,
including drop breakup and coalescence, jet breakup in microfluidic chan-
nels, interfacial encapsulation and compound drops (Yue et al., 2005, 2006a;
Zhou et al., 2006; Yue et al., 2008; Gao and Feng, 2011). Most recently, Ah-
madlouydarab et al. (2011) used this tool to construct two-phase flow regime
maps in corrugated microchannels. By computing two-phase flows in a col-
lection of such microchannels, the relative permeabilities can be evaluated
by averaging over a prescribed pore size distribution. The strength of our
method, compared with the lattice Boltzmann method, is the much higher
resolution of the interfacial motion. The weakness is the relatively simple
representation of the pore geometry. By systematically exploring the effects
of saturation, capillary number, wetting angle, viscosity ratio and initial con-
figuration, we have taken a step toward constructing a solid understanding
of the interfacial hydrodynamics that underlies the relative permeability.

2. Problem setup and methodology

We imagine the porous medium as a collection of parallel tubes, each
having periodic contraction and expansion as shown in Fig. 1. Compared
with the real geometry, this model retains the change in cross-sectional area
along a pore through chambers and throats, but neglects branching and
connectivity between the pores. Based on the volume of the voids, an effective
radius can be defined for each corrugated tube:

Re =

(

R2
cLc +R2

tLt

Lc + Lt

)1/2

= Rt

(

αβ2 + 1

α+ 1

)1/2

, (2)
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Figure 1: Schematics of the corrugated axisymmetric tube as a model for a pore.
The computational domain is half of the meridian plane. The top of the domain is
the axis of symmetry, and periodic boundary conditions are imposed between the
left and right sides. The geometry is specified by three length ratios: α = Lc/Lt,
β = Rc/Rt and γ = Lt/Rt, and we have used α = 1 and β = γ = 2 for most of the
computations. Initially the liquid forms a disc that blocks the cross-section of the
groove representing the pore chamber.

where α = Lc/Lt and β = Rc/Rt are length ratios. We assume that the
collection of tubes is such that Re obeys a prescribed pore size distribution
(PSD). To impose a certain saturation S to our model porous medium, we
fill each pore with both species of fluid to the prescribed S. This is a sim-
plification since one may imagine larger and smaller pores carrying different
volume fractions in reality. Now a pressure drop is applied to the porous
medium, and a two-phase flow develops in each pore subject to the common
pressure gradient. Because of the periodicity along the flow direction, the
saturation in each pore stays fixed at S.

2.1. Averaging scheme

An averaging scheme is needed to compute macroscopic properties such
as permeability from pore-scale flow quantities. In each tube, we compute
the flow until a steady or periodic flow pattern is achieved; in the latter case,
the time-averaged flow rate is obtained. To illustrate the averaging among
the tubes, let us consider a single-phase flow first. The flow rate through a
tube of radius R is: q = πR2u, u being the average velocity through this
tube. The total flow rate through the collection of tubes is, therefore:

Q =

∫

ψ(R)q dR, (3)
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Figure 2: Pore size distribution (PSD) of a model porous medium. The distribution
function Ψ(R) is converted from the data of Koido et al. (2008) on pore volume
distribution.

where ψ is the PSD normalized such that
∫

ψ(R) dR = 1. As the total area
A of the porous medium is related to the total pore area by the porosity ϕ:
ϕA =

∫

ψ(R)πR2 dR, the average velocity over the entire porous medium
can be computed:

v =
Q

A
=

ϕ
∫

ψ(R)R2u dR
∫

ψ(R)R2 dR
. (4)

Now the intrinsic permeability of the model porous medium can be computed
from v and the imposed pressure gradient: κ = µv/|∇p|, µ being the viscosity.

