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Abstract - This work presents a three-dimensional finite-element algorithm, based on

the phase-field model, for computing interfacial flows of Newtonian and complex fluids. A

3D adaptive meshing scheme produces fine grid covering the interface and coarse mesh in

the bulk. It is key to accurate resolution of the interface at manageable computational costs.

The coupled Navier-Stokes and Cahn-Hilliard equations, plus the constitutive equation for

non-Newtonian fluids, are solved using second-order implicit time stepping. Within each

time step, Newton iteration is used to handle the nonlinearity, and the linear algebraic sys-

tem is solved by preconditioned Krylov methods. The phase-field model, with a physically

diffuse interface, affords the method several advantages in computing interfacial dynamics.

One is the ease in simulating topological changes such as interfacial rupture and coalescence.

Another is the capability of computing contact line motion without invoking ad hoc slip

conditions. As validation of the 3D numerical scheme, we have computed drop deformation

in an elongational flow, relaxation of a deformed drop to the spherical shape, and drop

spreading on a partially wetting substrate. The results are compared with numerical and

experimental results in the literature as well as our own axisymmetric computations where

appropriate. Excellent agreement is achieved provided that the 3D interface is adequately

resolved by using a sufficiently thin diffuse interface and refined grid. Since our model in-

volves several coupled partial differential equations and we use a fully implicit scheme, the

matrix inversion requires a large memory. This puts a limit on the scale of problems that

can be simulated in 3D, especially for viscoelastic fluids.
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I. INTRODUCTION

Interfacial dynamics is scientifically intriguing because of the coupling between hydro-

dynamics in the bulk and deformation of the interfaces. It is also taking on more practical

significance with the recent technological advances in microengineering and miniaturization.

For example, drop and bubble dynamics has been a key element in designing microfluidic

devices [1], where the smaller length scales accentuates the interfacial forces. From a com-

putational standpoint, the moving internal boundaries present a numerical challenge, and

two classes of methods have been developed to meet it: interface tracking and interface

capturing [2]. The former deploys grid points or markers on the interface that track it

each time step [3–5]. The latter uses an auxiliary scalar field that distinguishes the fluid

components. Thus, the onus of managing a moving grid is replaced by that of computing

a convection or convection-diffusion equation for the scalar field, typically on an Eulerian

grid. Each approach has its advantages and limitations.

The phase-field method to be discussed in this paper is an interface-capturing method.

It is distinguished from other methods in its class by having a physical origin in a diffuse

interface where the two fluid components mix to a limited extent and store a mixing energy.

Thus, the phase-field parameter φ has a well defined physical meaning; its profile in the

diffuse interface may be related to van der Waals-type of long range forces [6], and the

mixing energy gives rise to interfacial tension [7]. Because of its energy-based formalism

and the physical picture of the diffuse-interface model, it has some unique features among

interface-capturing methods [8]: (i) The evolution of the interface is self-consistent and

requires no ad hoc intervention such as the re-initialization in level set methods. (ii) The

theory has an energy law that ensures well-posedness in numerical computation [9, 10].

(iii) The variational framework easily integrates interfacial treatment and non-Newtonian

rheology, as the latter is almost always derivable from a microstructural free energy [11].

(iv) It regularizes singular events on the interfaces such as breakup [12], coalescence [6] and

moving contact lines [13,14].

In recent years, several groups have successfully applied the phase-field method to two-

phase flow simulations [7,15–18, e.g.]. These computations demonstrated that for the results

to be quantitatively accurate, two conditions have to be met. First, the interface should
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be sufficiently thin so that the theoretical model approaches the so-called sharp-interface

limit [19]. Second, this thin region must be adequately resolved by fine mesh; it typically

requires some 10 grid points. Otherwise, the interfacial layer is subject to unphysical distor-

tions, the interfacial tension is inaccurate and the results are unreliable. Thus, interfacial

resolution is the bottleneck for phase-field computations. To address this issue, we have

developed AMPHI, a finite-element algorithm on an unstructured grid that is adaptively

refined and coarsened as the interface moves [20]. It has been applied so far to drop-interface

partial coalescence [21], drop formation in microfluidic channels [12], cell motion in capil-

lary [22], defect dynamics in nematic liquid crystals [23] and defect-mediated self-assembly

of microdrops [24]. In particular, we have taken advantage of the variational formalism of

the model to incorporate the non-Newtonian rheology of complex fluids.

With a few exceptions [18,25, e.g.], prior phase-field computations are in 2D planar and

axisymmetric geometries. In many situations, the two-dimensionality constitutes a serious

drawback. Not only are there quantitative differences between 2D and 3D dynamics, as is

expected, but they sometimes differ qualitatively. One example is the capillary instability

of a thread in 3D contrasted with the stability of a 2D sheet. Besides, the most interesting

feature of the physical problem might be accessible only in 3D. For instance, the stratified

flow of two fluid components in a pipe is subject to distortion of the interface. A particularly

intriguing phenomenon is viscous encapsulation, whereby the less viscous component encir-

cles the more viscous one [26]. In this geometry, a lubrication approximation that ignores

the variation along the axis of the pipe will decouple the shear of the primary flow and

the secondary flow in the cross-section that would distort the interface [27]. Hence, viscous

encapsulation in stratified Newtonian fluids can only be probed by fully 3D computations.

Finally, applications to engineering problems will inevitably involve complex 3D geometries.

