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The Cahn–Hilliard model uses diffusion between fluid components to regularize the stress
singularity at a moving contact line. In addition, it represents the dynamics of the near-wall layer by
the relaxation of a wall energy. The first part of the paper elucidates the role of the wall relaxation
in a flowing system, with two main results. First, we show that wall energy relaxation produces a
dynamic contact angle that deviates from the static one, and derive an analytical formula for the
deviation. Second, we demonstrate that wall relaxation competes with Cahn–Hilliard diffusion in
defining the apparent contact angle, the former tending to “rotate” the interface at the contact line
while the latter to “bend” it in the bulk. Thus, varying the two in coordination may compensate each
other to produce the same macroscopic solution that is insensitive to the microscopic dynamics of
the contact line. The second part of the paper exploits this competition to develop a computational
strategy for simulating realistic flows with microscopic slip length at a reduced cost. This consists
in computing a moving contact line with a diffusion length larger than the real slip length, but using
the wall relaxation to correct the solution to that corresponding to the small slip length. We derive
an analytical criterion for the required amount of wall relaxation, and validate it by numerical results
on dynamic wetting in capillary tubes and drop spreading. © 2011 American Institute of Physics.
�doi:10.1063/1.3541806�

I. INTRODUCTION

The conventional Navier–Stokes formulation runs into a
nonintegrable stress singularity at moving contact lines. Dif-
ferent slip models have been proposed to avoid this singular-
ity in sharp-interface models.1,2 Alternatively, one can use
the diffuse-interface theory, also known as the phase-field
theory, to regularize the singularity at the contact line.3–5 In
this approach, the Cahn–Hilliard �CH� model is used to de-
scribe the interface evolution, and the contact line moves by
means of a diffusion across the interface driven by gradients
of the chemical potential. More references can be found in
Ref. 6.

How do we use the phenomenological CH model to
simulate a real moving contact line, as in an experiment with
silicone oil displacing water in a glass capillary tube? This is
a complex and subtle question, a large part of which hinges
on the idea of the sharp-interface limit. When CH is used to
represent an interface that does not intersect a solid wall, as
is the case for drop deformation, the sharp-interface limit is
well established.7–9 In such a limit, achieved at finite interfa-
cial thickness �, the results no longer depend on �, and the
diffusion across the interface becomes negligible. The results
thus become comparable with sharp-interface computations
and experiments, in which the interface is exceedingly thin,
down to molecular scale. As long as this limit is achieved,
the physical relevance of the phenomenological CH diffusion
is immaterial.

CH diffusion takes on a much more important role in
simulating a moving contact line; it is the agent that pro-

duces the motion of the contact line. Thus, any sharp-
interface limit must preserve this diffusion so as to produce a
finite contact-line speed. From numerical results, Yue et al.6

demonstrated convergence toward such a limit by reducing �
while keeping the mobility �, essentially the CH diffusivity,
constant. In this limit, the diffuse-interface solution agrees
quantitatively with the sharp-interface Cox solution using a
slip model.2 Furthermore, the diffusion length ld=��� of the
CH model, � being a characteristic viscosity, shows a clear
correspondence to the slip length ls in the slip model. The
difference between the CH and slip models mainly lies in the
vicinity of the contact line within ls or ld. This is not surpris-
ing as Dussan V.10 showed that the macroscopic flow is in-
sensitive to the details of the slip model. Yue et al.6 extracted
an empirical criterion for achieving the sharp-interface limit,
��4ld, which sets the maximum allowable interfacial thick-
ness for simulating a physical system with diffusion length
ld. Thus, the sharp-interface limit seems to be firmly estab-
lished for a CH description of moving contact lines.

However, two additional issues must be resolved before
one can answer the question raised above. The first is a tech-
nical one on resolving the diffusion or slip length numeri-
cally. For real materials, the slip length ls is exceedingly
small. For glycerin displacing silicone oil in capillary tubes,
Fermigier and Jenffer11 estimated ls to be less than 10 nm,
consistent with newer and more accurate measurements.12

This means that a diffuse-interface simulation, in order to
achieve the sharp-interface limit, would have to use a com-
parable � value. To capture the interfacial profile and hence
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the interfacial tension accurately, the grid size needs to be at
least as small as �.8,9 Thus, to simulate displacement in the
2 mm diameter capillary of Fermigier and Jenffer,11 one must
cover five or six decades of length scales, which is beyond
the current computational capacity. This is analogous to the
requirement in sharp-interface computations of resolving the
slip length.13,14

