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Abstract

Polytetrafluoroethylene (PTFE) is known to be a polymer that shows inherent microstructure formation during cold processing such as paste
extrusion. To model such a complex flow, a viscoelastic constitutive equation is proposed that takes into account the continuous change of the
paste microstructure during flow, through fibril formation. The mechanism of fibrillation is captured through a microscopic model for a structural
parameter £ that represents the percentage of fibrillated domains of the paste. The proposed viscoelastic constitutive equation consists of a viscous
shear-thinning term (Carreau model) and an elastic term (modified Mooney—Rivlin model), the relative contribution of the two depending on &.
The viscous and elastic parameters of the model are determined by using shear and extensional rheometry on the paste. Finite element simulations
based on the proposed constitutive relation with the measured model parameters predict reasonably well the variations of the extrusion pressure

with the apparent shear rate and the die geometrical characteristics.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Polytetrafluoroethylene (PTFE) paste is a mixture of PTFE
particles of submicron primary size (typically 0.20-0.25 pm)
with an isoparaffinic lubricant at 0.16-0.22 wt.%. During its
flow, structural changes occur that significantly influence its rhe-
ology [1-6]. The most remarkable feature is the formation of
fibrils between neighboring polymer particles. It is these fibrils
of submicron size in diameter that essentially give the dimen-
sional stability and strength to the final extruded product.

The die geometry shown in Fig. 1 is typically used in the rod
extrusion of PTFE paste. The main geometrical characteristics
are the entry angle 2, the reduction ratio RR, defined as the
ratio of the initial to the final cross-sectional area of the conical
entry RR = D% /D?, and the length-to-diameter ratio of the die
land L/D.

A significant, counterintuitive experimental observation is
that the extrusion pressure, p, varies non-monotonically with
the entrance angle of the conical die 2«; it attains a minimum
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at an entrance angle, 2« = 30-40°. Patil et al. [5] surmised that
the unusual dependence of extrusion pressure p on 2« is due to
the continuous microfibril formation that changes the nature of
the fluid from a shear thinning fluid-like behavior to a solid-like
elastic one [5]. However, they have proposed an ad hoc con-
stitutive equation that accounts for the increase in fibrillation
at high entrance angles through a shear-thickening viscosity.
This approach has two weaknesses: (i) the rheological conse-
quence of fibrillation should be of elastic and not of viscous
(shear-thickening) origin, and (ii) the parameters of the proposed
constitutive model are treated as adjustable to a large extent, and
cannot be directly related to measured rheological properties of
the paste. The present study aims to remove both shortcomings.

First, we propose a viscoelastic constitutive equation based
on the concept of a structural parameter, &, which is described
by a first-order kinetic differential equation [5]. This parame-
ter represents the percentage of the domains (sets of particles)
of the PTFE material that are fibrillated and takes values of
0 and 1 for the unfibrillated and fully fibrillated (all particles
interconnected with fibrils into a network) cases, respectively.
The total stress tensor consists of a viscous part modeled by the
shear-thinning Carreau equation, and an elastic part given by
a modified Mooney—Rivlin model. The latter is borrowed from
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Fig. 1. A conical entry die used in the paste extrusion of PTFE: the left half
illustrates the extrusion of PTFE particles and the gradual structure formation
through particle fibrillation, whereas the shaded area depicts the axisymmetric
domain used in the simulations (reproduced from Patil et al. [5]).

hyperelastic modeling of rubbers [7—11]. The relative contribu-
tion of the two depends on &.

The model parameters in the constitutive equation are deter-
mined from independent rheological measurements using a
parallel-plate and an extensional rheometer. The paste before
processing shows shear thinning fluid-like behavior with no fib-
rillation, which is characterized by simple shear experiments.
The paste after processing shows strain hardening behavior
with significant amount of fibrillation, which is characterized
by extension rtheometry. This removes the second shortcoming
of the model proposed by Patil et al. [5].

The viscoelastic constitutive equation with model parameters
determined by independent rheological experiments are subse-
quently used to simulate the flow of pastes through the conical
die depicted in Fig. 1. The finite element results are used to pre-
dict the extrusion pressure as a function of the operating and
die geometrical characteristics. Finally, we compare the flow
simulation results with experimental measurements such as the
pressure drop as a function of the apparent shear rate and geo-
metric characteristics of the die. The results are also compared
with the results presented by Patil et al. [5].