This work represents an extension of the two-dimensional AMPHI to a full 3D ver-

sion AMPHI3D. It involves upgrading the solver and mesh generation modules to 3D, and

properly integrating the two. In this paper, we will describe the theoretical models and

computational algorithm, and present solutions of benchmark problems as validation. As

before, we are especially interested in interfacial dynamics of complex fluids with non-

Newtonian rheology. If our recent 2D computations illustrated the potential of the AMPHI
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algorithm, the 3D version promises a broader range of applications, with opportunities to

explore intriguing physics in more complex problems.

II. THEORY AND NUMERICAL METHOD

A. Diffuse interface model

The diffuse-interface method as applied to two-phase flows has been described by a

number of authors [15,16,28]. Yue et al. [7,11] have shown how the model can be extended to

non-Newtonian fluids, and developed the AMPHI algorithm in two dimensional geometries

based on finite elements with adaptive meshing [20]. The main ideas of the 3D algorithm

are close to those in 2D. In this section, we will briefly summarize these ideas and give

the governing equations, using the mixture of a Newtonian and an Oldroyd-B fluid as an

example. The method accommodates other types of complex fluids such as nematic liquid

crystals [11, 23, 24, 29, 30], but we will confine this paper to Newtonian-Newtonian and

Newtonian-Oldroyd-B mixtures.

Consider a Newtonian fluid in contact with an immiscible viscoelastic Oldroyd-B fluid.

Their interface may intersect a solid wall to produce a three-phase contact line. The mov-

ing contact line presents a well-known stress singularity, and the diffuse interface provides

a particularly attractive regularization scheme. Thus, we will include the contact line in

the general formulation, and compute the spreading drop as one of the benchmark prob-

lems. In the diffuse interface framework, the Newtonian and Oldroyd-B components mix

to some extent in a very thin interfacial region and store a mixing energy fmix. In addi-

tion, each component interacts with the solid substrate with a fluid-solid surface energy fw.

An Oldroyd-B fluid is a dilute suspension of polymer chains, modeled as linear Hookean

dumbbells, in a Newtonian solvent [31]. Thus, there is a bulk energy fd in the Oldroyd-

B component due to the dumbbells. We introduce a phase-field variable φ such that the

concentrations of the Oldroyd-B and Newtonian components are (1 + φ)/2 and (1 − φ)/2,

respectively. Now the total free energy ftotal may be written as:

ftotal =

∫

Ω
fmix(φ,∇φ) dΩ +

∫

∂Ωw

fw(φ) dA +

∫

Ω
fd dΩ, (1)

where Ω and ∂Ωw denote the fluid domain and the solid substrate. For the mixing energy,

we adopt the familiar Ginzburg-Landau form [32]:

fmix(φ,∇φ) =
1

2
λ|∇φ|2 +

λ

4ǫ2
(φ2 − 1)2, (2)
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where λ is the mixing energy density with the dimension of force, and ǫ is a capillary width

indicative of the thickness of the diffuse interface. As ǫ → 0, the ratio λ/ǫ produces the

interfacial tension σ in the classical sense [7, 16]:

σ =
2
√

2

3

λ

ǫ
. (3)

The wall energy in diffuse-interface form [14,33,34] is

fw(φ) = −σ cos θS
φ(3 − φ2)

4
+
σw1 + σw2

2
, (4)

where σw1 and σw2 are the fluid-solid interfacial tensions for the two fluids, and they deter-

mine the static contact angle θS through Young’s equation:

σ cos θS = σw2 − σw1. (5)

Finally the free energy of the viscoelastic fluid

fd =
1 + φ

2
n

∫

R3

(

kT ln Ψ +
1

2
HQ · Q

)

ΨdQ, (6)

where n is the number density of dumbbells, k is the Boltzmann constant, T is temperature,

H is the elastic spring constant, Ψ(Q) is the configuration distribution and Q is the vector

connecting the ends of the spring [31].

A variational procedure applied to the total free energy yields the stress tensor for the

system, with contributions from the elastic springs and the interface. Thus, the equations

of motion can be written as:

∇ · v = 0, (7)

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+ ∇ ·
[

µ(∇v + ∇vT)
]

+
1 + φ

2
∇ · τ d +G∇φ+ ρg, (8)

where ρ = 1+φ
2 ρ1 + 1−φ

2 ρ2, ρ1 and ρ2 being the densities for the Oldroyd-B and New-

tonian components, and µ = 1+φ
2 µs + 1−φ

2 µn, µs being the viscosity of the Newtonian

solvent in the Oldroyd-B component and µn the viscosity of the Newtonian component.

G =
δ

R

fmixdΩ
δφ

= λ
[

−∇2φ+ φ(φ2−1)
ǫ2

]

is the chemical potential and g is the gravitational

acceleration. Note that for simplicity, we have adopted an incompressible formalism, which

differs slightly from the quasi-compressible model of Lowengrub and Truskinovsky [15]. The

results are unaffected as long as the interface is thin enough for the sharp-interface limit
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to be approached. The interfacial stress G∇φ is the diffuse-interface representation of the

interfacial force on the fluids [7]. The elastic stress τ d due to the dumbbells obeys the

Maxwell equation [7, 20]:

τ d + λHτ d(1) = µp[∇v + (∇v)T ], (9)

where the subscript (1) denotes the upper convected derivative, λH is the relaxation time,

and µp is the polymer viscosity. Finally, the evolution of φ is governed by the Cahn-Hilliard

equation:
∂φ

∂t
+ v · ∇φ = γ∇2G, (10)

where γ is the mobility [7]. Equations (7–10) form the governing equations for our two-phase

system. For discretization using second-order finite elements, the fourth-order Cahn-Hilliard

equation is decomposed into two second-order equations [20,35].

