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This chapter describes the unusual behavior of interfaces between com-
plex fluids through two examples: the partial coalescence between a
drop and a planar interface, and the interaction and self-assembly of
droplets suspended in a nematic liquid crystal. The main message is
that coupling among 3 disparate length scales — the microscopic scale
of molecular and supramolecular configuration, the mesoscopic scale of
the interfaces, and the macroscopic scale of hydrodynamics — produces
interfacial dynamics that may differ markedly from that in Newtonian
fluids. A diffuse-interface theory provides a convenient framework for
describing two-phase complex fluids, and finite-element computations
reproduce the main features of the experimental observations, and re-
veal the underlying physical mechanisms.
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1. Introduction

The terms complex fluids and soft matter seem to both refer to materials

with unusual mechanical behavior that are intermediate, in some sense,

between ordinary fluids and solids. Examples range from common house-

hold materials such as tooth paste and hair gel to micro-engineered high-

performance composite materials, from synthetic polymers to biological

tissues and blood. From a mechanical viewpoint, these materials are distin-

guished by a microstructure that evolves as a result of deformation, which

in return modifies the rheology of the material and thus its flow behavior.

For example, polymer solutions exhibit viscoelasticity, a combination of

viscosity and elasticity, and peculiar behavior such as rod-climbing.1 The

elasticity stems from the polymer chains — the microstructure for polymer

solutions — being stretched and oriented by flow and deformation.

In technological applications, complex fluids are often used not in the

pure form, but in mixtures with another material. An example is polymer

blends made of two immiscible polymers which possess, ideally, desirable

properties of each of the components. Other examples of complex fluid

mixtures include thermoplastic foam and oil-water emulsions. The overall

rheology of such materials depends critically on the shape, size and ori-

entation of the interfaces between the components. With the advent of

micro-engineering and nano-technology, the characteristic length scale of

the processing flow becomes ever smaller. As a result, the interfaces exert

ever increasing influences on the overall properties of the mixture relative

to the bulk properties. This has motivated much of the recent research on

interfacial dynamics in complex fluids.

From a more fundamental point of view, such problems are intriguing

because the interfacial behavior of complex fluids can differ markedly from

that of Newtonian fluids. As an example, consider a thin filament of New-

tonian fluid such as water suspended in an oil bath or in air. Because of

surface tension, the thread will quickly break up into droplets of more or

less uniform radius. The process, known as the Rayleigh instability,2 starts

with the appearance of capillary waves on the thread, which quickly grow

in amplitude and cause pinch-off at the nodes of the waveform. If the fila-

ment is a viscoelastic polymer solution, the appearance of capillary waves is

followed by thinning of the thread but not rapid breakup. Instead, smaller

beads form between the larger ones as the thread continues to thin. In the

end, several generations of beads coexist in a spectacular beads-on-a-string

morphology (Fig. 1), which persists for a long time before breakup.3 The
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Fig. 1. Evolution of a thread of polymer solution (0.2% of poly(ethylene oxide) in
ethylene glycol and water). The images of the thread represent advance in time from
left to right, with neighboring images 25 ms apart. The initial filament diameter is
approximately 40 µm. Adapted from Oliveira and McKinley3 with permission, c©2005
American Institute of Physics.

longevity of the thread is due to the long polymer chains in the solution.

The thinning of the thread stretches and aligns the chains, which drasti-

cally increases the filament’s elongational viscosity, namely its resistance to

further thinning and breakup.

As a second example, consider a drop of nematic liquid crystal sus-

pended in an isotropic medium with matching density.4 If the drop was an

isotropic liquid such as water, naturally it would assume a spherical shape

so as to minimize its surface area. The liquid crystal is made of elongated

molecules that, in the nematic state, are more or less aligned with each

other. The average orientation at any spatial point can be indicated by

a unit vector called the director. Furthermore, they prefer to orient in a

specific angle relative to the drop surface, a tendency commonly called an-

choring. For the materials in this example, the anchoring is tangential to

the interface. The drop then takes on an elongated lemon shape (Fig. 2).

This is the result of minimizing the system’s free energy with respect to

competing mechanisms. The spherical shape has minimum surface area.

But if the anchoring is respected on the drop surface, the interior of the

drop will have severe distortions of molecular orientation. The lemon shape

emerges as the minimizer for the sum of the interfacial energy, anchoring

energy and internal distortional energy. Incidentally, the same argument

explains similar lemon shapes if the drop itself is isotropic but the sur-

rounding medium is nematic.4,5
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Fig. 2. Non-spherical shape of a liquid crystal drop in an isotropic medium. The image
on the right is the micrograph from a polarizing microscope while the one on the left is a
sketch of the director orientation field. The length of the drop is about 40 µm. Adapted
from Nastishin et al.4 with permission, c©2005 The American Physical Society.

