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Abstract. In this paper, we study the nucleation and growth of gas bubbles in a Newtonian
fluid. We employ a general energetic variational formulation with a phase-field method, and compare
the analytical and numerical predictions of this new formulation with those of classical models. The
new approach allows the study of bubble nucleation, growth and coalescence in a unified framework,
and has the capability of modeling complex situations in polymer foaming, with multiple-bubble
interaction, interaction with an external flow field, complex non-Newtonian rheology and non-Fickian
diffusion.
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1. Introduction. Foamed thermoplastics have been in wide use for decades [23],

but the relatively mature technology of polymer foaming is facing new challenges. For

insulation foams, the mainstay of “blowing agents”—gases dissolved in the polymer

melt which form bubbles later—has been hydrochlorofluorocarbons (HCFC’s). How-

ever, these chlorine-containing chemicals will be banned in the US in 2010 by the

Montreal Protocol for their ozone-depleting effects. There has been an intense effort

at finding substitutes. A promising group of candidates that provide most of the ben-

efits of the HCFC’s are hydrofluorocarbons (HFC’s). However, they are less soluble

in polymer melts than HCFC’s, and the poor processibility poses a challenge for bet-

ter foaming formulations and process design. Against this backdrop, it becomes an

essential and urgent task to understand the mechanisms governing foaming, including

the effects of melt viscoelasticity, blowing agent solubility and interfacial tension.
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Foaming is a dauntingly complex process consisting of three main stages. The

first is nucleation, where gas in the gas/liquid mixture diffuses into concentrated gas

clumps and begins to form bubbles. The second is bubble growth, where bubbles

grow by feeding on the dissolved gas in the liquid or even on neighboring smaller

bubbles. The third stage is coarsening, where the remaining bubbles coalesce and

combine into larger bubbles. In a typical foaming operation, the goal is to produce

numerous, uniform-size bubbles. Thus, nucleation in stage one is often promoted by

adding nucleating agents, while stage three is suppressed by increasing the extensional

viscosity of the melt.

The foaming process is thus dominated by the dynamics of the gas-liquid interface.

Conventionally, this interface is treated as an infinitely thin phase boundary across

which physical properties change discontinuously. In this sharp-interface framework,

the three stages of foaming have to be treated separately, with the end of one stage

serving as the initial condition for the next. Nucleation is modeled at best phe-

nomenologically, with much uncertainty regarding the proper initial conditions for

the growth stage [15]. Considerable work has been done on bubble growth, albeit

limited to the growth of a single bubble in an infinite sea of melt or in a shell meant to

simulate the effects of nearby bubbles [46, 7]. Coarsening is often ignored completely,

since bubble coalescence involves a topological change of the interfaces that cannot

be readily handled by a sharp-interface model. This strategy has proved inadequate,

however, for the complexity of the real process. For instance, the single-bubble mod-

els predict that the melt viscosity and elasticity should suppress bubble growth [15].

Yet experiments have shown that increasing the melt strength in fact promotes foam

expansion, thus producing lighter and better products [44]. This counter-intuitive

observation is believed to result from prevention of bubble coalescence and burst; if

the melt has low viscosity or elasticity, the film separating neighboring bubbles may

become unstable and rupture, a most undesirable effect in foaming. To account for

these mechanisms, one must undertake a full-field fluid mechanical analysis of foaming

as a highly dynamic two-phase flow.

Toward this end, we propose a diffuse-interface model for foaming that greatly

simplifies the treatment of the interface [31, 16]. In our model, the interface is a layer

of minute thickness across which fluid properties change steeply but smoothly. The

structure of the interface is determined by the partial mixing between the gas and the

melt. Rooted in the microscopic physics of real interfaces, the diffuse-interface theory

has distinct advantages for modeling polymer foaming. First, the diffuse-interface

method is based on the general principles of mixing and de-mixing of fluid species,
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which underlie critical processes in thermoplastic foaming such as bubble nucleation,

interaction and coalescence. Unlike previous models for foaming, it makes no ad hoc

assumptions on the shape, size distribution or the mode of interaction among the

bubbles. These features will emerge as consequences of the underlying principles.

Such a model, based on the physics as opposed to the process, is able to account for

the entire process of foaming in a consistent way, from initial nucleation to bubble

growth and possibly coalescence, while allowing different bubble shapes and multiple

bubbles in a non-homogeneous external flow field.