The governing equations are supplemented by the following boundary conditions on the

solid wall ∂Ωw:

v = vw, (11)

n · ∇G = 0, (12)

λn · ∇φ+ f ′w(φ) = 0, (13)

where vw is the wall velocity and n is the unit normal to the boundary. The first is the

no-slip boundary condition, which implies that the motion of the contact line is solely

due to the Cahn-Hilliard diffusion. The second condition is zero flux through the solid

wall, which helps conserve the mass for each fluid component. The third is the natural

boundary condition from the variation of the wall energy fw, and L = λn · ∇φ + f ′w(φ)

represents the surface chemical potential. Thus, this condition stipulates that the fluid layer

be always at equilibrium with the solid substrate, and the dynamic contact angle remain on

the leading order at the static value θs [14,33]. Equation (13) can be generalized to account

for relaxation of φ in the near-wall fluid layer, which will allow the dynamic contact angle

to deviate from θs. For the simplest case of a constant fw = σw1 = σw2, the static contact

angle θs = π/2 and the two fluid components interact equally with the solid substrate.

Non-90◦ contact angles will be specified by a non-constant fw(φ).
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The AMPHI3D algorithm has the same structure as its 2D precursor: a finite-element

flow solver integrated into an adaptive meshing scheme. The former is based on a Navier-

Stokes solver that Hu et al. [36, 37] have developed for simulating particle motion in New-

tonian and viscoelastic fluids, while the latter is based on the mesh generator GRUMMP

developed by Ollivier-Gooch and coworkers [38].

B. Numerical implementation

The discretization of the governing equations follows the standard Galerkin formalism

[36], and the weak forms of the governing equations are similar to those given by Yue

et al. [20]. The boundary conditions can be summarized as:

v = u, on ∂Ωu (14)

(−pI + τ ) · n = 0, on ∂Ωτ (15)

τ d = τ in, on ∂Ωin (16)

∇φ · n = − 1

λ
f ′w(φ), on ∂Ωw (17)

∇(ψ + sφ) · n = 0, on ∂Ω (18)

where ∂Ω = ∂Ωu

⋃

∂Ωτ and ∂Ωu

⋂

∂Ωτ = ∅, and ∂Ωin is the inflow boundary. For sta-

tionary walls, u = 0. Note that Eq. (17) is a natural boundary condition that is easily

incorporated into the finite-element formulation.

For spatial discretization, we use piecewise quadratic (P2) elements for v, φ and ψ, and

piecewise linear (P1) elements for p and τ d on an unstructured tetrahedral mesh. For time

marching, we use a second-order, fully implicit scheme. The nonlinear algebraic system

that results from the finite-element discretization is solved by an inexact Newton’s method.

Within each Newton iteration, the sparse linear system is solved by preconditioned Krylov

methods such as the generalized minimum residual (GMRES) method and the biconjugate

gradient stabilized (BCGSTAB) method.

C. Adaptive mesh generation

To achieve high numerical accuracy at a moderate computational cost, we need a mesh

with dense grids covering the interfacial region and coarser grids in the bulk. This is

particularly important to a diffuse-interface algorithm, since the interface must be thin
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enough to attain the sharp-interface limit and yet be adequately resolved for the interfacial

forces to be computed accurately. We deploy an Eulerian mesh in space, with a “ribbon”

of refined grids covering the interfacial region. As the interface moves out of the fine mesh,

the mesh in front is refined while that left behind is coarsened. Such adaptive meshing

is achieved by using a general-purpose mesh generator GRUMMP. We have used the 2D

version of GRUMMP in our 2D AMPHI algorithm [20], and will summarize the main ideas of

GRUMMP and emphasize features unique to 3D meshing. For further details on GRUMMP,

interested readers may consult the work of Ollivier-Gooch et al. [39,40]

GRUMMP generates a mesh by using Delaunay refinement, and controls the spatial

variation of grid size using a scalar field LS , which specifies the intended grid size at each

location in the domain. In our study of interfacial dynamics, the grid size should be finest

in the interfacial region, and gradually coarsens away from the interface. Thus, it is natural

to define LS using the phase-field variable φ. The scheme that we previously devised [20]

for meshing 2D domains turns out to work equally well for 3D domains:

LS(x, y, z) =
1

|∇φ|
√

2
C

+ 1
h∞

, (19)

where h∞ is the mesh size in the bulk, and the constant C controls the mesh size in the

interfacial region. As φ varies between ±1 across the interface, which has a thickness of

several ǫ [7], LS takes a value h1 ≈ C · ǫ at the interface. In this paper, we have used

C values between 0.5 and 1; results will show that good mesh resolution is achieved with

h1 ≤ ǫ. As the diffuse interface has a thickness of roughly 7.5ǫ, it typically comprises some

10 grid points [7, 20]. In addition, the far-field mesh size h∞ can be set to different values

h2 and h3 in the two bulk fluids. This will allow, for instance, the interior of a drop to

be more finely resolved than the far field of the suspending fluid. In practice, LS is used

in combination with a user-specified “grading factor” that determines how rapidly the grid

size increases away from the interface.