These relatively simple examples highlight the fact that when complex

fluids are in contact, their interface often behave anomalously. Ultimately

this is because the microstructures in the two bulk phases affect the inter-

facial behavior. In a broader context, the dynamics of a two-phase complex

fluid mixture depends on the coupling among 3 length scales: (i) microstruc-

tural configuration, such as the conformation of the polymer chains and the

molecular orientation of a liquid crystal; (ii) interfacial morphology; (iii)

macroscopic hydrodynamic flow. The coupling between (i) and (iii) is the

main subject matter of theoretical rheology.6 For example, a flow tends to

stretch and align the polymer chains. This microstructural change in turn

modifies the rheology of the fluid and its resistance to the deformation.

Hence the microstructure modifies the flow in return. Similarly, droplet

size distribution in an oil-in-water emulsion determines its flow behavior,

e.g. viscosity. But shearing of the emulsion as a whole changes the drop

size distribution via breakup and coalescence. This features the coupling

between (ii) and (iii), which has been studied extensively for Newtonian

fluids in two-phase fluid dynamics. This chapter introduces the reader to

the fascinating dynamics of multiphase complex fluids that involve all three

length scales.

Given the wide range of complex fluids and flow situations, many phys-

ical mechanisms may be important.7 In this chapter, we shall focus on

drop dynamics in two types of two-phase complex fluids: one involving a

Newtonian fluid and a viscoelastic polymeric liquid, and the other involv-

ing a nematic liquid crystal and a Newtonian fluid. For the former, we will

analyze an intriguing phenomenon known as partial coalescence, while for

the latter, we will investigate the self-assembly of Newtonian droplets sus-
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happens, it does so not in one event, but in a sequence 

 

Fig. 3. A cycle in the partial coalescence cascade for an ethanol drop in air. The initial
drop diameter is roughly 1.5 mm, and the frames are taken 0, 0.7, 1.8, 3.5, 5 and 50 ms
after the initial contact. The grid on the drop comes from background lighting. From
Thoroddsen9 with permission, c©2006 Nature Publishing Group.

pended in a nematic liquid crystal. Obviously, this is not a comprehensive

review that covers all known facets of drop dynamics in complex fluids.

Rather, our objectives are (i) to give the reader a flavor of the unusual

interfacial dynamics that may be encountered in complex fluids, and (ii)

to introduce a theoretical model and numerical methods for solving such

problems.

2. Partial coalescence in polymer solutions

2.1. Experimental observations

Fill a beaker with a liquid, which naturally forms a flat, stationary interface

with air. Now gently deposit a drop of the same liquid on the interface.

A great deal of surface energy can be saved if the drop coalesces with its

homophase below. But to make contact with the liquid below, the drop

must first press and squeeze out the cushion of air beneath it. Depending

on the drop size and the density of the liquid, the film drainage can take an

appreciable length of time.8 Eventually the air layer gets thin enough that

van der Waals forces cause it to rupture, and the drop starts to coalesce

with the liquid layer below.

Under favorable conditions, the coalescence is not completed at once.
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Fig. 4. The daughter-to-mother drop size ratio ζ as a function of the mother drop size,
represented by the Bond number Bo = ∆ρgD2/σ, ∆ρ being the density difference, g the
gravitational acceleration, D the mother drop diameter, and σ the interfacial tension.
ζ = 0 signifies complete coalescence. Different symbols denote different fluid pairs, and
for each pair, ζ is taken through the steps of the partial coalescence cascade. Adapted
from Chen et al.8 with permission, c©2006 American Institute of Physics.

Instead, a smaller daughter drop is left on the interface (Fig. 3). It then

repeats the film drainage process until coalescence, which may leave a still

smaller daughter drop on the interface. Such a cascade of partial coalescence

has been documented with the aid of high-speed video by a number of

groups, both for air-liquid systems10–12 and for liquid-liquid systems.8,13–17

It has been further discovered that the partial coalescence occurs only for

an intermediate range of drop sizes. Drops too large or too small will merge

entirely with the underlying liquid in one shot (Fig. 4).

Chen et al.8 explored the same process when the drop (and the underly-

ing liquid) is a viscoelastic polymer solution. The non-Newtonian rheology,

as it turns out, tends to suppress partial coalescence; under conditions that

would have led to partial coalescence for Newtonian fluids, now the coales-

cence is completed at once (Fig. 5). Furthermore, if the fluid surrounding

the drop is viscoelastic, partial coalescence also tends to be suppressed,

although the effect is weaker than if the drop phase is polymeric.