Second, the diffuse-interface model treats the motion and morphological changes

of interfaces much more easily than a sharp-interface description. The flow in the

bulk melt is naturally represented in an Eulerian framework while the moving in-

terface requires a Lagrangian description. Reconciling these two viewpoints poses a

theoretical and numerical problem in traditional Computational Fluid Dynamics [35].

In our model, we introduce a phase-field variable φ which varies from +1 in one bulk

phase to −1 in the other, and write the governing equations uniformly over the entire

domain. The interfaces are simply contours of φ = 0, which evolve naturally. This

allows us to simulate the motion and interaction of multiple bubbles. Events such

as rupture and reconnection of the interfaces, troublesome or even disastrous for the

sharp-interface treatment, are simulated with relative ease.

Additional advantages of our model stem from its energy-based formalism. For

instance, this ensures an energy law for the mathematical system that plays a central

role in the existence and numerical convergence of the solution [31, 34]. Moreover,

the variational framework facilitates incorporating complex rheology via a free energy

that characterizes the microstructural conformation. Thus, we have chosen the diffuse-

interface model over more familiar sharp-interface ones [3, 25] in treating interfacial

problems involving complex fluids [31, 49, 32]. In implementation, the diffuse-interface

phase-field model is related to other fixed-grid methods such as the volume-of-fluid

method [29, 30], the front-tracking method [20, 21, 19, 8] and the level set method

[38, 36, 18, 37, 6].

The objective of this paper is to demonstrate the applicability of the diffuse-

interface model to the nucleation and growth of bubbles. From the classical viewpoint,

this problem is governed by diffusion of gas from the liquid into the bubble, with the

concentration on the bubble surface determined by the empirical Henry’s law. The gas

transport into the bubble determines the bubble pressure, which affects the diffusion

via Henry’s law on the one hand, and controls bubble expansion on the other. Thus,

our first task is to show how the familiar concepts of interfacial tension, Fickian
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diffusion and Henry’s law can be accounted for in the new theoretical framework.

Then, we will quantitatively compare the predictions of our model for the growth of

a single bubble with previous results. These two steps will establish the validity of

the model in this type of problems. Finally, we present preliminary results on the

nucleation and coalescence of a large number of bubbles under conditions resembling

micro-cellular foaming. The melt rheology is treated as Newtonian; this and a host

of other practical factors will be added in future studies directed more at the physics

of the problem than the validity of the methodology.

The rest of the paper is arranged as follows. The theoretical model and numerical

methodology will be given in the next two sections, followed by a discussion of the

correspondence between the phase-field model and classical models for the foaming

process. Section 5 validates the phase-field model for a simple case of bubble growth.

Finally, detailed simulation results are discussed in Section 6.

2. Energetic variational formulation. For simplicity, we will constrain our-

selves in this paper to the limiting case of incompressibility, ∇ · u = 0. Moreover, we

assume that the density ρ = ρ0 is piecewise constant. This is a special case of the

conservation of mass equation (except on the interface):

ρt + ∇ · (ρu) = 0. (2.1)

To describe the flow of two immiscible fluids, say, a gas and a liquid, we introduce

an “indicator” function φ(x, t), where {x : φ(x, t) = 1} is the domain occupied by the

gas and {x : φ(x, t) = −1} is the region of the liquid. It is clear that the interface

between the two materials will be represented by Γ = {x : φ(x, t) = 0}. One can

think of (1±φ)/2 as the volume fractions for the gas and liquid phases. In particular,

1+φ
2 will be the gas concentration in the domain. If they are absolutely immiscible,

then φ will be governed by the following transport equation: φt + u · ∇φ = 0. The

immiscibility is reflected by the fact that a fluid particle is made entirely of one of the

two phases, and it does not change type during the flow. The only dynamics is the

transport by the flow velocity field.

Remark. If we choose the effective density ρ to be a function of φ, that is ρ = ρ(φ),

Liouville’s theorem states that ρ will satisfy the same transport equation as φ:

ρt + u · ∇ρ = 0. (2.2)

But this is the same as the conservation of mass equation in the incompressible case.