GRUMMP produces tetrahedral elements in 3D based on LS , following the scheme

of Shewchuk [41] but with several significant improvements in the areas of cell size and

grading control [39]. It begins with enclosing the computational domain Ω inside a large box

and implementing an initial tetrahedralization that incorporates all vertices on the domain
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boundary ∂Ω into the mesh. Then tetrahedra outside Ω are discarded. Shewchuk [41]

has shown that for common shapes of Ω, the surface ∂Ω does have a constrained Delaunay

tetrahedralization, which means that the surface mesh can be generated. Next, for elements

that are too large relative to the local LS value, and for badly shaped elements, Watson

point insertion [42] is performed at the tetrahedral circumcenter. This is implemented by

using a priority queue listing all elements based on size and shape. For each tetrahedron, a

size measure ML and a shape measure MS are computed:

ML =
2√
3
· r

LS

, (20)

MS =

√
6

4
· lmin

r
, (21)

where r is the circumradius, lmin is the shortest edge of the tetrahedron, and LS is the

average of the LS values on all its vertices. Elements with a larger ML or a smaller MS

receive higher priority for point insertion. This scheme limits the ratio lmin/r to above 0.5

with sufficiently smooth grading, i.e., with gradual spatial variation of the element size.

However, in three dimensions, this lower bound on lmin/r is not sufficient for eliminating

all large-aspect-ratio tetrahedra, which can degrade the accuracy of finite-element solutions

of partial differential equations. To address this, the mesh is post-processed by swapping

edges and shifting certain vertices. In our experience, this eliminates all poorly shaped

tetrahedra from the mesh. Figure 1 shows an example of the mesh inside a cube containing

an ellipsoid. Because of symmetry, only one eighth of the physical domain is meshed.

In Fig. 1(b) the interface is covered by a layer of the finest grids. But in dynamic

simulations, the interface will in time move out of this layer into coarser grids. Before

this happens, GRUMMP is called to refine and coarsen the neighboring regions upstream

and downstream of the moving interface, respectively, by point insertion and removal. The

solution of the last time step is then projected onto the new grid for time integration.

Typically, such remeshing takes place roughly once every 10 time steps. The adaptive

coarsening and refinement scheme is similar in principle to the previous 2D implementation,

and more details can be found in Yue et al. [20] We also use the normal speed of the interface

to constrain the time step so that the interface does not advance more than a whole element

at one time step.
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(a) (b)

Figure 1: (a) An unstructured tetrahedral mesh generated by GRUMMP with interfacial refinement.
For clarity only surface grids on the coordinate planes are drawn. The parameters are: interior mesh
size h2 = 0.25, outer boundary mesh size h3 = 1, and interfacial mesh size h1 = 0.02. (b) A magnified
view of the interfacial region. The solid curves indicate the ellipsoidal surface.

To a large extent, the size of the mesh limits the magnitude of the problems that can be

simulated by AMPHI3D. For instance, the maximum number of tetrahedra for a machine

with 10 GB memory is around 150,000. The large memory requirement arises from the fully

implicit scheme for solving the Navier-Stokes, Cahn-Hilliard and constitutive equations. On

a 3.4 MHz CPU, each time step takes roughly 5 minutes (mostly expended on inverting the

linear system), and a typical simulation lasts 10 days.

III. RESULTS AND DISCUSSION

In this section, we will present the numerical results for four problems: drop retraction

from an elongated spheroidal initial shape, drop deformation under elongational flow, drop

spreading on a partially wetting substrate, and viscoelastic drop retraction. The results

are compared with those from the 2D axisymmetric simulations where appropriate as well

as those in the literature. It serves to validate the numerical scheme and to demonstrate

the capabilities and limitation of our tools. The physical background for the benchmark

problems is such that inertia is unimportant in all of them. Thus, this aspect of the code is

not probed in this study. We have previously computed axisymmetric flows in which inertia

figures prominently [20,21].

A. Retraction of elongated drop
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Figure 2: The geometric setup for computing drop retraction. The computational domain is one-
eighth of the physical geometry and symmetric boundary conditions are imposed on all three direc-
tions. Note that this figure shows only a small proportion of the actual computational domain.

Drop retracting from an elongated initial shape to a sphere in a quiescent matrix

has received much attention as an experimental method for measuring the interfacial ten-

sion [43–46]. This is a good benchmark problem for us for two reasons. First, the retraction

is driven only by the interfacial tension. Thus, it is a sensitive test on how accurately our

3D algorithm resolves the interfacial layer and computes the interfacial force. Second, the

geometry is axisymmetric, and we can compare the 3D results to high-accuracy 2D axisym-

metric results. Figure 2 shows the portion of the computational domain that contains the

drop. Because of symmetry only one-eighth of the physical domain needs to be computed.

The size of the domain is 5R0 × 5R0 × 5R0 where R0 is the radius of the undeformed drop.

The drop is located at the center of the physical domain, which is at one corner of the

computational domain. We used symmetry conditions (zero normal velocity and zero shear

stress) on the three coordinate planes, and stress-free conditions on the far-field bound-

aries. Initially, the major and minor axis of the drop are a = 1.5625R0 and b = c = 0.80R0.

In drop retraction experiments, the fluids are typically highly viscous and the retraction
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(a) (b)

Figure 3: Retraction of an elongated drop computed using AMPHI3D. (a) Convergence with respect
to mesh resolution at Cn = 0.05. The three lines practically overlap. (b) Convergence with respect to
the interfacial thickness in the diffuse-interface model. Time is scaled by µmR0/σ, and the viscosity
ratio β = 1.

speed is very low. Thus, we have neglected inertia in our computations. Since there is

no externally imposed velocity in the problem, the only time scale is the capillary time

tc = µmR0/σ. Three dimensionless parameters may be constructed: the viscosity ratio

β = µd/µm, with the subscripts d and m denoting the drop and matrix respectively, the

Cahn number Cn = ǫ/R0 that indicates how thin the diffuse interface is, and the Peclet

number Pe = σR0ǫ
2/(µdγλ) that indicates the magnitude of the Cahn-Hilliard diffusion.