2. Theoretical modeling and numerical method
2.1. Governing equations

For steady incompressible flow, the balance of mass and
momentum becomes (volume changes due to fibril formation

are assumed to be small):

V.v=0, ey

Vp—-V.-1=0, (2)

where p is the pressure and 7 is the stress tensor, which depends
on the structural parameter & through a viscoelastic constitutive
equation discussed below. Due to the high viscosity of the paste,
inertia is neglected in the momentum equation (Eq. (2)). To sim-
ulate the flow of the PTFE paste, the above equations are coupled
with the rheological constitutive model. The axisymmetric r—z
domain (Fig. 1) has been used to perform the simulations.

2.1.1. Constitutive equation

To model the complex flow behavior of PTFE paste, a con-
stitutive equation is proposed which explicitly accounts for the
evolution of fibrils and its effect on paste rheology. Similar
approach has been adopted before to model the behavior of con-
centrated suspensions, polymer solutions and filled polymers
[12,13]. While the paste initially behaves as a shear-thinning
fluid, after the appearance of fibrils in its structure, it behaves
more and more as an elastic solid-like body. Thus, it is assumed
that the stress tensor consists of two contributions coming from
the unfibrillated and fibrillated domains of the paste, repre-
sented by a shear-thinning viscous stress and an elastic stress
component respectively. The relative significance of the two con-
tributions depends on the structural parameter £ [5], the volume
percentage of fibrillated domains:

T={0-=-5my+é&tE, (3)

where p is the rate of strain tensor, and 7; is a shear-thinning
viscosity that is expressed by a Carreau model [12]:

m = ol + @™, 4)
y being the second invariant of strain rate tensor y. The term Tg
denotes the elastic stress due to the fibrillated domains. To select
a model for the elastic stress Tg, we follow the approach used
in hyperelasticity [7-11]. When a solid body is subjected to a
large deformation, the relationship of positions in deformed and
undeformed configurations is described by a deformation gradi-
ent tensor F whose eigenvalues A1, A, and A3 are the stretching
ratios in the principal directions. The Mooney—Rivlin equation
relates the Cauchy stress tensor 7g to the Cauchy-Green strain
tensor B=FFT by

1g=2—B-2—B", &)

where the strain energy density function W is a function of the
strain invariants [8,9]:

W =W, Ix, I3), ) = trB,
1
L= 5{(trB)2 — t(BB)}, I3 = det B. (6)

Since the PTFE paste can be assumed to be incompressible, the
value of I3 is taken to be unity. Thus, the description of W as
a function of /1 and I; forms the basis of our approach. Alter-
natively, on the basis of the Valanis—Landel hypothesis [14], W
can also be expressed directly as a function of the three principal
stretches A1, A2, and A3. To capture the rate dependent response
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Fig.2. The corrected viscosity of the sample F104 HMW fitted using the Carreau
model in Eq. (4). The parameter values are listed in Table 3.

of hyperelastic materials, W should also depend on the strain
rate y [11]:

W =W(y. I, ). (N

In the present study, we use the following form of the strain
energy function:

W(h, 1) = Ci(I — 3) + C2In (V> (I —3)
+Csln <y> (I = 3" + Ca(ls — 3), ®)

C

where C1, Ca, C3, C4, n, and m are material parameters, and .
is a threshold strain-rate below which rate-dependence is absent
(Cr=C3=0for y < 7). Eq. (8) embodies ideas from both Sel-
vadurai and Yu [11] and Amin et al. [10]. The power-law terms
come from Amin et al. [10]. The C; term, with C, >0, predicts
the hardening feature observed at higher strain levels [10,15,16].
Similarly, the C3 term, with C3 <0, accounts for the initial stiff-
ness encountered in elastic materials [10]. The log-factors that
incorporate rate-dependence are borrowed from Selvadurai and
Yu [11].