Hence in incompressible, absolutely immiscible fluids, the volume average will be the

same as the mass average.
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Here we will employ a slightly different approach by relaxing the condition of ab-

solute immiscibility. Now we can introduce molecular interaction between the species

via various mixing and interaction energies that can be derived from the statistical

average of the molecules. An example is the Flory-Huggins potential. Here we use

the following Ginsburg-Landau type of phenomenological model:

Wmix(φ) = λ

∫
Ω

1

2
|∇φ|2 +

1

4ε2
(1 − φ2)2 dx. (2.3)

In this energy, the first term is responsible for the mixing of the two materials. It

penalizes the segregation of the two, and thus represents an attractive or “philic”

tendency between the species. The second term, on the other hand, penalizes mixing

and represents a repulsive or “phobic” tendency between them. For real materials,

of course, the interaction between the two species is determined by their chemical

properties. The constant 1
ε2 represents the competition between the two opposite

mechanisms. When ε is small, the dynamics will approach that of the classical sharp

interface (immiscible case). In fact, as ε approaches zero, εWmix(φ) will tend to the

area of the interface Γ. And then ε can be regarded as the width of the transition

layer around the interface. When ε is large, the first term will be dominant and so will

be the diffusion mechanism. The model will then correspond to the diffusion models

for classical miscible materials, in the sense that the dynamics is determined by the

inhomogeneity of φ 1. The transition layer with width ε not only serves as a device for

regularizing the interface in our model, but also gives a way to model the real mixing

between the species, especially when the bubble size is very small.

Remark. When φ is taken to be the volume fraction, the Flory-Huggins potential

also has two terms for mixing and separation, the two competing mechanism:

WFH =

∫
Ω

[c1φ lnφ + c2(1 − φ) ln(1 − φ) + χφ(1 − φ)] dx. (2.4)

The difference is that the “philic” mechanism will be due to the consideration of ther-

mal effects, rather than the macroscopic spatial inhomogeneity of the order parameter

φ.

With this mixing energy, when we take into account the fact that φ(x, t) is trans-

ported by the fluid velocity field, then it will also induce an extra stress in the mo-

mentum equation. After taking the variation with respect to the flow map x(X, t),

the induced elastic stress will appear in a weak form such as:∫ T

0

∫
Ω

(∇φ ⊗∇φ,∇y) dxdt. (2.5)

1The classical diffusion equation φt = γ∆φ possesses the basic energy law d
dt

γ
2

R
Ω |∇φ|2 dx =

− RΩ |φt|2 dx. Energetically, the dynamics is totally driven by the inhomogeneity of φ in the domain.
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It is known [31, 35] that as ε approaches zero, this stress will reduce to the surface

tension on the interface and we recover the boundary condition on a sharp interface

(Laplace’s law):

[τ ] · n = −mHn, (2.6)

where the surface tension m is proportional to the limit of λ/ε, and n is the normal

of the interface. The momentum equation is now written as:

ρ(ut + (u · ∇)u) + ∇p −∇ · (νD(u)) + λ∇ · (∇φ ⊗∇φ) = g(x), (2.7)

where the total stress τ = −pI + νD(u) − λ∇φ ⊗ ∇φ, ν being the viscosity and

D(u) = [∇u + (∇u)T]/2 being the stretching tensor, g(x) is an external body force.

The pressure p is the combination of a hydrostatic part and an osmotic (elastic)

part. The hydrostatic pressure refers to the pressure unattributable to motion and

deformation (“static”), not merely due to gravity. In the present case the hydrostatic

part is due to the constraint of incompressibility. In compressible cases, it will be due

to the internal energy and depend on the density and the temperature.

The above formalism for the mixture of two fluids assumes incompressibility and

equal density and equal viscosity between the components. It has also been extended

to allow unequal density and viscosity [35]. More recent generalizations have dealt

with inhomogeneous surface tension in the form of Marangoni-Bernard convection

[39, 24, 14, 9, 33] and complex rheology in mixtures of complex fluids [32, 49, 50,

51, 52, 53]. In particular, the latter allows for elastic Marangoni stresses that Rey

[41] has discussed in the sharp interface framework. From a modeling point of view,

incorporating compressibility will not introduce conceptual difficulties.

For a phase function φ, the Cahn-Hillard equation follows the gradient flow

(fastest decent) dynamics in certain specific functional space (the dual space of the

functional space which includes those functions that are square integrable, and their

gradient are also square integrable).

φt = ∇ · (γ

λ
∇δWmix

δφ

)
= −γ∆(∆φ − f(φ)). (2.8)

Here δWmix
δφ represents the variation of the energy Wmix with respect to φ, and f(φ) =

F ′(φ), where the bulk energy F = 1
4ε2 (1 − φ2)2 is the second term in the Ginsburg-

Landau energy. The constant γ here scales with the reciprocal of the elastic relaxation

time of the system.