The second issue concerns the equilibrium between the
fluid components with the solid wall at the contact line. Most
of the diffuse-interface studies so far have assumed instant
equilibration between the fluid and the wall, thus neglecting
the effect of nonequilibrium wall layers. As shown by
Jacqmin,3 such an effect can be accommodated by the CH
model if one allows a finite relaxation of the fluid layer next
to the wall. Qian et al.15 included such relaxation in their
computation of the Couette flow but did not examine its
effect. The simulation of Carlson et al.16 indicated that wall
relaxation tends to inhibit the motion of the contact line and
reduce the speed of drop spreading. But the mechanism for
this is unclear. As an important aspect of the CH model for
contact lines, wall relaxation remains largely unexplored.

This study aims to resolve these two issues. First, we
elucidate the effect of wall relaxation on contact-line dynam-
ics. A somewhat surprising finding is that wall relaxation and
CH diffusion counteract each other in defining the macro-
scopic solution. Second, we exploit the antagonism to ad-
dress the difficulty in resolving the small slip length. We
propose a numerical strategy for attaining reliable solutions
on the macroscopic length scale by solving the moving-
contact-line problem with an artificially large ld and a prop-
erly determined wall relaxation. The latter corrects the dis-
tortions to the solution caused by using the large ld. Thus, we
obtain an accurate simulation of a flow situation with very
small slip or diffusion length at a manageable computational
cost.

II. FORMULATIONS

Consider two immiscible fluids in contact with each
other and with a solid surface �Fig. 1�. In terms of the phase-
field variable �, the free energy of the fluid-wall system can
be written as

F = �
�

fm��,���d� + �
��

fw���dA , �1�

where � is the fluid domain and �� is the solid surface. fm is
the fluid-fluid mixing energy,17

fm��,��� =
�

2
����2 +

�

4�2 ��2 − 1�2, �2�

and fw is the wall energy,3,18

fw��� = − 	 cos 
S
��3 − �2�

4
+

	w1 + 	w2

2
. �3�

In fm, � is the mixing energy density, � is the capillary width,
and in equilibrium the fluid-fluid interfacial tension is given
by

	 =
2�2

3

�

�
. �4�

Note that the wall energy fw��1� gives the fluid-solid inter-
facial tension 	w1 and 	w2 for the two fluids, which deter-
mine the static contact angle 
S through Young’s equation
	w2−	w1=	 cos 
S.

A variational procedure leads to three interesting
quantities:3,19 the bulk chemical potential G=��−�2�
+ ��2−1�� /�2�, the surface chemical potential L=�n ·��
+ fw� ���, and a “body force” B=G�� that is the diffuse-
interface equivalent of the interfacial tension.8 Now the mov-
ing contact line can be formulated as a boundary-value prob-
lem. The Navier–Stokes and Cahn–Hilliard equations read

� · v = 0, �5�

�	 �v
�t

+ v · �v
 = − �p + �
v + G � � , �6�

��

�t
+ v · �� = � · �� � G� . �7�

The Cahn–Hilliard equation describes the convection-
diffusion of the two fluids, with a diffusive flux proportional
to the �G, the coefficient � being the mobility parameter.
The following boundary conditions apply on the solid sub-
strate ��:

v = vw, �8�

n · �G = 0, �9�

��

�t
+ v · �� = − �L , �10�

where vw is the wall velocity. The no-slip boundary condi-
tion implies that the contact line moves only by means of CH
diffusion across the interface. Jacqmin20 and Qian et al.5 in-
troduced a slip velocity here that would give more freedom
in fitting the data and perhaps also a better representation of
the true physics. In view of our aim, however, we strive to
minimize the number of parameters. The second condition
asserts zero flux through the wall. The third allows relaxation
of the wall layer as driven by the surface potential L, � being
a rate constant.3,5

Thus, the CH model contains four model parameters: �,
�, �, and �. Of these, � will be given a value small enough to
achieve the sharp-interface limit, and � is constrained by Eq.
�4�. The remaining two parameters will be the focus of this

FIG. 1. A static contact line viewed in �a� the sharp-interface model and �b�
the diffuse-interface model. n is the outward normal to the wall. The phase-
field variable � represents the two fluid bulks by �= �1 and the fluid-fluid
interface by �=0. Other symbols are defined in the text.
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work. Although one could view � and � as material proper-
ties related to parameters in molecular-kinetic theory,3,16

their values are not known for any specific fluid-solid com-
binations. Therefore, we will treat them as phenomenological
parameters in the phenomenological Cahn–Hilliard model.