This effect can be understood by contrasting the Newtonian and vis-
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Fig. 5. Suppression of partial coalescence by viscoelasticity. The drop fluid is a 0.18%
solution of poly(ethylene oxide) in water, and the surrounding liquid is decane. The
initial drop diameter D = 1.8 mm, and the numbers in the frames indicate the advance
in time scaled by the capillary time tc = (ρD3/σ)1/2. From Chen et al.8 with permission,
c©2006 American Institute of Physics.

coelastic scenarios depicted in Figs. 3 and 5. The initial rupture of the

cushioning fluid sends a capillary wave up the drop. Simultaneously, a cap-

illary wave also ripples out on the interface but this is not directly related

to our argument. In time, the drop turns into an elongated column; see

the fourth frame of Fig. 3 and the third frame of Fig. 5. This process is

driven by surface energy being turned first into kinetic energy in the wave

motion, and then into gravitational potential energy of the column. Up to

this point, the Newtonian and viscoelastic behaviors are qualitatively the

same. But a viscous liquid column longer than its circumference is subject

to the Rayleigh instability as mentioned in the Introduction. Thus, the col-

umn in Fig. 3 forms a neck that pinches off in time, producing the daughter

drop and partial coalescence. For the viscoelastic column of Fig. 5, on the

other hand, the same stabilizing effect as evident in the beads-on-a-string

formation of Fig. 1 comes into play. A neck forms and turns into a thin

filament, as indicated in Frame 5 of Fig. 5, which persists without breaking

up. In time the drop fluid drains down the filament and the shrinking drop

falls and merges into the underlying polymer solution. To explain the in-
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verted case of a Newtonian drop in a polymeric upper liquid, Chen et al.8

observed the breakup of a Newtonian filament in a polymer solution, and

found that it is subject to the same type of stabilization with the formation

of beads on the thinning thread.

To understand why partial coalescence appears only for an intermediate

range of drop sizes, one needs to examine the time scales of two competing

mechanisms. If it takes longer to drain the drop through the neck than

for the neck to pinch off, the latter occurs and leaves a daughter drop

behind. Conversely, if the drop drains into the lower layer before the neck

pinches off, complete coalescence results. For drops that are too large,

gravity dominates and the drop practically collapses into the bottom layer

in one shot. For drops that are too small, viscosity dominates and slows

down the thinning of the neck so complete merging takes place. In the

intermediate range, a balance between capillarity and inertia produces a

self-similar regime in which the drop diameter shrinks approximately by one

half through each cycle of the cascade.10,16 Chen et al.8 have documented

how viscoelasticity in either component narrows down the range of drop

sizes for partial coalescence.

To reflect on an argument advanced in the Introduction, the suppression

of partial coalescence by viscoelasticity provides an example that clearly

demonstrates how bulk rheology qualitatively modifies the behavior of the

interface. In this case, the rheology is manifested by “strain hardening”,

namely a steep increase in elongational viscosity during straining. Its molec-

ular origin is the stretching and alignment of polymer chains by the elonga-

tional flow. While the explanation given above sounds reasonable, it needs

to be confirmed by a quantitative study of the fluid mechanical process.

This will be accomplished by numerical computations in the following.

2.2. Numerical simulations

Laminar flows of incompressible Newtonian fluids are governed by the

Navier-Stokes equations:

∇ · v = 0, (1)

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+∇ · τ , (2)

τ = µ[∇v + (∇v)T], (3)

where v and p are the velocity and pressure in the fluid, ρ and µ are the

density and viscosity. The stress tensor τ is related to the velocity gradi-
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ent linearly for a Newtonian viscous fluid. Computational fluid dynamics

is concerned mostly with solving this set of partial differential equations

subject to proper boundary conditions.

If the fluid is non-Newtonian, τ depends on the fluid deformation in a

more complex way. For viscoelastic liquids, in particular, τ depends not

only on the deformation at the current moment, but also the history of

deformation. Hence comes the idea of “memory” and elasticity. For a

systematic exposition on rheology and constitutive modeling, the reader

may consult several monographs.1,6,7,18 For our purpose, it suffices to give

the Giesekus equation as an example of viscoelastic constitutive equations:

τ = τ p + τ s, (4)

τ s = µs[∇v + (∇v)T], (5)

τ p + λHτ p(1) + α
λH

µp

τ p · τ p = µp[∇v + (∇v)T], (6)

where the total stress tensor τ is the sum of a Newtonian solvent contribu-

tion τ s and a polymer stress τ p. In the partial differential equation govern-

ing τ p, the subscript (1) denotes the so-called upper-convected derivative:

τ p(1) =
∂τ p

∂t
+ v · ∇τ p − (∇v)T · τ p − τ p · ∇v. (7)