As alluded to at the beginning, an accurate diffuse-interface solution requires that the

interface be thin enough to approximate the sharp-interface limit, and that the thin in-

terface be resolved by a sufficient number of grid points. These conditions may be called,

respectively, model convergence and mesh convergence. For the mesh convergence tests, we

fix the Cahn number Cn = 0.05 and vary the interfacial mesh size h1 by tuning the param-

eter C in Eq. (19). The bulk mesh sizes h2 and h3 are fixed at 0.35R0 and 0.9R0, as further

refinement produces no visible change in the results. To confirm model convergence, we

vary the Cahn number down to 0.03. Figure 3 depicts the retraction of the elongated drop,

in terms of the relaxation of the drop deformation parameter D = (a−b)/(a+b), computed

using different Cn and h1 values. Figure 3(a) shows that mesh convergence is achieved when

the interfacial grid size h1 is less than or equal to the capillary width ǫ. This is similar to
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the criterion in 2D simulations [20] for various flow conditions. Figure 3(b) demonstrates

that the model prediction converges to the sharp-interface limit when Cn ≤ 0.05. This is

a surprisingly lax criterion; the value 0.05 is not only much larger than for typical physical

problems with real interfaces, but is above the critical value (Cn ∼ 0.01) previously deter-

mined for 2D simulations [20]. The reason is that the retraction is a very mild flow that does

not stretch and distort the interfacial profile strongly. In more severe flow situations, such

as drop deformation in an elongational flow (see subsection III.B below), model convergence

requires a more stringent threshold.

Once the sharp-interface limit is achieved, the mobility γ and the Peclet number Pe

matter little to the results. For instance, we have varied Pe between 2357 and 9428 in

Fig. 3, with virtually no effects on the model-converged simulations. This is because the

φ profile remains at the equilibrium state when the interface becomes sufficiently thin. As

long as the correct interfacial tension is produced, details of the Cahn-Hilliard diffusion

within the thin interface are irrelevant to the retraction of the drop. This contrasts the

drop spreading problem in subsection III.C, where the speed of the moving contact line is

determined by the magnitude of Cahn-Hilliard diffusion.

Now that we established the thresholds for model and mesh convergence, we study

the effect of the viscosity ratio β on drop retraction, and compare the results with 2D

axisymmetric simulations and experimental data. Both ǫ and h1 are assigned 0.03R0, which

implies Cn = 0.03. The other two grid sizes are h2 = 0.35R0 inside the drop and h3 =

0.9R0 in the matrix. The generated mesh has 194,829 tetrahedra and 35,910 vertices. The

computational results are shown in Fig. 4 for three β values. The drop retracts more quickly

for lower β. Note that time is scaled by the capillary time tc = µmR0/σ based on the matrix

viscosity. The effect of β implies that the retraction is slowed down by drop-phase viscosity,

which is not surprising. For the moderate β values tested, much of the retraction occurs

within several tc. Since the process is governed by the competition between interfacial

tension and viscosity, tc is indeed the proper time scale. Besides, we have carried out

2D axisymmetric computations using the same geometric and physical parameters. The

agreement between 2D and 3D computations is excellent for all three β values; this may be

taken as a validation of the accuracy of the 3D algorithm.
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Figure 4: Comparison between 2D and 3D predictions of drop retraction for 3 different viscosity
ratios. Time has been made dimensionless by the capillary time tc = µmR0/σ.

Guido and Villone [47] measured drop retraction in Newtonian fluids, and compared the

data with a small-deformation theoretical formula:

D = D0 exp

[

− 40(β + 1)

(2β + 3)(19β + 16)
t

]

(22)

where D0 is the initial deformation parameter, and time has been made dimensionless

by tc = µmR0/σ. Equation (22) predicts an exponential relaxation of D(t) as well as a

particular dependence on the viscosity ratio β. Thus, the data should fall on a straight

line in a semi-log plot, whose slope would then allow a straightforward calculation of the

interfacial tension σ. This is the basis for using drop retraction for measuring σ. Plotting

their data as lnD versus t, Guido and Villone found that the straight line prevails only

after D has fallen below a value of 0.09. This is little surprise since Eq. (22) derives from

a small-deformation theory. Thus, Guido and Villone [47] have taken D0 = 0.09 to be the

start of the exponential relaxation.

In Fig. 5, we compare our computations for 3 viscosity ratios with the experimental

data of Guido and Villone [47] and the small-deformation theory (Eq. 22). Following these
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Figure 5: Drop retraction: comparison with the experimental data and the small-deformation

theory [47]. Time is made dimensionless by (2β+3)(19β+16)
40(β+1)

µmR0

σ
, and its origin has been shifted to

the moment when the instantaneous deformation parameter D = 0.09 to be consistent with the
experimental data.

authors, we have shifted the origin of time to when D falls to the threshold of 0.09, and

rescaled time by the viscosity ratio β according to the formula. Three interesting observa-

tions can be made. First, the numerical results for β = 0.5, 1 and 2 collapse almost perfectly

onto a single master curve. Thus, the dependence of drop retraction on β is precisely as

prescribed by Eq. (22); this is true even for the initial stage of retraction where D is large

and the equation is not expected to hold. Second, there is excellent agreement between our

numerical results and the experimental data in the range where the two overlap, down to

ln(D/D0) ≈ −2. This provides another validation for AMPHI3D. Finally, our data fall on

the straight line representing Eq. (22) only for an intermediate range. The initial stage, as

explained above, deviates from the formula because D is too large. However, toward the

end of the retraction (ln(D/D0) < −2), our results again show slower retraction than the

theoretical prediction. This is a numerical artifact due to inadequate mesh resolution. By

this time, the drop is nearly spherical (D ≈ 1.2×10−2); its surface deviates from the perfect

sphere by less than the grid size. Thus it becomes difficult to compute the interfacial motion
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accurately. Therefore, Fig. 5 has validated the diffuse-interface model and the AMPHI3D

algorithm, but in the meantime indicated the limit of the code in terms of mesh resolution.