Let us consider the predictions of Eq. (8) in steady uniax-
ial elongation, with principal stretch ratio (A1) in the loading
direction and compression in the other two directions with
Ay =A3 = kl_l/ 2 owing to isotropy and incompressibility. The
deformation gradient tensor F and Cauchy—Green deformation
tensor B can be written as

Ao 0 0 20 0
0 4/ ! 0 0 ! 0
F: }\‘1 ’B: )\,1 ) (9)
1 1
0 0 — 0 0 —
A Al
and the strain invariants as
1—2+x2 I—1+2A L=1 (10
1 - )\’l ’ 2 - )\'2 17 3 - ’

1

Table 1
Physical properties of PTFE fine powder resin studied in this work as provided
by the supplier

Resin Type Particle diameter (um) Specific gravity
F104 HMW  Homopolymer  400-650 2.17-2.20
F104 LMW Homopolymer 400-650 2.16-2.18
F301 Modified 400-650 2.15-2.18
F303 Modified 400-700 2.14-2.16

where A1 =L/L,, L, being the original length of the sample and
L being the length of the deformed sample. Using Egs. (5) and
(8), the expression for the tensile stress component Tg, 11 can be

written as [10,17]:
1 ow 1 ow

=2(M-—)—+—]. 11

TE 11 < 1 M) (311 + » 312> (11)

Using Eq. (8), the Eq. (11) can be written as

1 Y 2 "
TE 11 =2 <X% — ) |:C1 + Cy1n <)/) ( +k% — 3>
Al Ve Al

v\ /2 moc
+on (L) (= +a2-3) + 22, (12)
Ve Al Al

By measuring experimentally the tensile stress as a function of
strain at various strain rates, the parameters Cy, C, C3, C4, m
and n can be determined by fitting experimental data to Eq. (12).

2.1.2. Experimental analysis and parameter estimation

To obtain the values of the viscous parameters 741, 71 and
a1, steady shear experiments were performed using a stress-
controlled rtheometer equipped with parallel plates geometry
(C-VOR Bohlin). The samples were prepared using various
PTEFE resins and an isoparaffinic lubricant Isopar® M. The phys-
ical properties of PTFE resins and the lubricant (ISOPAR® M)
are listed in Tables 1 and 2, respectively. The paste was first
compacted and shaped into discs before being loaded onto the
rheometer. Sand paper was glued onto the plates to suppress
slippage. To estimate the slip-corrected rheological data, the
experiments were performed for two different gap sizes of 1.0
and 2.1 mm atroom temperature, with stress values ranging from
100 to 4000 Pa.

Due to the use of sand paper, no slip occurs at low shear
stress values. However, significant slip was observed at higher
stress values. Assuming that the slip velocity depends only on
the shear stress oy, Yoshimura and Prud’Homme [18] suggested

Table 2
Physical properties of the Isopar® M lubricant used in the PTFE paste extrusion
experiments

Property Isopar® M
Density (g/cm?, 25°C) 0.79
Surface tension (dynes/cm, 25 °C) 26.6
Vapour pressure (mmHg, 38 °C) 3.1
Viscosity (mPas, 25 °C) 2.70
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Table 3
Parameter values for the shear-thinning model of Eq. (4) fitted to the viscosity
function of the paste of F104 HMW with the lubricant Isopar® M

Parameters Shear-thinning
no (Pas) 2.73 x 100
ay (s) 38.13

n 0.52

the following relation for correcting the strain rate and viscosity:

Hiya1(ow) — Hyyan(ow)

IR (0w) = s , (13)
and
n() = U =~ Ho) (14)

Hiya1(ow) — HyVan(ow) '

where jR is the corrected shear rate, and y,; and jy,» are the
apparent shear rates corresponding to gap sizes of Hy and H>.
Fig. 2 plots the slip-corrected viscosity as a function of shear
rate. These data are used to determine the viscous parameters
in Eq. (4). The best-fit parameters are listed in Table 3, and the
corresponding viscosity function is also plotted in Fig. 2.

To determine the parameters of the proposed hyperelastic
model, Eq. (12) can be fitted to measured elongational prop-
erties of extruded PTFE paste [19]. The uniaxial extension
experiments are performed on four different pastes with F104
HMW-Isopar® M, F104 LMW-Isopar® M, F301-Isopar® M
and F303-Isopar® M at 38.8 vol.% of lubricant. The samples
were prepared by extruding the pastes through a slit die (for
more details see Ochoa [19]) to produce rectangular-shaped
samples. The extruded samples are assumed to be fully fibril-
lated (¢ & 1) and thus viscous contribution to their rheological
response is assumed to be negligible. The prepared rectangular
samples were loaded onto the Sentmanat Extensional Rheome-
ter (SER) attached to a strain-controlled rheometer [20], and
were stretched at constant Hencky strain rates in the range of
0.00113-1.13 s~!. Table 4 lists the parameter values determined
for the four pastes.