λH and α are respectively the relaxation time and mobility parameter of

the model, and µs and µp are the solvent and polymer viscosities. The

numerical solution of non-Newtonian flows is a great deal more complex

than that of Newtonian flows, and interested readers are referred to Owens

and Phillips.19

If one deals with flow of two immiscible components, the situation is also

more complex because now the fluid domain contains internal boundaries

that deform and move. The motion of the interfaces is most conveniently

described in Lagrangian terms, while the Navier-Stokes equations are cus-

tomarily solved in an Eulerian framework. The crux is in reconciling these

two viewpoints. A conceptually straightforward treatment is to lay grid

points on the internal boundaries, which will track the interfacial motion in

every time step. The governing equations are solved for each component,

with matching boundary conditions on the interface. This typically calls

for a moving grid and periodic remeshing and interpolation.20 Besides the

computational overhead, a limitation of these interface-tracking methods

is the appearance of singularities when interfaces merge and rupture. An

alternative is the interface-capturing methods, which introduce an auxil-

iary scalar field to demarcate the two components and indicate the location
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of the interface.21 The scalar field evolves according to a postulated con-

vection or convection-diffusion equation. Thus, the computational burden

of tracking the interface is replaced by that of solving an additional evo-

lution equation. The main attractions are (i) now the governing equations

can be solved over the entire domain on an Eulerian grid, with no need to

match the boundary conditions on the interface; (ii) topological changes of

the interface, such as rupture, can be handled more naturally. The most

widely used interface-tracking methods include the volume-of-fluid method,

the level-set method and the diffuse-interface method.

The computations to be described here are based on the diffuse-interface

method.22 We imagine the two components, although nominally immisci-

ble, nevertheless mix to a slight degree over a narrow interfacial region. We

define a phase-field variable φ as a scaled “concentration” such that φ = −1

in fluid bulk A and φ = +1 in B, and the interface is traced out by the

level curve of φ = 0. We further require the evolution of φ be governed by

the Cahn-Hilliard equation:23,24

∂φ

∂t
+ v · ∇φ = γλ∇2

[

−∇2φ+
φ(φ2 − 1)

ǫ2

]

, (8)

where γ is the Cahn-Hilliard mobility parameter, λ is the density of the

mixing energy between the two components, and ǫ is the capillary width.

This is a phenomenological model based on the ideas that the evolution of φ

is governed by a mixing energy in the diffuse interface, and that the species

diffuse across the interfaces as driven by gradients of the chemical poten-

tial.25 The equilibrium φ profile is a minimizer of the mixing energy, and

has the characteristic sigmoidal shape sketched in Fig. 6. The interfacial

tension can be shown to be related to the Cahn-Hilliard model parameters

as

σ =
2
√
2

3

λ

ǫ
, (9)

and the interfacial thickness, say defined between φ = ±0.9, is roughly 5ǫ.

Feng et al.22 have given a general review of the theoretical background of

the model, as well as its computational implementation for simulating two-

phase flows. We only mention that for the problems at hand, this formalism

enjoys the advantage that the moving interface and viscoelastic rheology

can be handled in a unified framework based on the free energy.

The numerical solution of the continuity and momentum equations (1,

2), the constitutive equations (4–6) and the Cahn-Hilliard equation (8) is

a daunting task. Beside the complexity of the equations, the numerical
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Fig. 6. Sketch of the phase-field profile across the diffuse interface.

challenge lies in resolving the thin interfacial profile adequately so the in-

terfacial tension can be computed accurately. Over the past few years, we

have developed a finite-element package AMPHI that uses finite-elements

with a novel adaptive meshing scheme. The scope of this chapter does not

allow a detailed discussion of the algorithm, for which we refer the reader

to Yue et al.26,27 In the following, we focus on using this methodology to

simulate the partial coalescence phenomenon in Newtonian and viscoelas-

tic liquids. Axisymmetry is always assumed in the geometric setup of the

simulation.

As a validation of the diffuse-interface model and the numerical algo-

rithm, we first tried to reproduce the partial coalescence experiment for

Newtonian liquids, with a water drop above a decane-water interface.28

The calculation uses the true densities and viscosities of water and decane,

and proper values for λ and ǫ to produce the correct interface tension σ.

Figure 7 gives a frame-by-frame comparison between experiment and simu-

lation for one cycle of partial coalescence. The experimental snapshots are

separated by a fixed interval of 542 µs, and the time below each gives the

time for the numerical picture that best matches the experimental snapshot.

Therefore, following the initial rupture at t = 0, the numerical simulation

accurately reproduces the progress of the coalescence, from the propagation

of the capillary wave up the drop (a–e) to the formation of a liquid column

(e–g), and finally to the formation of a neck (g–i). The next 2 frames,

however, covers the pinchoff of the neck that generates the daughter drop.
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Fig. 7. Frame-by-frame comparison between observation and computation of one cycle
of partial coalescence. Streamlines in the computational plot indicate the local flow field.
From Yue et al.28 with permission, c©2006 American Institute of Physics.