B. Drop deformation under elongation

The purpose of this subsection is to explore the effect of the Cahn number Cn in a

stronger flow than drop retraction. By comparison with 2D axisymmetric results, we es-

tablish the upper limit of Cn for acceptable results. This is a fundamental issue with

diffuse-interface simulations, which typically use an artificially large capillary width ǫ. It

is only after ǫ and the Cahn number Cn fall below threshold values that the results no

longer depends on ǫ, and the numerical simulation has converged to the sharp-interface

limit. In our prior 2D calculations, the threshold Cn for such model convergence is typi-

cally of order 10−2. For each ǫ, one must ensure that the grid is sufficiently fine to achieve

mesh convergence. Prior 2D computations [20] showed that the size of the fine grid at the

interface should be h1 = ǫ or smaller. This has been confirmed for 3D computations as well

(cf. Fig. 3b). So we will focus on the effect of Cn in the following.

For a drop deforming in a uniaxial extensional flow, the computational domain is sim-

ilar to that in Fig. 2. The domain size is 6R0 × 5R0 × 5R0, R0 being the radius of the

undeformed drop, with symmetry boundary conditions on the coordinate planes x = 0,

y = 0 and z = 0. The uniaxial elongational flow condition is applied on the other 3

boundary planes at x = 6R0, y = 5R0 and z = 5R0, on which the velocity is prescribed

as (u, v,w) = (ǫ̇x,−ǫ̇y/2,−ǫ̇z/2), ǫ̇ being the elongational rate. For the initial condition,

we start with zero-velocity inside the domain and apply the prescribed velocities on the

boundaries. Similar to the drop retraction simulation, we neglect inertia. Then the physi-

cal problem is determined by two dimensionless parameters: the viscosity ratio β and the

capillary number:

Ca =
µmǫ̇R0

σ
, (23)

where µm is the matrix viscosity and σ is the interfacial tension. For simplicity, we assign

equal viscosity to the drop and the matrix so β = 1.

Figure 6 compares our 3D numerical results for Cn = 0.02 and 0.03 with 2D axisym-

metric results with Cn = 0.02 and 0.01 previously published by Yue et al. [20]. Drop

deformation is indicated by the ratio of the drop length L to its initial radius R0. The
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Figure 6: Drop deformation under elongational flow: comparison of AMPHI3D computation at
different Cahn numbers with 2D axisymmetric computations of Yue et al. [20] and Hooper et al. [48]
The other parameters are β = 1, Ca = 0.1, h1 = ǫ, and Pe = 18856Cn.

results of Hooper et al. [48], using a moving-grid finite-element scheme, is also shown. The

general trend is the same among the five simulations, but there are small quantitative dif-

ferences. As Cn is reduced from 0.03 to 0.02, the steady-state deformation decreases by

5% in our 3D computation. This is comparable to previous convergence studies on the 2D

version of AMPHI [20], reproduced in Fig. 6. Thus, Cn = 0.02 is considered the threshold

in our context for model-convergent computations. Our 3D curve at Cn = 0.02 is also

in close agreement with the result of Hooper et al. [48], with the steady-state deformation

within 1.3% of each other. We did not explore smaller Cn values as we did in 2D, down

to Cn = 0.01 and smaller, because the memory and computational time become highly

demanding. For Cn = 0.02, for example, the number of unknowns exceeds two million and

the memory allocation approaches 10 GB.

The observation that larger Cn leads to somewhat larger steady-state drop deformation

has been analyzed by Yue et al. [7] Essentially, the elongational flow convects the interfacial

profile such that the interface becomes effectively thicker near the tips of the drop. This

amounts to a locally reduced interfacial tension, which scales with λ/ǫ, and tends to increase
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the steady state L. This effect is more prominent for thicker interfaces, and become negli-

gible as the sharp interface is approached. This also explains why the model-convergence

criterion here is more stringent than that for drop retraction. In the latter, the flow induced

by the retraction is weak and does not distort the interfacial profile as much. Thus, the

interfacial tension can be captured accurately with a thicker interface.

C. Drop spreading on partially wetting substrate

In this subsection, we consider a drop spreading on a partially wetting substrate. The

most important physics here is the motion of the contact line, which presents a well-known

stress singularity that is conventionally removed by assuming ad hoc conditions such as

Navier slip or numerical slip [49,50]. In recent years, the diffuse-interface model has emerged

as a promising alternative that offers a more rational approach to this issue [33, 51–53].

While the Cahn-Hilliard dynamics is typically used as a device for capturing the moving

interface, the diffusion across the interface also offers a means to regularize the stress sin-

gularity within the classical no-slip framework. The question is whether the Cahn-Hilliard

diffusion adequately represents the true physics at the contact line. Yue et al. [14] have

offered an affirmative answer by showing that the Cahn-Hilliard model approaches a sharp

interface limit when the capillary width ǫ → 0 while the molecular mobility γ and other

model parameters are kept constant, and that the model can predict experimental data

quantitatively if relaxation of wall layers is considered. This suggests that the phase-field

model may be a useful tool for computing complex flows involving contact lines. In study-

ing the spread of a drop, our main objective here is to validate AMPHI3D by comparing

its predictions with 2D axisymmetric computations and experiments. Besides, we will also

examine physically interesting questions such as the effect of wettability on the speed of

spreading. With a moving contact line, model convergence to the sharp-interface limit is a

subtler affair that depends not only on Cn but also on the mobility γ and the viscosities of

the components [14]. For the parameters used in this subsection, Cn = 0.03 and 0.04 are

sufficiently small.