For F104HMW, F104LMW and F301, Eq. (12) represents the
experimental data reasonably well as can be seen in Fig. 3a—c.
However, in the case of resin F303 (co-polymer), which dis-
plays a lower extensibility than the other pastes, Eq. (12) does
not describe the data very well due perhaps to early yielding
(see Fig. 3d). The numerical simulations and comparison with
experiments will be carried out for FIO4HMW for the sake of
simplicity. Similar results can be obtained for FI04LMW and

2.1.3. Structural parameter

The kinetic model for the structural parameter, &, previously
proposed in Ref. [5] is also used here. The variation of & along
a streamlines is determined by the rates of fibril creation and
breakage:

V- VE= /¥ — 7k (15)

where i is the flow type parameter, and y is the magnitude
of the strain rate tensor. With £=0 at the inlet of the die, &
is subsequently bounded between 0 and 1 if o/ <1. In this
study, the creation and evolution of fibrils is due to elongational
flow [5,21]. This is reflected by making the rate of creation to
depend on the flow type parameter, v, which indicates the rela-
tive strength of straining and rotation in a mixed flow [13,22,23].
More details about this model can be found in Patil et al. [5].

2.2. Boundary conditions

For the various boundary segments in the axisymmetric
geometry shown in Fig. 1 the following boundary conditions
are used:

(1) Inlet boundary conditions (z=0). The fully developed
velocity profile for a shear-thinning Carreau fluid model
has been imposed at the inlet with radial velocity v, = 0.
The paste is completely unfibrillated at this point: £=0. In
addition, the initial strain is set to zero:

- o O

1 0
F=]10 1
00

Due to wall slip, the strain of the upstream shear is small,
and thus negligible relative to the much stronger deforma-
tion downstream in the die.

(i) Outlet boundary conditions. The normal stress boundary
condition and the zero radial velocity are imposed:

n-(—=pl+1t)=—po, v = 0.

(iii) Slip boundary condition at the die wall. The Navier slip
condition has been used at the die wall, which relates the
slip velocity with the wall shear stress, oy:

F301 resins. vs = Coy,

Table 4

Model parameters obtained by fitting Eq. (12) to extensional measurements of PTFE samples subjected to different Hencky strain rates (see Figs 5 and 6)

Resin Ci C N C3 Cy M Ve

F104 HMW 7.66 2.56 0.81 —9.98 44 0.135 1.36 x 1073
F104 LMW 12.30 4.8 1.10 —11.70 7.22 0.087 1.36 x 1073
F301 8.10 18.8 0.69 —7.30 3.66 0.052 1.36 x 1072
F303 0.014 25 0.26 —14.10 0.38 0.23 1.36 x 1073
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Fig. 3. (a) Uniaxial extension of F104 HMW samples stretched at different Hencky strain rates. Solid lines show fits of Eq. (15). (b) Uniaxial extension of F104
LMW samples stretched at different Hencky strain rates. Solid lines show fits of Eq. (15). (c) Uniaxial extension of F301 samples stretched at different Hencky strain
rates. Solid lines show fits of Eq. (15). (d) Uniaxial extension of F303 samples stretched at different Hencky strain rates. Solid lines show fits of Eq. (15).

where C=1.92 m/MPa.s as determined from experimental
data by Patil et al. [5].
(iv) The axisymmetric boundary condition is used at 7=0:

v,

— =0.
or

v =0,

2.3. Finite element method

The equations of motion coupled with the proposed consti-
tutive and structural parameter models were solved using the
commercial finite element (FE) code FEMLAB 3.2 with user-
defined MATLAB routines for calculating the strain history of
the material and the viscoelastic stress tensor. As the prob-
lem considered here is axisymmetric, two-dimensional meshes
are used on the computational domain [5]. These unstructured
meshes comprise triangular elements of widely varying sizes,
small and large elements being employed in regions where the
rates of strain are large and small, respectively. The smallest
elements are required near the die corners, especially the re-
entrant corner. The total number of elements used is in the range
of 3000-10,000. The corners are also rounded slightly to avoid

geometrical singularity, and the local element size is chosen to
be smaller than the fillet radius at the corner. The fillet radius is
a small portion of the capillary radius, and thus the solution is
expected to be only slightly affected by the corner rounding.