The same averaging scheme can be repeated for a two-phase flow simula-
tion to yield the effective permeabilities for each phase. The ratio between
the effective permeability and the intrinsic permeability gives the relative
permeability for each phase. The porosity ϕ will cancel out and will not af-
fect the relative permeability. But it does enter the average velocity for each
phase and the capillary numbers. In all results to be presented, we have used
the PSD of Fig. 2 for a gas diffusion layer (Toray TGP-H-060) of hydrogen
fuel cells (Koido et al., 2008). The porosity for this porous medium, ϕ = 0.8,
is used throughout the paper. Note that this value is larger than typical
porosity in natural sandstones, and is specific to the engineered gas diffusion
layer. The integrals in Eq. (4) are computed by summing over increments
of the pore size; 25 pore sizes are computed in the range of 5.35–25 µm,
corresponding to the measured data points in Fig. 2.
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2.2. Governing equations and numerical method

To solve the two-phase flow in the periodic axisymmetric domain of Fig. 1,
we use a diffuse-interface formulation that accommodates evolving interfaces
and moving contact lines in an energy-based framework. Various aspects
of the theoretical model and numerical algorithms have been described at
length elsewhere (Feng et al., 2005; Yue et al., 2006b; Zhou et al., 2010),
and the current computations follow closely our recent study of two-phase
flow regimes in corrugated microchannels (Ahmadlouydarab et al., 2011).
Therefore, we will only list the governing equations below and briefly mention
a few features of the numerical method.

A phase-field variable φ is introduced such that φ = 1 in one fluid and
φ = −1 in the other. The two-phase flow in the pore is described by the
Navier-Stokes and Cahn-Hilliard equations:

∇ · u = 0, (5)

∇p = ∇ · [µ(∇u+∇u
T)] +G∇φ+B, (6)

∂φ

∂t
+ u ·∇φ = m∇2G, (7)

where m is the Cahn-Hilliard mobility, G is the chemical potential and G∇φ
is the diffuse-interface representation of the interfacial tension. B is a con-
stant body force acting on both phases that represents the pressure gradient
imposed over each periodic length of the pore: B = ∆p/(Lc+Lt). The effec-
tive viscosity µ is defined as an average between that of the fluids weighted
by the volume fractions (1 ± φ)/2. For typical flow in microscopic pores,
the Reynolds and Bond numbers are much below unity (Zhang et al., 2006;
Koido et al., 2008), and we have neglected inertia and gravity. The flow
is thus governed by the external pressure gradient along with capillary and
viscous forces.

The initial condition typically has the liquid and gas at rest in the domain
of Fig. 1 with the desired saturation S and a certain initial configuration for
the interface. Under the constant driving force B, both components start
to flow and eventually a steady, time-periodic or quasi-periodic flow pattern
establishes itself. Periodic boundary conditions are imposed between the
left and right ends of the computational domain, and symmetry conditions
on the top of the domain. On the solid substrate, no-slip conditions are
used for velocity, and contact line motion is implemented via Cahn-Hilliard
diffusion (Yue et al., 2010). The contact angle is introduced via surface
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energies between each fluid and the solid (Yue et al., 2010; Yue and Feng,
2011).

The dimensionless parameters of the problem include an effective Bond
number F = BL2/σ, which indicates the ratio between the driving force and
the surface tension, the saturation S, non-wetting to wetting phase viscosity
ratio M = µn/µw, contact angle θ and the length ratios α, β and γ. The
length scale L will be specified below. A capillary number Ca can be defined
for each phase using its average velocity (Eq. 4): Cai = µivi/σ. But this
will be an outcome of the simulation, not a control parameter. The results
consist mainly of the relative permeabilities as functions of these parameters.

The governing equations are solved using finite elements on an unstruc-
tured triangular grid. The grids near the fluid interface are adaptively refined
and coarsened as the interface moves. An implicit time-marching scheme is
used, with Newton iterations at each time step. The algorithm has been
validated previously using drop motion problems as benchmarks (Yue et al.,
2006b; Zhou et al., 2010). For the specific setup here, Ahmadlouydarab et al.
(2011) have done mesh-refinement tests to ensure that the numerical results
have converged with the grid size.

3. Results and discussions

We have chosen a problem setup with a set of baseline parameters: α = 1,
β = 2 and γ = 2, wetting angle θ = 135◦, and viscosity ratio M = 18. The θ
and M values correspond to typical operating conditions in the gas diffusion
layer (GDL) of PEM fuel cells, with water and air at 80◦C. The solid wall is
hydrophobic; water is the non-wetting phase while air is the wetting phase.
For convenience, we will refer to the non-wetting phase as water or liquid,
and to the wetting phase as air or gas. The conclusions drawn, of course, will
be general and not restricted to this specific pair of fluids. In the following, S
or “saturation” refers to that of the liquid, i.e. non-wetting, phase. Initially a
liquid bridge of thickness Lc/2 occludes the pore chambers entirely (Fig. 1).
This initial setup gives a liquid saturation S = 40%, which will remain fixed
throughout each computation. In the subsections to follow, we will vary one
of the parameters to examine its effects while keeping the other parameters
at their baseline values.