Figure 7 depicts the spreading of a drop with a static contact angle of θs = 60◦. The

surrounding fluid has the same viscosity as the drop phase, and inertia is neglected. We

also neglect gravity so the spreading is driven solely by interfacial forces. We start with a
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(a) (b)

(c) (d)

Figure 7: The evolution of drop spreading on a substrate with static contact angle of 60◦. (a) t = 0,
(b) t = 5.50, (c) t = 20.5, (d) t = 145.5. Time is scaled by tc = µmR0/σ, where R0 is the radius of
the initial hemisphere. Cn = 0.03, h1 = ǫ, Pe = 2828.

hemispherical drop on a substrate, with an initial contact angle of 90◦ (Fig. 7a). In time,

the drop spreads out on the substrate, and approaches a steady state of a spherical cap

with the prescribed contact angle θs = 60◦ (Fig. 7d).

The effect of θs on the spreading process is demonstrated by Fig. 8. The radius of the

“footprint” of the drop, i.e. the circle formed by the expanding contact line, grows rapidly

at the beginning, and then plateaus toward a steady-state value over a time period of more

than 100tc (Fig. 8a). The drop with the smaller θs wets the substrate better and thus

spreads more rapidly at the beginning. It also produces a larger puddle at the end. The

close agreement between 2D axisymmetric simulations and the 3D ones serves as another

validation of the 3D code.

The temporal evolution of the apparent contact angle θ is depicted in Fig. 8(b). At

t = 0, θ = 90◦ from the hemispherical initial shape. Once the drop starts to spread, the

definition of θ becomes somewhat ambiguous. Following Mazouchi et al. [50], we define

θ from the slope of the interface at the height of 0.1R0 above the substrate, where the
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(a) (b)

Figure 8: Effect of the static contact angle θs on drop spreading. (a) Growth of the radius of the
“footprint” of the drop in time. 3D and 2D axisymmetric results are in excellent agreement. (b)
Relaxation of the apparent contact angle θ toward θs. Though not plotted, the 2D results for θ
essentially overlap the 3D curves. The other parameters are the same as in Fig. 7

interface is more or less a straight line. The need for such a subjectively defined quantity

is due to the difficulty in determining the so-called “microscopic contact angle” right on

the substrate. Experimentally, the latter cannot be measured, and one necessarily records

the interface some small distance above the substrate. In our diffuse-interface computation,

the local phase field is dynamically perturbed by the flow near the moving, non-equilibrium

contact line. Thus, the local orientation of the φ contours may not reflect the interfacial

orientation in the physically sense [13]. As expected, θ relaxes toward θs, and more rapidly

for the more wetting drop for which the initial contact angle of 90◦ constitutes a greater

deviation from the minimum energy equilibrium state. Owing to its definition, the apparent

contact angle θ is slightly below θs at the end of the spread.

Drop spreading on a substrate with partial wetting condition has been studied previously

by many researchers. For example, Zosel [54] measured the spreading of drops of polymer

solutions on a partially wetting substrate. Khatavkar et al. [52] simulated the capillary

spreading of Newtonian droplets using the diffuse interface method in 2D axisymmetric

geometry, and compared the numerical results with Zosel’s experiment. For comparison,

we have simulated the same problem in 3D using the same parameters.

Figure 9 plots the increasing radius r(t) of the contact line for the three studies. The

initial condition differs from that in Fig. 7(a) in that a full spherical drop is deposited on the
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Figure 9: Comparison of our drop spreading simulations with the experiment of Zosel [54] and the
diffuse-interface computation of Khatavkar et al. [52]. The static contact angle θS = 56◦ for all
results. Cn = 0.04 and β = 100 in both our computations and that of Khatavkar et al. Time has
been made dimensionless by the capillary time µdR0/σ, R0 being the radius of the spherical drop
at the start.

substrate, which then proceeds to spread. In the experiment, the viscosity ratio β exceeds

103. Such values make numerical convergence difficult in diffuse-interface computations.

The numerical experiments of Khatavkar et al. showed that as β gets as large as 100, the

result becomes very insensitive to β, and they compared numerical results for β = 100

with the experiment of Zosel [54]. We will do the same by using β = 100. The static

contact angle θs = 56◦ in the experiment is implemented in the computations, and we use

the same Cn = 0.04 as Khatavkar et al. The mobility parameter γ in the Cahn-Hilliard

equation cannot be easily related to experimental values. Khatavkar et al. found that good

fit with the experimental data can be obtained using a γ that corresponds to a Peclet

number Pe = 500. In our 3D computations, the spreading at Pe = 500 occurs faster than

the experimental data and the axisymmetric result of Khatavkar et al. Instead, reasonable

agreement with the experiment is obtained for a larger Pe = 5000. The larger Pe or smaller

γ reduces the Cahn-Hilliard diffusion at the contact line, and slows down its motion. The

reason for the discrepancy between the two computations is not clear at present. The

qualitative trend is the same in all 3 studies. The droplet spreads quickly when it initially
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touches the substrate (t < 1). In this stage, the upper part of the drop hardly deforms; the

bottom of the drop opens up and spreads rapidly. After that, there is a roughly logarithmic

regime (1 < t < 10) during which the drop spreads against the viscous force. In the end,

the drop slowly approaches the steady state.