This is when the numerical simulation fails to track the progression in the

correct time. Instead, the pinchoff occurs some 40% faster numerically

than in reality. After the daughter drop is formed (k), the simulation again

captures the real event precisely.

The discrepancy for frames (j) and (k) highlights a fundamental limi-

tation to the diffuse-interface method. In reality, interfaces between small-

molecule liquids are nanometers thick. If the drop itself is millimeters in
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Fig. 8. Suppression of partial coalescence by viscoelasticity. The drop and lower fluid
is a viscoelastic Giesekus fluid, while the upper layer is a Newtonian fluid. From left to
right, the snapshots are at dimensionless times t = 0.740, 0.837, 0.934, 1.04 and 1.19,
scaled by the capillary time tc. From Yue et al.28 with permission, c©2006 American
Institute of Physics.

diameter, there is a gap of 106 in length scales that needs to be bridged.

For the current generation of computational power and algorithms, it is

impossible to fully resolve the minute details within the interfacial profile,

as a diffuse-interface method must, while covering the drop-scale hydrody-

namics at the same time. Thus, the interfacial thickness in the simulations,

given by ǫ, is typically much larger than the real values. Experience shows

that once the ratio Cn = ǫ/D, known as the Cahn number, falls below a

threshold on the order of 10−2, the numerical result becomes independent

of Cn in most situations.25,26 This is when the sharp interface limit is

reached, a necessary condition for the model predictions to be physically

meaningful. The pinchoff in Fig. 7 is an exception to this rule in that the

physical length scale of interest, say the neck radius, tends to zero. Thus,

the Cn = 5 × 10−3 used, sufficiently small up to frame (i), eventually be-

comes too large as the neck pinches off. Two thicker interfaces start to

overlap and interact sooner than thinner ones, and so the numerical simu-

lation proceeds faster than reality. Thus, the diffuse-interface model can be

a powerful and in some sense unique tool for computing interfacial flows,

but one has to be aware of its inherent limitations. That partial coales-

cence occurs only for a range of drop sizes, being suppressed by gravity and

viscosity on either end of the range, has also been reproduced numerically.28

Turning now to the role of viscoelasticity in suppressing partial coales-

cence, we use the Giesekus constitutive equation (6), with model parameters

fitted roughly to the rheology of the polymer solutions. Figure 8 shows the

evolution of the interfaces for a polymer drop surrounded by a Newtonian

oil. The neck forms but the thin thread persists without breaking, as seen

experimentally in Fig. 5. Note the close proximity of the dimensionless

times between the experiment and the simulation. To confirm the explana-

tion proposed before, we plot the flow and polymer stress fields when the
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Fig. 9. Flow and stress fields near the neck for the viscoelastic drop in the second frame
of Fig. 8, t = 0.837. The left half shows contours of the vertical velocity scaled by D/tc.
The right half shows contours of the polymer stress component τpyy scaled by σ/D.
From Yue et al.28 with permission, c©2006 American Institute of Physics.

neck is at its thinnest (Fig. 9). It is evident that the strong polymer tensile

stress, due to the strain-hardening rheology, resists continued stretching

and thinning of the neck, and suppresses partial coalescence. A similar

scenario occurs when the viscoelasticity occurs in the surrounding fluid.28

There the polymer stress is activated indirectly through the no-slip bound-

ary condition on the interface; pinchoff of the neck requires stretching of

the surrounding fluid as well, which is resisted by the polymer stress.

3. Droplet self-assembly in nematic liquid crystals

3.1. Experimental observations

More than a decade ago, Poulin and coworkers29 reported that water

droplets suspended in a nematic liquid crystal (LC) organize themselves

into a chain, with a more or less constant spacing between neighboring

droplets. This was later confirmed by spectacular pictures of parallel chains

that form by self-assembly of silicone oil droplets in a nematic medium30

(Fig. 10a). More recently, 2D colloidal crystals have been made via self-

assembly of colloidal particles in a nematic LC31 (Fig. 10b).
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(a) (b)

Fig. 10. (a) Silicone oil droplets, about 2 µm in size, arrange themselves into roughly
equally spaced lines along the direction of the nematic director (indicated by the black
arrow). Adapted from Loudet et al.30 with permission, c©2000 Macmillan Magazines
Ltd. (b) Chains of silica particles, 2.32 µm in diameter, are coaxed into forming a
regular 2D crystal in a nematic LC. From left to right, the frames at advancing times
show the interaction between the single particle and the chains, which is discussed later
in the text. Adapted from Musevic et al.31 with permission, c©2006 by the American
Association for the Advancement of Science.