Since our porous medium consists of tubes of different sizes, and the
same effective body force B is applied to all of them, the flow regime varies
among the tubes. This is conveniently indicated by a local Bond number
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(a)

(b)

(c)

Figure 3: Temporal development of three flow regimes for the baseline parameter
values: length ratios α = 1, β = 2, γ = 2; liquid-gas viscosity ratio M = 18,
liquid saturation S = 40% and wetting angle θ = 135◦. Time is scaled by µnRe/σ.
(a) Blockage at FR = 0.38, when the imposed pressure fails to dislodge the liquid
bridge pinned at the corner of the pore chamber; (b) liquid flow regime at FR =
0.56, with the gas entirely trapped in the pore chamber; (c) drop flow regime at
FR = 1.4, with large liquid drops being surrounded and conveyed by a continuous
gas phase.

FR = BR2
e/σ defined for each tube. A number of flow regimes have been ob-

served with increasing FR: blockage, gas flow, liquid flow, bubble-slug, shell,
annular and drop flow. Three of these are illustrated in Fig. 3. Note that
the flow regimes are sensitive to the pore geometry and initial configuration
(see Sec. 3.5). A more detailed description of the regimes and the temporal
evolution of the interfacial morphology can be found in our previous study
(Ahmadlouydarab et al., 2011).

Once we have detailed flow data, we compute the relative permeability
κr,n and κr,w from Eq. (1) by averaging over the PSD of a model GDL (Fig. 2).
In this context, it is necessary to have an overall Bond number F = BL2/σ,
in which the characteristic length is chosen to be L = 18.25 µm, the effective
pore radius corresponding to the maximum of the PSD of Fig. 2, that is,
the effective radius of the most common pore size. Now the relative perme-
abilities should be complex functions of the flow parameters (Avraam and
Payatakes, 1995b):

κr,i = κr,i(S,Can, Caw,M, θ). (8)

In addition, κr,i may depend on the geometrical parameters, initial configu-
ration and flow history. In our setup, the key control parameter is actually
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Figure 4: Dependence of the liquid and gas capillary numbers on the driving force
F . All other parameters are at the baseline values given in Fig. 3.

the driving force F ; the capillary numbers for the flow Cai come out as a
result. We list Cai instead of F in keeping with the conventional protocol in
the literature.

3.1. Capillary number effect

The premise for Darcy’s law is the linearity between the flow rate and the
imposed pressure drop. In single-phase, inertialess flow this holds. A fluid
interface that deforms according to viscous and capillary forces introduces
a geometric nonlinearity into the problem, and it is important to see if this
compromises the linearity underlying the extended Darcy’s law. We vary the
imposed body force B and compute the average velocity of each phase and a
capillary number: Cai = µivi/σ. Figure 4 plots the liquid and gas capillary
numbers as functions of F .

For both phases, the variation of Ca with F is decidedly nonlinear. For
F < 0.29, the blockage regime prevails even in the largest pores, with neither
phase moving (cf. Fig. 3a). With increasing F , capillary breakthrough takes
place first in the largest pores (Djilali, 2007). This causes a transition to the
liquid flow regime (Fig. 3b), and produces a positive Can for the non-wetting
liquid phase. The gas is still trapped in the pore chambers by the liquid at
this stage. Gas flow starts around F = 0.84, when the liquid core breaks
up into drops, liberating the gas pocket in the largest pores and causing a
transition to the drop flow regime (Fig. 3c). Increasing F further activates
gas flow in smaller pores, and causes Caw to rise sharply. For even larger F ,
the drop flow regime prevails in most pores; further increase in F reduces
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the size of the liquid drops but produces no new flow regimes. Since the
gas is much less viscous than the liquid, Caw increases more steeply with F
than Can. Based on the above, it is obvious that the evolution of interfacial
morphology makes the overall flow nonlinear in the porous medium.