D. Viscoelastic effects on drop retraction

We have also studied the effect of viscoelasticity in the 3D code by simulating a vis-

coelastic drop retracting from an elongated shape in a Newtonian medium. The geometric

setup is the same as the one with the Newtonian system in III.A. The viscoelastic fluid is

represented by the Oldroyd-B model [31] based on a dilute suspension of elastic dumbbells

in a Newtonian solvent. Yue et al. [6] have simulated retraction of Oldroyd-B drops in a

Newtonian matrix in planar 2D geometry. The main finding is that a viscoelastic drop

initially retracts faster than a Newtonian one having the same steady-shear viscosity, but

eventually falls behind and returns to the spherical shape in longer time than its Newtonian

counterpart. The purpose of the current simulations is two-fold. The first is to validate the

3D code using 2D axisymmetric simulations. The second is to confirm the physical effects

of viscoelasticity on drop retraction previously observed in 2D planar calculations.

The magnitude of viscoelasticity is customarily represented by a Deborah number, the

ratio between the polymer relaxation time and a flow time. For a drop retracting in a

quiescent fluid, the only time scale is the capillary time tc = µmR0/σ, and thus our Deborah

number is defined as

De =
λHσ

µmR0
. (24)

We set the polymer viscosity µp to be equal to the solvent viscosity µs, so that the

retardation-relaxation time ratio is 0.5. We compare the viscoelastic drop retraction with

that of a Newtonian drop whose viscosity µd matches the total viscosity µp + µs. In both

cases, this is also the viscosity of the suspending Newtonian medium. Using these physical

parameters, we have done the 3D computation using 3 grids that differ in the mesh size h2

inside the drop. The results are compared with the 2D axisymmetric computation and the

Newtonian result in Fig. 10.

First, convergence with mesh refinement within the drop is evident from the fact that

the 3D curves approach the 2D axisymmetric one with decreasing h2. In this problem, a
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Figure 10: Retraction of a viscoelastic drop from a spheroidal initial shape with D0 = 0.323.
Cn = 0.03, De = 10. Time t has been made dimensionless by tc = µmR0/σ. The 3D viscoelastic
computations have been done on three grids that have the same interfacial mesh size h1 = ǫ = 0.03R0

and far-field mesh size h3 = R0 in the matrix, but different mesh size inside the drop: h2 = 0.35R0,
0.2R0 and 0.1R0. The 3D Newtonian run uses h2 = 0.2R0 and the 2D axisymmetric viscoelastic run
has h2 = 0.1R0, both having the same h1 and h3 given above.

sufficiently fine h2 is important for resolving the viscoelastic stress field inside the drop.

Moreover, the threshold for mesh convergence, h2 = 0.1R0, is more stringent than its

Newtonian counterpart (e.g., h2 = 0.35R0 in subsection III.A). This is probably because

the viscoelastic stress tensor is discretized on piecewise linear P1 elements while the velocity

uses P2 elements. Second, the viscoelastic drop retracts faster initially than the Newtonian

one, but approaches the spherical shape more slowly in the end. This is qualitatively the

same as previously shown in 2D planar geometry [6]. The underlying mechanism is the

development of the viscoelastic stress inside the drop. As the drop starts to retract, the

flow inside causes the polymer elastic stress to grow from zero on the time scale of the

relaxation time λH . Thus, for t < λH , the retraction of the viscoelastic drop is faster than

that of the Newtonian drop since the polymer stress has yet to develop fully. After that, the

elastic stress grows to such an extent that the total stress surpasses its counterpart in the

viscous Newtonian drop. The retraction of the viscoelastic drop, as a result, is hampered

by the developed elastic stress for t > λH . For the viscoelastic drop in Fig. 10, the Deborah
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number De = 10 implies λH = 10tc. The crossover between the Newtonian and viscoelastic

curves at 7.5tc = 0.75λH may be taken as a rough corroboration of the above argument.

Of course, the level of stress inside the drop correlates more with the instantaneous speed

of retraction than with D. Thus, the crossover in D does not precisely correspond to a

crossover in the internal stresses.

IV. CONCLUSION

This paper describes AMPHI3D, a 3D finite-element algorithm for simulating two-

component rheologically complex fluids using a diffuse-interface formulation. A general-

ization of our previous 2D work, this code features an implicit solver for the Navier-Stokes

and Cahn-Hilliard equations and a versatile adaptive meshing scheme that allows adequate

resolution of the interfacial region at relatively low computational cost.

We have applied AMPHI3D to four benchmark problems: the retraction of an elongated

viscous drop in a quiescent fluid, the deformation of a drop in a uniaxial extensional flow,

the spread of a drop on a partially wetting substrate, and the retraction of a viscoelastic

Oldroyd-B drop. In each case, we have used numerical and experimental results in the

literature to verify AMPHI3D computations. Since all four problems have axisymmetry,

we have also used 2D axisymmetric computations as benchmarks. This procedure has

established the critical interfacial thickness for proper convergence of the diffuse-interface

model to the sharp-interface limit, as well as the level of grid refinement that ensures

adequate spatial resolution. For parameters within these limits, AMPHI3D simulations

are in excellent agreement with the benchmark results. This serves as a validation of the

theoretical model and the numerical algorithm.

The focus of this work is on the AMPHI3D methodology rather than detailed exploration

of the physics involved. But it is clear that this code can be fruitfully applied to many

interesting problems that are beyond the reach of two-dimensional studies. One limitation

for the current package, however, is that it is a single-processor serial code. For large-scale

problems, the coupled solution of the Navier-Stokes and Cahn-Hilliard equations requires a

large memory. Parallelization may help expand its capacity for large-scale 3D computations.
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