Finite element simulations for viscoelastic flows have been
done by many groups [24,25], using both differential and integral
types of constitutive equations. In particular, Olley and Coates
[26] and Olley et al. [27] described FE methods with ‘stream-
line upwinding’ elements for the K-BKZ model with strain and
time damping components introduced by Papanastasiou et al.
[28]. Since our constitutive model is based on the nonlinear
strain tensor, time-integration along the streamlines is essential,
and an approach similar to that of Olley et al. [27] has been
adopted.

Since the problem is time independent, the solution involves
iterations among the velocity field, the strain field, and the stress
field. First, a Newtonian flow field is generated, subject to the
proper boundary conditions. This trial flow field is used as a start-
ing point of the simulation. The kinetic equation for structural
parameter £ is solved to obtain a distribution of £ throughout
the simulation domain. This will be required in the viscoelastic
constitutive equation (Eq. (3)) for stress computation. Pathlines
are computed based on this trial flow field to track the strain
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history of fluid particles along them. Elastic stress at a point is
computed by tracing back the particle path to calculate the defor-
mation gradient tensor F(z,¢), from which the Cauchy-Green
strain tensor B(#,¢) can be calculated. The elastic stress at that
point is evaluated from Eqgs. (5) and (8) using parameters listed
in Table 4 for resin F104 HMW. Once these elastic stresses are
computed, the total stress components are obtained by using Egs.
(3) and (4) and incorporated into the FEMLAB flow solution as a
body force [27]; from this a new flow solution is obtained using
the FEMLAB finite element solver. This new flow solution is
then used as the new trial flow field, and the above procedure is
repeated. Convergence is reached when the fractional velocity
change between successive iterations is below a certain threshold
(1073) over all nodes.

2.3.1. Particle tracking

The pathlines are calculated using second order time inte-
gration as described by Olley et al. [27]. Then the deformation
gradient tensor F(z,7') is computed by integrating the following
equation along the pathlines:

dF(, t)
dt

using a fourth-order Runge—Kutta method. L(¢) is the velocity
gradient tensor experienced by a fluid particle as it traverses the
pathline. Given F at a relative time, -, the strain tensor B(z,t)
is calculated using Eq. (5).

To validate our code, we have simulated the same contraction
flow of LDPE as reported by Olley et al. [27]. The K-BKZ model
with strain damping function given by Papanastasiou et al. [28]
is solved for simulating the flow of LDPE melt through an abrupt
4:1 contraction. The two results are in excellent agreement. In
particular, the growth of the corner vortex size with increasing
apparent shear rate was successfully captured. The difference
between the two solutions is below 6.8%.

The convergence of the simulation with respect to the number
of elements was also confirmed. When doubling the number of
mesh elements from 3000-6000, the difference in the velocity
is below 3% throughout the simulation domain. The run time of
the simulations is in the range of 1500-2500 s on Intel Pentium
IV machines (2.8 GHz) with 1 GB RAM.

= L(/)F,1). (16)

3. Result and discussion

The simulations are carried out for various die design param-
eters: the die reduction ratio, RR = D% /D?, the die land length
to diameter ratio, L/D, and the die entrance angle, 2«.. The simu-
lation results are compared with the experimental data reported
by Ochoa and Hatzikiriakos [14] for pastes prepared by mixing
a high molecular weight PTFE (F104 HMW) with 38.8 vol.%
Isopar® M [4].

To gain a better understanding of the structure of PTFE
paste flow, typical velocity profiles at various axial locations
inside the conical die (20=90° and L/D =20) are plotted in
Fig. 4. The x-axis in Fig. 4 is the dimensionless radial dis-
tance normalized by the die radius at the corresponding axial
location. The flow inside the conical section is mostly elon-

z=0mmR =476 mm
0.25 77— z=2mmR =2.74 mm
20.=90°L/D =20 z=5mmR =2.54 mm
- z=8mmR =2.54 mm
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Fig. 4. Radial velocity profiles at various axial locations inside the conical die
(thin lines) having an entrance angle of 90° (yo = 5869 s~!, RR=352) and die
land (thick lines).

gational (note the significant slip at the wall) and this causes
significant fibrillation (discussed below). Flow in the die land
is simple shear with significant slip. Thus, the velocity profile
soon attains a fully developed shape that is almost plug flow.
The behavior of structural parameter £ with operating and geo-
metrical parameters is discussed in the section below, followed
by the comparison of the simulations results with experimental
observations.