It is interesting to compare our result with the lattice-Boltzmann com-
putations of Gustensen and Rothman (1993). First, they have also observed
a blockage regime at weak forcing and a subsequent breakthrough. However,
they adopted a smoothed geometry with no interfacial pinning, and started
from a core-annular initial morphology with the non-wetting fluid enveloped
by the wetting one (see their Fig. 10). In their setup, therefore, it is the
non-wetting species that is blocked at weak forcing. This comparison helps
to illustrate the important role of the pore geometry and the initial config-
uration, which will be examined at greater length in Sec. 3.5. Furthermore,
they have recognized that the evolving interfacial morphology produces a
nonlinear Ca ∼ F relationship, in qualitative agreement with our simula-
tion. Finally, in the limit of strong forcing, they predicted drop flow for
S = 10% and annular flow for S = 30%. These regimes have been seen in
our simulations as well [see phase diagram in Ahmadlouydarab et al. (2011)].
Interestingly, Gustensen and Rothman (1993) observed that the Ca ∼ F re-
lationship becomes more or less linear in this limit, since the two phases are
flowing roughly in stratified layers with less coupling. This can also be said
of our drop flow regime of Fig. 3(c). Therefore, a fast linear regime may exist
in our Fig. 4 as well, though our data do not range to sufficiently large F
values to provide clear evidence.

The same nonlinearity can be illustrated by plotting the relative per-
meability of each phase as a function of their respective capillary number
(Fig. 5). As expected, κr,i is not a constant; it varies appreciably with the
flow. This is particularly true for the wetting phase. The nearly linear rise
of κr,w with Caw mirrors the sharp upturn in Fig. 4; in the drop flow regime
the gas transport increases more rapidly with increasing driving force than
the liquid transport. For the non-wetting liquid phase, the initial rise of κr,n

with Can is due to the progressive formation of a liquid core lubricated by
a gas pocket in the pore chamber, similar to Fig. 3(c). For higher Can, κr,n

saturates because even in the smaller pores, the liquid becomes fully insu-
lated from the solid wall by a gas cushion, and lubrication cannot be further
enhanced. That κr,n is nearly flat for Can > 0.04 is consistent with the near
linearity of Fig. 4(a) for larger Can, and can be likened to the fast linear flow
regime of Gustensen and Rothman (1993) mentioned above.
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(a)

(b)

Figure 5: Variation of the relative permeability of (a) the wetting (gas) phase and
(b) the non-wetting (liquid) phase with the respective capillary number. All other
parameters are at the baseline values given for Fig. 3.

3.2. Saturation effect

To study the effect of the saturation level on the relative permeability,
we use the same baseline geometry as illustrated in Fig. 1. By varying the
initial thickness of the liquid bridge, we have computed liquid saturation S
ranging from 10% to 80%. Figure 6 plots κr,i as functions of S. Note that in
our setup, the liquid is the non-wetting phase.

In straight pores, it is intuitive to think that increasing the liquid satu-
ration will increase the liquid-phase permeability and decrease the gas-phase
permeability. In our geometry with pore throats and chambers, this intu-
ition is mostly valid for the gas phase but not for the liquid. This can be
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Figure 6: Relative permeabilities as functions of the liquid (non-wetting) saturation
S. F = 1.4 and all other parameters are at their baseline values given for Fig. 3.

understood from the flow regimes appearing in pores of different sizes at
different saturations. We refer the reader to our earlier paper (Ahmadlouy-
darab et al., 2011) for images of the various flow morphologies cited below.
At low saturation levels S < 20%, the drop flow regime prevails in almost all
pores. Thus, increasing S leads to larger drops that flow in the central part
of the pore, being lubricated by a gas layer that separates the drops from
the solid walls. As a result, the liquid permeability κr,n increases and the
gas permeability κr,w decreases with S. In this range, the behavior is consis-
tent with convention in the literature (Demond and Roberts, 1987). Beyond
S = 20%, the liquid drops become larger and start to come into contact with
the solid walls, especially in the smaller pores. This significantly suppresses
the lubrication effect. Some of the liquid may even been trapped in the pore
chamber and excluded from the liquid throughput altogether. The dominant
flow regime becomes bubble-slug flow. Consequently, κr,n declines with S.
Meanwhile, in the smallest pores the gas starts to be entrapped in the pore
chambers by liquid. Thus κr,w continues its decline. For S > 40%, gas flux
is maintained only in the largest pores, in the form of gas bubbles carried by
a continuous liquid stream. In this stage, the liquid permeability levels off
and becomes insensitive to S. Finally, as S → 1, the gas bubbles shrink and
eventually disappear; κr,n climbs back to unity.