The key to such pattern formation is topological defects created by

droplets or particles inserted into an otherwise uniformly oriented LC. Ne-

matic LC consists of anisotropic — rodlike or disclike — molecules that are

more or less aligned with each other.32 This produces a local average orien-

tation that is conventionally marked by a unit vector n called the director.

There is also long-range order in nematic LC in that any spatial distor-

tion of the n field, in terms of the gradient ∇n, is resisted by distortional

elasticity. Besides this bulk elasticity, LC molecules also have a preferred

anchoring direction on surfaces, the most common ones being homeotropic

(perpendicular) and planar (tangential) anchoring. Thus, when a water

droplet with homeotropic anchoring is inserted into an LC single crystal,

the radial n field near the droplet comes into conflict with the uniform

far field. This conflict is resolved by nucleating a topological defect. For

homeotropic anchoring, two potential configurations are depicted in Fig. 11

with either a point defect or a line defect. These are aptly called the satel-

lite point defect and the Saturn ring defect, respectively. Both numerical

computations and direct observations have confirmed their existence, and

their stability relative to each other has been investigated extensively.33–37

For planar anchoring, surface defects called boojums prevail,34 but these

are not relevant to the self-assembly of interest here.

Poulin and coworkers29,30 observed that water and silicone-oil droplets

exhibit homeotropic anchoring on the interface, and that when droplets

line up into regular chains, each is always accompanied by a satellite point

defect. They proposed an explanation for the self-assembly based on an
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(a) (b)

Fig. 11. Sketch of the satellite point defect (a) and Saturn ring defect (b) near a droplet
with homeotropic anchoring. The solid lines trace out the director orientation.

analogy to electric dipoles. The droplet and its satellite point defect form a

dipole, say pointing from the drop center to the defect. When two droplets

are nearby, they interact through the equivalent of dipole-dipole attraction

in electrostatics. Of course, the physical origin of the attraction is different

here: when two droplets have their satellite defects on their line of centers

and on the same side, elastic distortional energy is reduced when the two

move toward each other until an optimal center-to-center separation of

roughly 2.6a, a being the drop radius.29 Thus, droplets form a line with

uniform spacing between neighbors along the direction of the background

nematic director.

The same analogy also explains the repulsion between two chains in

parallel, with their dipoles pointing in the same direction. Thus, the parallel

chains maintain a more or less equal distance from each other in Fig. 10a.

Furthermore, two chains with their dipolar directions opposite to each other

(anti-parallel) should attract each other, and this explains the formation of

the regular 2D arrays in Fig. 10b consisting of chains of alternating dipole

directions. The top row of images in Fig. 10b shows a single droplet, with a

dipole parallel to the nearby chain, being pushed away. In the bottom row,

a single particle with a dipole anti-parallel to the nearby chain is attracted

toward it.

But the drop-defect pair can be seen as a dipole only when viewed from

a large distance, i.e., when neighboring drops are far apart. When their sep-

aration is on the order of the drop diameter, the interaction is necessarily

more complex. To gain a more direct understanding of the physics un-

derlying the self-assembly, we have carried out numerical computations to



World Scientific Series Volume 3: Understanding Soft Condensed Matter via Modeling and Computations (November 2010)

Drop Dynamics in Complex Fluids 355

probe both the pairwise interaction between two droplets and the dynamic

process of self-assembly.

3.2. Numerical simulations

The simulations are based on the same diffuse-interface model explained

above. However, the microstructure of the nematic LC, namely the molec-

ular orientation represented by the director n, leads to a more complex

mathematical model. The LC itself possesses a solid-liquid duality; it flows

like a liquid but resists orientational distortion and transmits torque like an

elastic solid. The former is characterized by 6 anisotropic Leslie viscosities

and the latter by a linear Frank elasticity theory. The two are integrated in

the Ericksen-Leslie theory for LC hydrodynamics,32 which will be used in

our computations. Since we have a diffuse interface between the isotropic

and nematic liquids, the anchoring condition requires a careful treatment.

Besides, the defect normally presents a singularity in the n field, and is

regularized here using a variable order parameter near the defect core. De-

tails of the derivation can be found in the literature.5,25,38,39 For a mixture

of a nematic (marked by φ = 1) and a Newtonian viscous liquid (φ = −1),

the governing equations are:

∇ · v = 0, (10)

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+∇ · σ, (11)

∂φ

∂t
+ v · ∇φ = γλ∇2

[

−∇2φ+
φ(φ2 − 1)

ǫ2

]

, (12)

h = γ1N + γ2D · n. (13)

Equation (13) governs the evolution of the n field subject to elastic and

viscous torques. The molecular field vector h represents the elastic torque:

h = K

[

∇ ·
(

1 + φ

2
∇n

)