3.1. Structural parameter

The structural parameter is a quantitative measure of the
degree of fibrillation in the sample during extrusion. Fig. 5
shows the effect of the apparent shear rate yo (= 320/ an)
on the average structural parameter, &,y predicted by the vis-

coelastic model. &,y (E fOR &rdr/ fOR r dr) is the average over

the cross section of the die at each axial position z. For small
values of the apparent shear rate, &,y increases till the exit of
the conical section, which is at z=0.0078 m from the inlet, and
remains constant thereafter. Above a certain apparent shear rate
value, ya ~ 55 s~ &avg increases downstream and reaches a
maximum some distance before the entry into the die land.
Above the apparent shear rate value of 4 &~ 55s~!, the flow
becomes significantly rotational just before the exit of the con-
ical section of the die causing Y to become negative, resulting
in the maximum in the axial profile of &,y¢. Then &,y relaxes
rapidly, and upon entering the die land reaches a constant level
further downstream. These profiles can be explained as follows.
Although the flow type is purely elongational along the axis, off
the axis the flow type becomes highly rotational in the region
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immediately before the end of the conical section, which is con-
ducive to fibril breakage. For small shear rates below 55s™!, the
degree of fibrillation remains low throughout, and breakage is
insignificant according to Eq. (15). For higher ya, £av¢ and the
rotational flow type cooperate to make the rate of fibril breakage
higher than that of fibril creation. As a result, a maximum in the
axial profile of &,y appears, downstream of which &,y declines.
The flow in the die land is simple shear with significant slip at
the wall (see velocity profiles at Fig. 4) and therefore no addi-
tional fibrils are created. Furthermore, due to significant slip at
the wall, the true shear rate is small; this causes the breakage
rate to become negligible. As a result, &,y; in the land region
remains essentially constant. The increase in the entrance angle
at a fixed shear rate causes the overall increase in the elonga-
tional rate, this leads to a higher level of &,y, throughout the
die.

0.4 T

7.s"  2a=60°RR =352:1L/D=20

5

N—— 55
03F| ————— 553

0.1r

Average Structural Parameter (&)

0.0+
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Fig. 5. Axial profiles of structural parameter along the centerline of a conical
die having an entrance angle of 60° for various apparent shear rates indicated in
the figure.
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Fig. 6. The effect of die entrance angle on the extrusion pressure: comparison
between experimental results and the predictions of the viscoelastic model.

3.2. Effect of die entrance angle

Simulations were performed for conical dies with RR =352,
L/D=20 and various entrance angles in the range of
8% <2« <90°. The simulated dependence of the extrusion pres-
sure on 2« is shown in Fig. 6. The agreement between the
model predictions and experimental measurements is generally
good. Also shown in Fig. 6 is the shear thinning-thickening
(STT) model predictions by Pramod et al. [5], which fit the
data equally well. However, the parameters of the present vis-
coelastic model are all determined from independent rheological
experiments. There are no adjustable parameters and this makes
the model a truly predictive one. In the STT model, the param-
eters are fitted by matching predictions directly to macroscopic
quantities and thus have no direct physical meaning. This rep-
resents a key advantage of the viscoelastic model over the STT
model.

The initial decrease in the extrusion pressure with the
entrance angle in Fig. 6 is similar to the trend seen in capil-
lary extrusion of polymer melts and other viscous liquids. This
trend can be predicted by using the lubrication approximation
assumption [11,29]. However, lubrication approximation is only
valid for small entrance angles. For larger entrance angles, it
would predict monotonic decrease of the extrusion pressure. In
fact, the extrusion pressure of PTFE increases significantly with
increase of entrance angle beyond a certain value 3o & 30°. Such
a behaviour is commonly observed in the extrusion of elastic
solids; for example, see Horrobin and Nedderman [29] and the
references therein.