In the numerical simulations to be presented, we neglect
inertia since it bears little on the aim of this study. The prob-
lem is thus governed by six dimensionless groups,

Ca =
�V

	
�capillary number� , �11�

� =
�r

�
�viscosity ratio� , �12�

Cn =
�

W
�Cahn number� , �13�

S =
���

W
, �14�

� =
1

��W
, �15�


S �static contact angle� , �16�

where W is the macroscopic length scale, V is a velocity
scale, and � and �r are the viscosities of the advancing and
receding fluid. In steady problems such as dynamic wetting
of a capillary, V is simply the steadily moving-contact-line
speed relative to the solid wall. In problems such as drop
spreading, the contact-line velocity is part of the solution
rather than a parameter, so will be Ca. Of note is the diffu-
sion length ld=���, which is related directly to the slip
length ls in the sharp-interface limit.21 Bulk diffusion and
wall relaxation are embodied, respectively, by S and �.

The computation uses Galerkin finite elements on an
adaptive triangular grid that adequately resolves the interfa-
cial region. The Navier–Stokes and Cahn–Hilliard equations
are integrated using a second-order accurate, fully implicit
time-marching scheme. Details of the numerical algorithm
and validation can be found in Ref. 8.

III. RESULTS AND DISCUSSIONS

We will study two flows in this paper, the dynamic wet-
ting in a circular capillary tube and spontaneous drop spread-
ing �Fig. 2�. The former is a steady problem and the refer-
ence frame is fixed to the contact line. Both problems are
axisymmetric and only one half of the meridian plane is
calculated. In Fig. 2�a�, the tube radius is W and we calculate
a tube length of 6W with a parabolic Poiseuille velocity pro-
file imposed at the inlet and outlet. In Fig. 2�b�, the
computational domain extends 4R0�4R0 on the meridian
plane, with R0 being the characteristic macroscopic length.
Zero stress boundary condition is imposed on the outer
boundaries.

A key observable of the problems is the apparent contact
angle 
A characterizing the fluid-fluid interface at the macro-

scopic length scale W. Its definition is not unique. For ex-
ample, one can measure the interface angle at some distance
to the contact line or use the angle formed by extrapolating
the interface to the solid wall.22 Various experiments11,23–25

have adopted the latter scheme by assuming the interface in
the bulk to be spherical, which is a good approximation for
Ca�1. We take the same scheme to facilitate the compari-
son. In the Poiseuille flow, following Fermigier and Jenffer,11

we fit the interface �the �=0 level set� to a circular arc and
calculate 
A by 
A=cos−1�W /R�, where R is the radius of the
circular arc.

A. Dynamic contact angle

From an asymptotic solution based on a slip length ls,
Cox2 derived a celebrated formula for the apparent contact
angle 
A,

g�
A� = g�
S� + Ca ln	W

ls

 , �17�

where g is an algebraically complex function defined by Eqs.
�3.21� and �7.11� of Cox.2 It also depends on the viscosity
ratio �, omitted from the above for brevity. Cox’s solution
assumes that during flow, the interface retains the equilib-
rium contact angle 
S within the slip zone �r� ls�, and the
apparent contact angle is the result of viscous force bending
the interface on a length scale r� ls.

This formula underpredicts 
A in liquid-liquid displace-
ment in capillary tubes, not only for larger Ca, where it is
expected to fail, but for small Ca as well.11,13,26 Figure 3
illustrates a relatively benign case where there happens to be
good agreement for the smallest Ca. Two ad hoc measures
have been proposed to reduce the discrepancy. Fermigier and
Jenffer11 added an adjustable coefficient in front of Ca in
Cox’s formula, which effectively shifts the curve horizon-
tally. The fitting improved somewhat �Fig. 3�, but was
still considered unsatisfactory. Zhou and Sheng,13 among
others, advocated the idea that surface roughness causes an
additional viscous friction F on the interface that increases
the viscous bending near the contact line. This is formulated
by viewing 
S of Eq. �17� not as the static contact angle, but
as a microscopic dynamic contact angle 
D that increases
with the contact-line speed. Postulating F /	=cos 
S

−cos 
D�Ca�=B�Ca�x, they were able to achieve close fitting
by adjusting B and x for different data sets. In particular, x
falls between 1/3 and 1/2.