The solution of (2.8) satisfies the following energy law:

d

dt

∫
Ω

1

2
|∇φ|2 + F (φ) dx = −

∫
Ω

γ|∇δWmix

δφ
|2 dx = −

∫
Ω

γ|∇(∆φ − f(φ))|2 dx. (2.9)
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In the Cahn-Hillard case, the amount of each species inside Ω is conserved for all

times [5]. It was shown that as ε approaches zero, the dynamics of the Cahn-Hillard

equation (2.8) will converge to the dynamics of a Hele-Shaw type flow [1]. This kind

of model has been applied previously in the study of spinodal decomposition [10, 12].

Remark. The choice of the Cahn-Hillard dynamics is in order to preserve the total

integral of φ. Also, from an energetic point of view (as shown from the above energy

law), the difference between this dynamics and the other ones, such as the Allen-

Cahn dynamics [31, 50, 48], is on the dissipation mechanism, the right hand side of

the energy law. Finally, in this case, the chemical potential of the dynamics (2.8) will

be propotional to δWmix
δφ = λ(∆φ − f(φ)). This chemical potential also provides the

nonlocal interactions between the bubbles. As ε approaches zero, it reduces, subject

to a coefficient, to the curvature of the bubbles [31]. Hence Cahn-Hillard provides the

mechanism of the growth of larger bubbles at the expense of smaller ones — Oswald

ripening effect.

With the transport of the fluid, the phase field equation will take the form:

φt + u · φ = −γ∆(∆φ − 1

ε2
(φ2 − 1)φ). (2.10)

Clearly, as γ → 0 (with the elastic relaxation time being much longer than the flow

time), the phase field equation will approach the transport equation φt + u · ∇φ = 0.

This is exactly the kinematic boundary condition of the free interface in the classical

immiscible sharp interface models. On the other hand, if we let ε be a large number,

the dynamics of φ will be dominated by diffusion. With flow, the system’s energy law

becomes:

d

dt

∫
Ω

1

2
ρ|u|2 +

λ

2
|∇φ|2 + λF (φ) dx = −

∫
Ω

ν|∇u|2 + γλ|∇(∆φ − f(φ))|2 dx. (2.11)

It is important to notice that the energy contributions from the induced stress term

and the transport term cancel each other. This is a consequence of the least action

principle that is hidden behind the original system.

We shall view our phase field model as intermediate between the classical immis-

cible sharp interface models and the miscible diffusion models. Compared with those,

this model enjoys several advantages:

• It incorporates “phobic” and “philic” mechanisms at the same time, and for-

mulates the concepts of miscibility and solubility in terms of the competition

between the two tendencies.

• The model regularizes the interface, and represents the flow of two phases by

a single set of governing equations.
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• The formulation can readily incorporate complex fluids with evolving mi-

crostructures.

• The model is easy to implement in computations, and handles topological

changes in the interfaces with relative ease.

• Although in the simulation in this paper, we concentrate on the “elastic”

interaction between the bubbles and set the density to be uniform in the

domain, it is relatively easy to incorporate this mechanism either by the

Boussinesq approximation or solving an extra transport equation [31, 50].

Hence, although the density ratio is one in the paper, we still refer to the

nucleated phase as “gas” for convenience.

Some of the advantages are manifested by the problem to be studied here. Foam-

ing consists of three dynamic processes: bubble nucleation, growth and coarsening.

They are inter-related and often take place at the same time. In the traditional

sharp-interface framework, each has to be treated separately. For example, nucle-

ation is invariably modeled phenomenologically [15], and coarsening is often ignored

altogether since the bubble-bubble coalescence involves a topological change of the

interface that cannot be accounted for by the sharp-interface models. The phase field

approach allows us to account for all processes from a simple yet profound principle:

mixing and separation are governed by the competition between “philic” and “pho-

bic” tendencies between the species contained in the mixing energy. Thus, as the

different processes arise from a single set of equations, their activation is not decided

on beforehand but is naturally predicted by the model.

3. Numerical Methods. The simulations are based on the coupled Cahn-

Hillard and Navier-Stokes equations. All equations are written in dimensionless form,

and the dimensionless parameters, denoted with a bar, are discussed in Section 3.1.