At very small entrance angles the flow type parameter i is
close to zero. Thus, little fibrillation takes place. The dominant
contribution to the stress comes from the shear-thinning part,
and the PTFE paste behaves mostly as a shear-thinning fluid. The
decreasing viscosity with increasing 2« causes the initial decline
in the extrusion pressure, and this is captured by the present
model. As the entrance angle increases, the flow becomes more
extensional and this has an impact on i and subsequently on &,

70 T T T T
L/D =20 20 =30°RR =352:1

@

o 60r B

<

o

>

@

o 50f 4

o

=

e

7]

=

3 40+ H

i L] Experimental: Isopar®M | |
Viscoelastic simulations |]

— ——  STT model
30 " 1 i " 1 i i L i " 1 "
2000 4000 6000 8000

Apparanet Shear Rate,7, (s-1)

Fig. 7. The effect of apparent shear rate on the extrusion pressure of PTFE paste
extrusion: comparison between experimental results and the prediction of the
viscoelastic model.
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Fig. 8. The effect of the die reduction ratio, RR, on the extrusion pressure:
comparison between experimental results and the predictions of the viscoelastic
model.

with both dramatically increasing. The paste now becomes more
solidlike and this is modelled by the elastic strain-hardening term
included in the constitutive rheological model of Eq. (3). The
dominant contribution at high entrance angles comes from the
elastic term which causes the significant increase in the extrusion
pressure.

3.3. Effect of apparent shear rate

Simulations were performed for various apparent shear rate
values for a conical die having an entrance angle 2o~ 30°,
RR =352 and L/D =20. The dependence of the extrusion pres-
sure on the apparent shear rate, ya is shown in Fig. 7. The
viscoelastic model prediction agrees well with the experimental
data, and is slightly above the best fit of the STT model. The
increase of the structural parameter with apparent shear rate
contributes to the monotonic increase of the extrusion pressure
(Fig. 7).

3.4. Effect of die reduction ratio

Simulations were performed for dies having L/D =20,
20~ 60° and various reduction ratios in the range of
56 <RR <352. Fig. 8 depicts the effect of die reduction ratio
on the extrusion pressure of the paste. The agreement between
the numerical and experimental results is excellent. The extru-
sion pressure increases with the increase in the reduction ratio in
a nonlinear fashion, which is captured by the simulated results.
The viscoelastic prediction is again falling above the STT result.

3.5. Effect of die length-to-diameter ratio

Simulations were performed for dies with RR=352,
20~ 90° and several L/D ratios in the range of 0—40 at an appar-
ent shear rate of y5 = 5869s~!. Fig. 9 plots the effect of L/D
on the extrusion pressure of the paste. The numerical results are
close to measured values for small L/D. For larger L/D, the extru-
sion pressure is predicted to increase linearly with the L/D ratio,
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Fig. 9. The effect of length-to-diameter ratio (L/D) on the extrusion pressure:
comparison between experimental results and the predictions of the viscoelastic
model.

whereas the measured values tend to level off. The increasing
discrepancy at larger L/D suggests that the model overpredicts
the wall stress in the die land, perhaps because of the slip model
used.

4. Conclusions

A viscoelastic rheological constitutive equation proposed
for the paste extrusion of PTFE, with the total stress com-
prising a shear-thinning term and a strain-hardening term, is
capable of capturing the physics of the process as previously
documented by experiments [4,19,21,30]. In the absence of fib-
rillation, the PTFE paste is treated as a shear-thinning fluid.
The creation of fibrils gradually makes the paste exhibit more
elastic behaviour, and this is captured through a modified hyper-
elastic Mooney—Rivlin model. Change in the nature of the paste,
from a fluid-like (shear-thinning) behaviour to a solid-like (elas-
tic) one, is implemented by the introduction of a microscopic
structural parameter £ that indicates the degree of fibrillation.
A previously developed evolution equation has been used for
&, which accounts for fibril formation and breakage based on
kinetic network theories [5,12,31,32].

Simulation results were found to be in good agreement with
experimental findings reported by Ochoa and Hatzikiriakos [4].
Based on this agreement it can be concluded that the proposed
constitutive equation is suitable for modeling the behaviour of
the paste and captures the physics of the process. The viscoelastic
model proposed in this paper is a truly predictive model since its
parameters are determined from independent rheological exper-
iments.
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