FIG. 2. Schematics of the computational setup. �a� Dynamic wetting of a
capillary. �b� Spontaneous spreading of a drop on a partially wetting sub-
strate. 
D is the microscopic dynamic contact angle and 
A is a suitably
defined apparent contact angle.
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A notable feature of the CH model is that it does not
assume a fixed 
D=
S. Wall relaxation at a finite � causes 
D

to deviate from 
S during flow. This deviation is a key idea in
the molecular-kinetic model for the contact line27 and is sup-
ported by molecular dynamics �MD� simulations.15,28 In fact,
a 
D�Ca relationship can be derived analytically based on
Eq. �10�, the boundary condition for the Cahn–Hilliard equa-
tion.

We consider a steady slow flow �Ca�1� such that �
maintains its equilibrium hyperbolic tangent profile across
the interface. The interface �=0 intersects the wall at the
microscopic dynamic contact angle 
D. Now Eq. �10� re-
duces to

v · �� = − ���n · �� + fw� ���� , �18�

which will be applied at the contact line. Denoting the value
of ���� at the center of the interface by �n, the left hand side
can be expressed as

LHS = V�n sin 
D, �19�

as v= �−V ,0� on the wall, as shown in Fig. 2�a�. The right
hand side of Eq. �18� can be written as

RHS = − ����n · ���D + fw� �0��

= − ����n · ���S + fw� �0� + ��n · ���D

− ��n · ���S�

= − ����n · ���D − ��n · ���S�

= − ���n�cos 
D − cos 
S� , �20�

where the subscripts S and D denote the static and dynamic
states, and we have used L�� ,���= ��n ·���S+ fw� �0�=0 for
a static contact line. Equating LHS and RHS gives

h�
D,
S� =
cos 
S − cos 
D

sin 
D
=

V

��
= 	2�2

3

�

Cn

Ca. �21�

This simple equation has two significant ramifications. If
�=0, then 
D remains at the static value 
S as long as the
flow is slow enough not to distort the equilibrium � profile.
This has been recognized by Jacqmin.3 Furthermore, for
small deviations of 
D from 
S, the above equation reduces
to



 = 
D − 
S =
V

��
. �22�

In the leading order, therefore, 

 scales linearly with Ca in
the CH model, rather than as Ca1/3 or Ca1/2.13 Equation �22�
is consistent with the scaling argument of Qian et al.5 We
have verified Eq. �21� numerically by varying 
S, S, �, and
Ca systematically. Figure 4 shows that h�
D ,
S� indeed in-
creases linearly with Ca with slopes closely approximating
the analytical value. When �=0, 

 hovers around zero
within the range ��0.7°, 2.3°�. These small deviations from
zero are mainly due to numerical errors in contouring �.

FIG. 3. Failure of the Cox formula to predict 
A�Ca� for liquid-liquid dis-
placement in a capillary tube. The symbols are experimental data for a
glycerin-silicone oil system with 
S=98° and receding-to-advancing viscos-
ity ratio �=0.9. The solid line is the prediction of the Cox formula with
�= ls /W=10−4, and the dashed line is the same prediction shifted to the left
by multiplying Ca by a factor of 1.3 �or equivalently setting �=10−5.2�.
Adapted from M. Fermigier and P. Jenffer �Ref. 11�.

FIG. 4. Deviation of the dynamic contact angle from the static one predicted by the CH model. �a� h�
D ,
S� as a function of Ca. The three sets of
computations fall on straight lines of slope k. The analytical slopes are 94.28, 66.00, and 9.43, respectively. Cn=0.01. �=0.9 for the square symbols and
�=0.01 for the others. �b� For one set of computations �
S=98° , �=0.9, S=0.01�, 

 is compared with a baseline case with �=0.
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B. Wall relaxation versus bulk diffusion

Does the CH model, aided by the dynamic contact angle
of Eq. �21�, improve the agreement with the experimental
data of Fig. 3? To answer this question using numerical com-
putation, one immediately runs into the difficulty of resolv-
ing a very small S or ld. Estimating the slip length ls in their
experiment, Fermigier and Jenffer11 put the upper bound at
�= ls /W=10−4. According to Yue et al.,6 this corresponds to a
diffusion length ld= ls /2.5=4�10−5W, which is two orders
of magnitude below the numerically resolvable length using
conventional computing power. Figure 5 indicates that re-
ducing ld or S does bring the apparent contact angle 
A closer
to the data, but the gap in S cannot be bridged.