−
1 + φ

2

(n · n− 1)n

δ2

]

− g, (14)

where K is the bulk elastic constant, δ is a small defect core size used for

regularizing the defect, and g = A[(∇φ·∇φ)n−(n·∇φ)∇φ] for homeotropic

anchoring, A being the anchoring energy. The time derivative of n is em-

bedded in the vector N = dn
dt

− 1
2 [(∇v)T −∇v] · n, which is the rotation

of n with respect to the background flow field. D = 1
2 [∇v + (∇v)T] is

the strain rate tensor, and γ1 and γ2 are viscosity coefficients. The stress
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tensor

σ = −λ∇φ∇φ−K
1 + φ

2
(∇n) · (∇n)T −G+

1 + φ

2
σ′ + (1− φ)µD, (15)

with G = A[(n · n)∇φ − (n · ∇φ)n]∇φ for homeotropic anchoring, and µ

being the viscosity of the Newtonian component. σ′ is the Leslie viscous

stress in the nematic phase40

σ′ = α1D : nnnn+α2nN +α3Nn+α4D+α5nn ·D+α6D ·nn, (16)

where α1 to α6 are the Leslie viscous coefficients observing the Onsager

relationship:32 α2 + α3 = α6 − α5. The coefficients γ1 = α3 − α2 and

γ2 = α3 + α2.

The numerical algorithm is essentially the same as used in Sec. 2.2,

except that now the point defect, as well as the interface, requires locally

refined grid for accurate resolution of the sharp gradients n. For details

see Yue et al.26 and Zhou et al.39 In all the simulations to be discussed, we

use a relatively large interfacial tension so that the drops remain essentially

spherical in all times. This is true in the experimental observations, and

also simplifies the analysis of the results by excluding the effect of drop

deformation, which was essentially absent in the experimental systems. For

an example of LC anchoring coupling with drop deformation, see Zhou

et al.5

First, we place two droplets in the so-called parallel configuration, with

their “dipoles” in the same direction and along their line of centers. The

computational domain is axisymmetric in this case. Under the effect of dis-

tortional elasticity, the droplets start to move toward each other (Fig. 12a).

From this motion, one can estimate the elastic driving force on each droplet

from the Stokes drag by neglecting inertia and assuming that the drop is in

force balance during the approach. This estimate turns out to be slightly

below the true force computed from integrating the stress over the interface.

Both forces are compared with prior theoretical and experimental results in

Fig. 12b. The long-range attraction manifests a R−4 scaling, as is expected

from the attraction between two electric dipoles given by Lubensky et al.34

As the separation decreases, however, the attraction force decreases sharply,

falling below the dipole formula, and approaches zero toward R = 2.45a.

If the two droplets were initially placed closer than the equilibrium sep-

aration, they separate until R = 2.45a. The two experimental data sets

indicate that the F ∝ R−4 power-law persists to smaller separations. But

the equilibrium separation corresponding to F = 0 is in close agreement

between computation and observations.
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(a) (b)

Fig. 12. Attraction between two droplets bearing satellite point defects placed in the
parallel configuration. (a) The distance between the centers of the droplets decreasing
as the two droplets attract each other. The two insets show the birefringence patterns
around the defects computed from the director field. The point defect sits at the tip of
the two bright lobes. (b) The attraction force as a function of the droplets’ separation,
compared with the dipole formula34 and experimental data.41,42 Note that both axes
are in logarithmic scale and the long-range attraction exhibits a F ∼ R−4 power law.
Adapted from Zhou et al.39 with permission, c©2008 by the American Chemical Society.

The dynamic simulation of droplet interaction thus confirms the idea

that the long-range attraction between droplets in the parallel configuration

resembles dipolar attraction. For smaller separations, the idea of dipole-

dipole attraction no longer applies, and it certainly cannot account for

the equilibrium separation and the repulsion between droplets that are too

close to each other. This is where the dynamic computation provides results

and insight that cannot come from the heuristic argument. Going beyond

pairwise attraction, Zhou et al.39 have confirmed that a group of droplets in

a 2D domain indeed form a chain along the undisturbed nematic director.

To probe sidewise interactions between chains of droplets, we arrange

two chains in initial configurations with their “dipoles” either in the same

direction (parallel) or reversed (anti-parallel). These computations are done

in a 2D planar domain. Figure 13 demonstrates that the parallel chains re-

pel each other, while the anti-parallel chains attract each other. These

trends are in qualitative agreement with the experimental observations in

Fig. 10b. The anti-parallel chains eventually approach an equilibrium sep-

aration of 2.44a, which is close to the observed value of 2.31a by Musevic

et al.31 despite the two-dimensionality of the computations.