The distinctive features of κr,i seen in our simulations are closely related to
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(a)

(b)

Figure 7: Comparison of the relative permeabilities κr,i(S) with previous studies.
(a) κr,w of the wetting phase; (b) κr,n of the non-wetting phase. Open symbols
denote computational results while closed ones experimental results. For our result,
the body force F = 1.4 and the other parameters are the same as in Fig. 3.

the geometry of our model porous medium. The interfacial morphology and
flow regimes have much to do with interface pinning at sharp corners and with
initial layout of the interface. Such detailed characteristics have not been
recorded in prior experiments and computations. It is therefore particularly
interesting to compare our results with prior studies. There is a wealth of
experimental and numerical data in the literature on κr,i as functions of S,
as the saturation is the parameter most thoroughly studied. Unfortunately,
there are great variations in the values of other parameters, which make
quantitative comparison very difficult. We have collected in Fig. 7 what
appear to be reliable and representative data sets for a comparison with our
numerical results.
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All studies have produced a κr,w in close agreement with one another. In
general, the gas permeability κr,w decreases with S, which in our convention
denotes the saturation of the liquid, non-wetting phase. This robust trend
can be attributed to the gradual narrowing of flow areas available to the
gas with increasing S. Our κr,w being relatively low may be because in our
geometry, the gas tends to be trapped in the pore chamber in certain flow
regimes.

For κr,n, there are much greater variations in the data. Previous re-
sults seem to segregate into two groups: the tube-bundle (Ehrlich, 1993)
and pore-network models (Yiotis et al., 2007) predict a higher κr,n that ex-
ceeds unity, while lattice-Boltzmann computations in random porous media
(Li et al., 2005; Koido et al., 2008) and experiments (Amaefule and Handy,
1982; Avraam and Payatakes, 1995a) give a much lower κr,n that increases
monotonically with S. Our prediction falls into the first group for smaller
S, and then crosses over to the second for larger S. In the first group,
the larger κr,n is clearly due to lubrication. In relatively simple geometries,
stratification of the two phases occurs more consistently than in tortuous
and random flow conduits. Besides, the lubrication effect is accentuated by
a high non-wetting-to-wetting viscosity ratio M , which happens to be the
case in the first group of studies (M ∼ 10 compared with M ∼ 1 for the
second group). These conspire to produce the higher κr,n. With increasing
S, the water tends to touch the solid wall at the pore throat as mentioned
above. This hampers lubrication and causes our κr,n to decrease and join
the second group of curves. In general, one can summarize the κr,n data as
follows. The non-wetting phase typically stays away from the solid walls, and
its interfacial morphology is more sensitive to material and flow parameters
than for the wetting phase. Hence, its relative permeability exhibits greater
variation among different studies.

3.3. Wettability effect

Wettability of the pores is an important determinant of the relative per-
meabilities. This property affects the interfacial morphology and, if a three-
phase contact line appears, how fast the contact line moves on the walls.
To examine this effect in our pore-scale calculations, we have used the same
baseline setup (Fig. 1) and tested four values of the contact angle θ from 60◦

to 165◦. Figure 8 depicts the variation of κr,i with θ. The main finding is
that by making the pores more hydrophobic, with increasing θ, both relative
permeabilities tend to decrease up to θ = 135◦. With further increase in θ,
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Figure 8: Relative permeabilities as functions of the liquid wetting angle θ on the
solid surface. F = 1.4, and the other parameters are at the baseline values of
Fig. 3. The wetting and non-wetting phases refer respectively to the gas and
liquid, regardless of the θ value. The insets show dominant flow patterns among
the pores responsible for the overall κr,i.

the liquid relative permeability κr,n increases while that for gas κr,w stays
near zero. Note that for θ ≤ 90◦, the liquid becomes the wetting phase. For
simplicity, however, we have not switched the subscript in Fig. 8; κr,n refers
to the liquid and κr,w to the gas regardless of θ.