With a finite �, the wall relaxation allows 
D to change
with flow, and this may bring the model prediction at an
artificially large S closer to the data. We have selected � by
matching the critical Cac for wetting failure, at which

A→180°. This is simpler than fitting the entire data set, and
Cac turns out to be very sensitive to �. The data set in Fig. 5,
due to Fermigier and Jenffer,11 has Cac�1.37�10−2. We
have determined the best-fitting � for two S values and plot-
ted the fitting curves in Fig. 5. Both show excellent fitting to
the experimental data. Note that fitting through � works bet-
ter than shifting the curves in Fig. 3; � modulates the shape
of the curve in the middle as well.

The fact that experimental data can be fitted equally well
by more than one set of �S ,�� values hints at a competition
between the two. This can be understood in a two-region
picture. In the near-wall region, � governs the relaxation of
�. A fast relaxation �large �� returns the microscopic dy-
namic contact angle 
D to the equilibrium 
S, while a slow
relaxation allows 
D to deviate from 
S when the local �
field is advected by external flow. This is the physical inter-
pretation of Eq. �21�. In our geometry, therefore, a larger �
�or small �� induces a larger 
D and hence a larger 
A away
from the wall. One can think of � as acting to “rotate” the
interface in the near-wall region as if it is hinged at the

contact line. In the outer region, interfacial diffusion is gov-
erned by �. A larger � �or larger S� tends to restore the �
profile faster against convection, and provides stronger resis-
tance to “viscous bending” and provides a smaller 
A. Thus,
one may say that wall relaxation � provides resistance to
contact-line rotation while “bulk diffusion” � away from the
wall promotes resistance to viscous bending of the contact
line. Slow wall relaxation and fast bulk diffusion compensate
each other.

Previous hydrodynamic models for the contact line, ex-
emplified by Cox,2 attribute 
A solely to viscous bending and
neglect wall relaxation that causes 
D�
S. Molecular-kinetic
models, originated by Blake and Haynes,29 consider only lo-
cal processes that modify 
D and neglect viscous bending.
The Cahn–Hilliard model includes both, and in a way inte-
grates these hitherto parallel approaches to the contact-line
problem.27

C. A computational strategy

We propose the following procedure for determining the
CH model parameters when simulating moving contact lines.
First, we pick the smallest manageable interfacial thickness
�or Cahn number Cn�. This is dictated by the fact that the
interfacial profile requires some ten grid points for sufficient
resolution,8 and a thinner interface means a greater number
of mesh points over the entire domain. Second, we choose a
� value such that S�Cn /4 to achieve the sharp-interface
limit.6 Finally, we use one experimental data point for the
apparent contact angle or contact-line speed to determine the
wall relaxation �. We recommend using the critical capillary
number for wetting failure for its sensitivity to �. Now the
CH model can be used to compute moving contact lines for
other Ca and geometries for the same fluid and substrate
materials as have provided the data point.

This strategy exploits the competition between bulk dif-
fusion ��� and wall relaxation ���; the same interfacial mor-
phology can be realized outside the immediate neighborhood
of the contact line if both are strengthened or weakened in
concert. Therefore, a simulation at a relatively large � and a
suitably chosen � can recover the correct macroscopic solu-
tion in a moving-contact-line experiment having a much
smaller slip length. To present this idea more precisely, it is
helpful to recall the classical two-region picture for the con-
tact line:10 an inner slip region and an outer region. The slip
length being of molecular dimension, the inner slip region is
inaccessible to measurement or continuum computation. It is
only the outer solution that is of practical concern. In the
matched solution of Cox,2 an intermediate region is intro-
duced for technical reasons, which is part of the outer solu-
tion for the present purpose. The same two-region picture
can be borrowed into the CH solution, except that the length
scale of the inner region, the diffusion length, will be artifi-
cially enlarged. Now it becomes necessary to distinguish the

“real” and small slip length l̃s from the artificially large slip

length l̄s=2.5l̄d used in the CH computation. We will use a
tilde to indicate quantities associated with the former and an
overbar with the latter.