The interaction can be understood from the director patterns. For the
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(a) (b)

Fig. 13. Lateral interaction between chains of droplets. (a) The chains in the parallel
configuration, with their dipoles in the same direction, repel each other. (b) The chains in
the anti-parallel configuration, with their dipoles in the opposite direction, attract each
other. The grayscale contours are for (n2

x − 1/2)2 , nx being the horizontal component
of the director, such that white indicates a vertical or horizontal n and black means a
45◦ tilt. Adapted from Zhou et al.39 with permission, c©2008 by the American Chemical
Society.

parallel configuration sketched in Fig. 14a, the director n is forced to make

a sharp upward turn between the chains. This is reflected in Fig. 13a by

the narrow vertical dark and bright bands between the chains. The closer

the two chains, the more severe the spatial distortion in between and the

greater the elastic energy. Thus, the two chains repel each other. Note,

however, the unexpected break of symmetry in the dynamic simulation of

Fig. 13a. The bottom droplet on the right chain has rotated its dipole

clockwise so as to point its satellite defect toward the bottom droplet of

the left chain. This created an attraction similar to Fig. 12 and pulls the

two bottom droplets toward each other. In the anti-parallel configuration

of Fig. 14b, the director field merges smoothly between the two chains, with

n assuming a relatively uniform, horizontal orientation. This n field has

lower distortional energy than if the chains are far apart, which explains the

attraction between the chains. If they are too close together, however, the

radial n field surrounding each droplet comes into direct conflict, resulting

in greater distortion and higher energy. The minimum-energy state is the

equilibrium with a separation of 2.44a between the chains.

Finally, we place 8 identical droplets in random positions in a doubly

periodic 2D domain, and observe their self-assembly (Fig. 15). The drop-

drop interaction is dominated by longitudinal dipole-like attractions (when
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(a) (b)

Fig. 14. Sketch of the director field around two chains of droplets. (a) The parallel
configuration with the same dipolar orientation for the chains. (b) The anti-parallel
configuration with opposite dipolar orientations.

nearby droplets have their satellite defects on their line of centers) and side-

ways repulsions (when their dipoles are in the parallel configuration). For

example, drops 3, 5 and 7 initially move away from each other sideways.

Then drop 5 is attracted by drop 6, and is eventually pulled in between

drops 3 and 6 to form a diagonal chain. Drops 1, 4 and 2 seem to form a

vertical chain by themselves. Since the domain is doubly periodic, there is

no prescribed background nematic orientation to which a chain may align.

Thus, the two chains spontaneously assume different angles. Conceivably,

they will eventually line up into a single long chain, although our domain

would not be large enough to accommodate that. Despite the small num-

ber of droplets in the simulation, the dynamic scenario of self-assembly

exhibits the main features observed in reality (cf. Fig. 10a), and confirms

that pairwise attraction (longitudinal) and repulsion (lateral) are the dom-

inant mechanisms at play.

4. Summary

To recapitulate, we have described two intriguing phenomena in drop dy-

namics involving polymer solutions and nematic liquid crystals, and demon-
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(a) t= 6.38 (b) t= 17.2

(c) t= 33.1 (d) t= 547.8

Fig. 15. Self-assembly of 8 drops in a doubly periodic domain. Time is made
dimensionless by ηa2/K. Adapted from Zhou et al.39 with permission, c©2008 by
the American Chemical Society.

strated how numerical computation based on a diffuse-interface model can

provide explanations to the experimental observations. The main insights

from this chapter are:

(1) The interface between complex fluids may exhibit behavior qualitatively

different from that for Newtonian fluids.

(2) The cause of such behavior should be sought from the coupling among

microstructural conformation, interfacial morphology and large-scale

fluid flow.

(3) Numerical computation is a powerful tool that can be used to gain
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an understanding of the physical mechanisms that would otherwise be

difficult to obtain.

The above insights, although derived from two specific examples, is rele-

vant to all two-component complex fluids having internal boundaries. In

the case of drop-interface partial coalescence, it is the strain-hardening

rheology of the polymeric component, a direct manifestation of molecular

alignment and stretching, that suppresses partial coalescence under suitable

conditions. In the case of droplets self-assembling in a nematic suspending

medium, it is the distortional elasticity in the bulk and anchoring on the

interfaces, both originating from the molecular orientation, that drive the

maneuver of the droplets relative to each other.

As mentioned at the beginning, the purpose of the chapter is not to

provide a comprehensive summary of the literature on drop dynamics in

complex fluids. Instead, we use concrete examples to illustrate the rich

dynamics of interfaces between complex fluids, and demonstrate a theoret-

ical model and numerical technique that are well suited for this type of

problems. We hope that the chapter has aroused the readers’ interest in

such problems, and given them the basic ideas for formulating a research

approach to similar systems in their own work.
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