If the solid is hydrophilic (θ < 90◦), the smaller pores are blocked by a
liquid meniscus, but the dominant flow regime in larger pores is the liquid
drop regime depicted by insets in the figure. Some liquid is retained in the
pore chamber, while the rest is carried by the gas as large drops in the center
of the pore. The liquid phase enjoys a large κr,n because of this lubrication
effect. Its decline from θ = 60◦ to 135◦ has to do with the narrow pore
throat in our geometry. With increasing θ, more liquid is initially driven
out of the pore chamber. It then makes contact with the wall in the throat
and thus suppresses lubrication by the underlying gas. As a result, κr,n

decreases. While hydrophobicity rejects the liquid from the near-wall regions,
the gas is increasingly pushed into the pore chambers. As a result, the gas
permeability κr,w continues to decline. At θ = 135◦, the liquid tends to seal
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(a)

(b)

Figure 9: Effect of the contact angle θ on the relative permeabilities κr,w (a) and
κr,n (b): comparison with lattice-Boltzmann computations in the literature.

the gas completely in the chamber for smaller pores (lower inset) or to form
liquid slugs separated by thin gas films in the larger pores (upper inset). The
gas permeability approaches zero. At even higher θ, the liquid-solid contact
becomes so energetically prohibitive that the liquid starts to detach from the
wall, allowing a gas film to wedge in between. In the end, the shell flow
regime prevails in most of the pores, as illustrated by the inset for θ = 165◦,
with a liquid core enveloped by a thin gas sheath. This leads to the observed
recovery of κr,n, again thanks to the lubrication effect.

Figure 9 compares our prediction of the wettability effect with several
lattice-Boltzmann computations. We have found no clear-cut experimental
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results; those that changed θ by using different materials typically had other
parameters changed as well. Among the lattice-Boltzmann computations,
the geometry ranges from relatively regular (pore-network) to highly random.
The physical parameters differ widely as well. For κr,w, the qualitative trend
is the same for all studies: κr,w decreases with θ. Note, however, that the
prior computations are limited to relatively large θ, where the decrease of
κr,w with θ is mild. Our computation includes smaller θ where the effect is
stronger. The difference in the numerical values among different studies has
probably stemmed from the different physical and geometric parameters.

For κr,n, the picture is somewhat murkier. Li et al. (2005) showed κr,n to
increase with θ, Huang and Lu (2009) and Hao and Cheng (2010) predicted
a mild decrease, while Nguyen et al. (2006) showed a non-monotonic trend.
Our κr,n first decreases and then increases with θ, and the magnitude is also
much higher than the others. This can be attributed to our geometric and
physical parameters amplifying the lubrication effect. For example, among
the studies that have given the viscosity ratio M—M = 1 in Li et al. (2005),
12 in Huang and Lu (2009) and 18 in our study—κr,n increases with M . This
is due to the smaller friction on the non-wetting phase when the wetting
phase viscosity is reduced (more on this in the next subsection). Besides,
our geometry is regular and lacks tortuosity and cross-linkage among pores.
It is well-known that lubrication effect is dampened in more complex and
disordered pore geometry (Yiotis et al., 2007).

3.4. Viscosity ratio effect

The viscosity ratio affects the relative permeabilities mainly through lu-
brication effect. This has been noted in experiments (Avraam and Payatakes,
1995a) and computations in relatively simple geometries (Ehrlich, 1993; Yi-
otis et al., 2007). We have used our baseline setup of Fig. 1 and computed a
range of the viscosity ratio, from M = 0.2 to 18. Recall that M is the viscos-
ity ratio between the non-wetting (liquid) and the wetting (gas) phase. Fig-
ure 10 shows that κr,n increases monotonically with M while κr,w decreases,
both leveling off for large M . As explained below, this result confirms the
key role played by lubrication effect.