This idea has some historical origins. First, Dussan V.10

FIG. 5. Fitting the experimental data of Ref. 11 using � as an adjustable
parameter. The data are for glycerin displacing silicone oil in a capillary
with 
S=98°, �=0.9. Cn=0.01 for the numerical curves. With �=0, the
model underpredicts the data by a wide margin.
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showed that the outer solution is insensitive to the details
inside the slip zone. Therefore, different slip models can be
used to produce the same fluid dynamics on larger scales.26

Then Ngan and Dussan V.30 parametrized the boundary-value
problem in the outer region in terms of an intermediate con-

tact angle, different from 
̃S, measured at an intermediate

distance �larger than l̃s� from the contact line. Shen and
Ruth31 adopted this strategy in their finite-element calcula-
tions of moving contact lines between parallel plates and
achieved good agreement with experiment. A similar ap-
proach was used by Afkhami et al.32 in handling the contact
angle associated with “numerical slip” based on the finite
mesh size at the solid boundary. These can all be seen as
“compensation strategies” that recover the correct macro-
scopic solution at lower cost by imposing a modified contact

angle 
̄S along with a larger slip length l̄s �Fig. 6�.
Such a strategy can be justified rigorously by Cox’s

asymptotic solution2 for vanishing Ca. Writing the interme-

diate solution at l̃s�r�W in terms of the inner variables, we
have

g�
�r�� = g�
̃S� + Ca ln	 r

l̃s

 , �23�

which can be used to calculate the angle of the interface at an

intermediate length l̄s,

g�
̄S� = g�
̃S� + Ca ln	 l̄s

l̃s


 , �24�

where 
̄S=
�l̄s�. Subtracting the above two equations, we

express the slope of the interface at any l̃s�r�W in terms of

the length l̄s and angle 
̄S,

g�
�r�� = g�
̄S� + Ca ln	 r

l̄s

 . �25�

Matching the intermediate solution with the outer solution,
we can also write the former as

g�
�r�� = g�
A� + Ca ln	 r

W

 . �26�

The elimination of g�
�r�� from Eqs. �23�, �25�, and �26�
yields the apparent contact angle 
A,

g�
A� = g�
̄S� + Ca ln	W

l̄s

 = g�
̃S� + Ca ln	W

l̃s

 , �27�

which agrees with Cox’s formula in Eq. �17�. Equation �27�
states that the outer solution can be parametrized in terms of

an intermediate contact angle 
̄S and an intermediate slip

length l̄s that satisfy Eq. �24�, which is what Ngan and
Dussan V.30 and Dussan V. et al.33 suggested. Note that al-

though 
̄S is the interface angle at l̄s, it is imposed on the wall
in the parametrization of Ngan and Dussan V.30 This is valid
because the interface has little curvature inside the slip

region,2 and the distance l̄s is infinitesimal when viewed from
the outer solution.

The compensation idea can be borrowed into the CH

framework by stipulating that 
̄S be given by the dynamic
contact angle 
D of Eq. �21�. For a physical system with a

diffusion length l̃d and wall relaxation constant �̃, a simula-

tion using a larger l̄d can reproduce the correct macroscopic

solution if the wall relaxation is modified to �̄, which will be

determined by the requirement that 
D= 
̄S in the limit of
vanishing Ca. To bypass the algebraic complexity of the
function g, we adopt the approximation of Sheng and Zhou26

of Eq. �24�,

cos�
̃S� − cos�
̄S� � 5.63 Ca ln	 l̄s

l̃s


 , �28�

which is accurate for moderate contact angles satisfying
�cos 
S��0.6 and matched viscosity. Comparing this equa-

tion with Eq. �21�, we find that 
D� 
̄S for 
D�90° if �̄ is
chosen such that

2�2

3

�̄ − �̃

Cn
= 5.63 ln	 l̄s

l̃s


 = 5.63 ln	 l̄d

l̃d


 , �29�

where we have used the result of Yue et al.6 that the slip
length ls=2.5ld. This formula gives the amount of wall relax-

ation �or �̄� that is needed to compensate for using an artifi-
cially large diffusion length �or �̄�. Needless to say, the strat-

egy hinges on the wide separation of the length scales l̃s and
W, which is at the root of the numerical difficulty in resolv-

ing l̃s. In light of this compensation scheme for the CH
model, the data fitting in the proposed strategy is necessi-

tated by the fact that the true slip length l̃s and relaxation

parameter �̃ are not known for a specific experiment.
Equation �29� is confirmed by numerical results. The ex-

cellent fitting to experimental data in Fig. 5 was achieved by
two pairs of �S ,�� values that satisfy Eq. �29�; both corre-

spond to an idealized state of l̃s /W=3.4�10−7 and �̃=0.