Since the relative permeability for each phase is computed using its own
viscosity (Eq. 1), it is convenient to think of the M effect as due to changing
the viscosity of the other phase. For instance, the increase of the liquid per-
meability κr,n with M can be viewed as due to the gas viscosity getting lower.
As κr,i are computed by averaging over potentially different flow regimes in
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Figure 10: Relative permeabilities as functions of the liquid-gas viscosity ratio.
F = 1.4 and all other parameters are at the baseline values as given for Fig. 3.

pores of different sizes, it is not easy to rationalize the variations of κr,i in
terms of the flow patterns. However, a qualitative argument can be made by
looking at the flow regime in the dominant pore sizes in the PSD, roughly
between 15 and 20 µm. Figure 11 depicts the flow pattern in a pore of radius
Rt = 18.25 µm for increasing M values. For smaller M values, shell flow
prevails. Reducing the wetting-phase viscosity enhances the lubrication of
the non-wetting fluid in the center. Hence κr,n increases with M . The same
effect is at work in the annular-droplet regime for larger M , with the liquid
above the gas pocket being lubricated, although quantitatively it is not as
pronounced.

Similarly, in analyzing the gas-phase relative permeability κr,w, we imag-
ine that M is being increased by raising the liquid viscosity while the gas
viscosity remains constant. As M increases from 0.2 to 1, Fig. 11 indicates
a transition from the shell-flow to the bubble-slug regime. This traps gas in
the pore chamber and reduces κr,w sharply; all gas transport now occurs in
the form of bubbles. With further increase in M , not only do the gas bub-
bles become smaller, but their velocity also decreases with increasing liquid
viscosity. This explains the decline of κr,w with M .

The effect of the viscosity ratio on the relative permeability is an issue
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Figure 11: Flow patterns in a pore of radius Rt = 18.25 µm for increasing M values.
Shell flow prevails for M = 0.2 while bubble-slug flow obtains for larger M . All
other parameters are at the baseline values as given for Fig. 3.

of some controversy in the literature (Demond and Roberts, 1987). Prior
experiments and computations have been done at widely different values for
the contact angle, saturation and capillary number. Nevertheless, we have
compiled some data in Fig. 12 for a qualitative comparison. All compu-
tations, including ours, show a common trend that κr,w decreases with M
while κr,n increases. This is mostly due to lubrication, although the effect
should be tempered in real porous medium by the disordered nature of pore
geometry (Yiotis et al., 2007). The two experiments do not agree with the
computational trend. Amaefule and Handy (1982) showed both κr,i to de-
crease with M while Avraam and Payatakes (1995a) showed both to increase
with M . We do not have an explanation for this discrepancy. Clearly more
computational and experimental data are needed for a coherent picture to
emerge.

3.5. Effects of pore geometry and initial configuration

Aside from the factors considered so far, Ahmadlouydarab et al. (2011)
have demonstrated that the interface morphology and flow regimes are also
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(a)

(b)

Figure 12: Comparison of (a) κr,w and (b) κr,n as functions of the viscosity ratio
M with previous studies. Open symbols denote computations and filled ones
experiments.

sensitive to the pore geometry and the initial configuration. For one, sharp
corners tend to pin interfaces. This gives rise to very strong hysteresis in flow
regimes, i.e. dependence on initial condition and flow history. Consequently,
the relative permeability is expected to depend on these as well (Avraam
and Payatakes, 1995a). Ahmadlouydarab et al. (2011) have examined these
effects in considerable detail by varying the initial configurations and ap-
proaching a given flow condition by ramping up or down the flow rate. In
the following we will briefly explore their ramifications for the relative per-
meabilities.

Figure 13 compares flow in micro-pores with sharp and rounded corners
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(a)

(b)

(c)

Figure 13: Effect of pore geometry and initial interfacial configuration. (a) Pore
with sharp corners and the liquid bridge initially at the upstream end of the pore
chamber. (b) Pore with rounded corners and the liquid bridge initially at the
upstream end of the pore chamber. (c) Pore with rounded corners and the liquid
bridge initially at the downstream end of the pore chamber. The parameters are
the same for all three cases: effective pore radius Re = 20 µm, α = 1, β = 3,
γ = 2, S = 40.5%, FR = 1.4, θ = 135◦ and M = 18.

(a and b), and in the latter case, two different initial positions for the liquid
bridge (b and c). In Fig. 13(a), interface pinning at the two sharp cor-
ners slows down the movement of the liquid core and allows time for all
the liquid to be drawn out of the pore chamber. In the end the liquid flow
regime emerges, with the gas completed trapped in the pore chamber. In
comparison, the flow develops much more rapidly with the rounded corners
(Fig. 13b), leading to the drop flow regime. To evaluate κr,i for pores with
sharp and rounded corners, we again average the flow of both phases over
the PSD of Fig. 2. Obviously other flow regimes will appear in pores of
larger and smaller sizes than that of Fig. 13, but the general trend seems
to hold: sharp corners pin interfaces and generally tend to reduce both κr,i

relative to the rounded geometry. For the geometric and flow parameters
tested, the sharp-cornered pores give κr,w = 0.023 and κr,n = 0.42, while the
round-cornered ones have κr,w = 0.069 and κr,n = 1.34. In the latter, the
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large relative permeability for the liquid phase is thanks to the lubrication
of the liquid drops by the gas in the larger pores (Fig. 13b).

If the liquid bridge is initially next to the downstream end of the pore
chamber (Fig. 13c), it wraps around the solid ridge and forms a continu-
ous liquid film sealing some gas in the chamber. Meanwhile gas bubbles
are transported in the middle in this bubble-slug regime. The difference be-
tween Fig. 13(b) and (c) is a special case of the hysteretic effect, where flow
history affects the interfacial pattern that emerges eventually (Ahmadlouy-
darab et al., 2011). After averaging over the PSD, we obtain κr,w = 0.013
and κr,n = 0.53, comparable to the sharp-cornered geometry and much be-
low those of Fig. 13(b). As in Fig. 13(a), the liquid flow is hindered by wall
friction and much of the gas is trapped. The lack of lubrication effect is the
key factor in the lower κr,i.

4. Conclusion

In this work we use pore-scale flow simulations to compute the relative
permeability of a model porous medium and test the validity of the so-called
extended Darcy’s law for gas-liquid two-phase flow. The main conclusions
can be summarized as follows.

(a) The averaged gas and liquid flow rates both depend nonlinearly on the
imposed pressure gradient. Thus the extended Darcy’s law does not
hold in the usual sense. Instead, it can be viewed as the definition of the
relative permeabilities, which are complex functions of the geometric
and flow parameters of the system.

(b) The relative permeability of the wetting phase κr,w behaves more or less
as expected from previous studies. It increases with the wetting-phase
capillary number and the wetting-phase saturation, but decreases with
the wettability of the pore surface and with the non-wetting-to-wetting
viscosity ratio.

(c) The relative permeability of the non-wetting phase κr,n has a much
more complex behavior. It increases monotonically with the viscosity
ratio, but exhibits non-monotonic dependence on the saturation and
wetting angle. This is because the non-wetting phase tends to occupy
the central part of the pore, and κr,n is much more sensitive to the inte-
face morphology than κr,w. In particular, lubrication of the non-wetting
phase by a cushion of the wetting phase is responsible for elevated κr,n,
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and loss of lubrication, e.g. when the non-wetting phase makes contact
with the wall, leads to lower κr,n.

The strength of our work lies in the pore-scale resolution of the interfacial
shape and its temporal evolution, as well as contact-line motion on the solid
walls of the pore. Thus, the relative permeabilities can be directly related
to the flow regimes and interfacial evolution in the two-phase flow. The
role of interface pinning at sharp corners is highlighted, which leads to a
dependence on flow history. The shortcoming of this work is the simplicity
of its pore geometry. Periodic contraction (pore throat) and expansion (pore
chamber) are accounted for, but connectivity among pores is neglected, as is
the disordered nature of pore geometry in real porous media. This may have
magnified the lubrication effect.

Comparisons with experimental and computational results in the litera-
ture show qualitative agreement in cases where a consistent trend exists. In
other cases, previous papers have presented conflicting data. Our study adds
more data to this situation, but cannot resolve the existing discrepancies.
More studies under carefully controlled conditions are needed in the future.
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