This l̃s value is of molecular dimension, and smaller than that

�l̃s /W=10−6–10−5� used by Fermigier and Jenffer11 to fit

FIG. 6. Schematic illustrating the three contact angles 
̃S, 
̄S, and 
A evalu-

ated at different length scales l̃s, l̄s, and W. Note that 
A is extracted from the
static-like portion of the macroscopic interface.
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their data. Further validation comes from simulations of drop
spreading on a partially wetting substrate. The geometry is
shown in Figs. 2�b� and Fig. 7 plots the increase of the scaled
contact-line radius a /R0 in time. Without wall relaxation �a�,
a drop with a larger diffusion length �or S� spreads faster as
expected. However, all the curves collapse into one in �b� if
wall relaxation is included with � values chosen according
to Eq. �29�. The discrepancies at the beginning are due to the
fact that the system is far from equilibrium and the � profile
across the interface deviates from its hyperbolic tangent
form. Interestingly, the success of Eq. �29� seems to go be-
yond the conditions assumed in its derivation. For instance,
the fitting in Fig. 5 covers the entire Ca range, not only the
limit of vanishing Ca. The dynamic contact angle in Fig. 7
varies between 60° and 180°, quite far from the required

D�90°.

The geometry of the drop spreading problem offers an
opportunity to elucidate the role of wall energy relaxation in
contact-line motion. With increasing �, the slower wall re-
laxation acts to increase the dynamic contact angle and pro-
duce a sharper wedge of the fluid being displaced. This in-
creases the dissipation in the wedge, not only through
viscous friction, but also through diffusion of the species.8

Thus, wall relaxation tends to slow down the spreading of
drops as previously noted by Carlson et al.16 Heuristically,
one may also consider the spreading to be driven by the
difference between the apparent and dynamic contact angles.
Therefore, the drop spreads more slowly when wall relax-
ation increases the dynamic contact angle.

IV. SUMMARY

This work examines the wall relaxation in the Cahn–
Hilliard model for a moving contact line. There are three
main results:

�a� Wall relaxation during flow causes the dynamic contact
angle to deviate from the equilibrium one. At the limit
of small capillary number, an analytical relationship is
derived for this deviation.

�b� Wall relaxation and interfacial diffusion away from the
wall compete in determining the apparent contact
angle. The former allows deviation of the wall layer

from equilibrium that tends to rotate the interface at the
contact line to increase the apparent contact angle. The
latter strives to restore the fluid interface to equilibrium
to counter viscous bending, thus reducing the apparent
contact angle.

�c� A computational strategy is proposed that exploits this
competition to address the difficulty in resolving the
slip length that in reality is very small. By imposing the
dynamic contact angle, which is effectively the inter-
face angle at a larger distance from the contact line,
one obtains an accurate macroscopic solution at lower
cost.

Although we have derived a formula for the amount of
wall relaxation required to compensate for a large diffusion
length, it does not specify how large each parameter should
be in a simulation. The recommended protocol calls for fit-
ting a single experimental datum to determine the two pa-
rameters, wall relaxation constant � and Cahn–Hilliard mo-
bility �. This is tantamount to determining the true slip
length ls of the physical system. Therefore, the CH model is
in essence similar to the slip models that leave ls

adjustable.10,11 But it fits the data much better than the Cox
model �cf. Fig. 3�. From a modeling point of view, such
ad hoc input is perhaps unavoidable since real physics at
molecular scales has been replaced by phenomenology on
the continuum level.

Finally, the compensation scheme for the Cahn–Hilliard
model illustrates a connection to slip models such as Cox.2 It
is based on similar ideas for the slip model due to Ngan and
Dussan V.30 and others. The key element is equating the
Cahn–Hilliard dynamic contact angle 
D with the intermedi-

ate contact angle 
̄S of Ngan and Dussan V.30 Previously, the
Cahn–Hilliard theory has been related with the slip models
via the correspondence between the diffusion and slip length:
ls=2.5ld. The wall relaxation provides another connection.
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