The simulations done here are almost completely diffusion driven, as opposed to con-

vection driven, with maximum velocities many orders of magnitude below the charac-

teristic length divided by the characteristic time. The small convective effect makes a

Galerkin-Fourier Spectral Method particularly suitable. In addition, periodic bound-

ary conditions are always used, which allow us to model the nucleation and growth

of many bubbles in an effectively unbounded domain.

Using the divergence free condition ∇ · u = 0, together with the fact that u is

nowhere singular in our problem, we may write u as u = ∇×A for some vector-valued

stream-function A. In fact, in two dimensions we simply have u =< Ay,−Ax >, where

A is the z component of A, and Ax, Ay are its x and y partial derivatives, respectively.

Applying this to the vorticity form of the momentum equation, we have the following
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set of equations:

(�A)t + u · ∇(�A) = Re−1�(�A)− λ(φx�φy − φy�φx) (3.1)

φt + u · ∇φ = −γ�(�φ − 1

ε2
(φ2 − 1)φ) (3.2)

u =< Ay,−Ax > (3.3)

The time discretization is semi-implicit, where the linear terms are done in the

Crank-Nicholson style and the nonlinear terms are treated explicitly. The weak con-

vection in the simulations allows the use of such a scheme. This way, each variable has

a separate system of linear equations to be solved at each time step, so a conjugate

gradient method can be used to solve each system separately. In addition, although

the pressure term does not explicitly appear in the equations, we can periodically solve

for the pressure by applying a conjugate gradient to the Poisson pressure equation,

which, with the additional terms due to the Cahn-Hillard elastic stress, comes out to

be

−�p = ∇ · (u · ∇u + λ∇ · (∇φ ⊗∇φ)). (3.4)

The pressure term being solved for is therefore the hydrostatic pressure plus the

gradient term that arises due to the original variational principle [31].

Currently, our code is limited to two dimensions by the problem size. A critical

element in extending to three dimensions will be an optimized meshing scheme that

maximizes resolution near interfaces but coarsens the grid away from them. Two

strategies seem promising at present. One is an adaptive meshing technique that

dynamically adjusts an Eulerian grid [54], and the other is a moving mesh scheme

that incorporates Lagrangian movement of the grid points [17]. Three-dimensional

codes using both methods are under development.

3.1. Parameters and Scaling. We denote the characteristic time, length and

density by L, T and ρ, respectively. Then the dimensionless coefficients Re, λ, γ, ε

are related to the dimensional coefficients by the following relations:

Re =
ρL2

Tν
, λ =

λT 2

ρL4
, γ =

Tγ

L4
, ε =

ε

L
(3.5)

All simulations were run in a square domain with a side length of 100 for one or

two bubbles, or 500 for a larger number of bubbles. The grid was uniform, as required
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by the Fourier Spectral Method, with either N = 128 or N = 256 grid points along

each edge. Adequacy of the spatial resolution was confirmed by mesh refinement.

The diffuse-interface model parameters λ, γ and ε have to be chosen to match

the classical parameters in an experiment or a prior calculation with which we com-

pare our simulation. To illustrate this matching, we consider Venerus and Yala’s [46]

sharp-interface calculation of the growth of a single bubble in an infinite sea of a

Newtonian fluid. In both phase-field and classical calculations, the long-time growth

is characterized by a “diffusion-controlled” regime with the scaling R ∝ √
t, R being

the bubble radius [46]. By fitting the slope of the R ∼ √
t plot to that of the classic

solution, we determine our parameter γ. The capillary thickness ε and mixing energy

density λ are determined simultaneously by the use of the dimensionless surface ten-

sion relation m = 2
√

2
3

λ
ε (see [49]) and the matching of the Henry’s law constant (see

sub-section 4.2). Finally, the Reynolds number Re = 10−6 is taken directly from the

classic solution. This leads to the following parameters, used in all simulations unless

otherwise stated:

Re = 10−6, λ = 1.74, γ = 17778, ε = 5.03. (3.6)

4. Classical Physical Laws in the Phase Field Model. In switching from

a classical approach to a phase-field model, it is important to understand the roles

played in the phase-field model by the physical laws upon which the classical model is

based. In particular, we wish to study the Laplace formula for surface tension, Henry’s

law for the influence of pressure on solubility, and Fick’s law for mass diffusion.

4.1. Laplace’s Formula. It has been shown [1] that as ε tends to zero in the

phase-field model, the dynamics governing the mixing of the fluids approach the clas-

sical sharp-interface model and, in particular, Laplace’s law becomes valid. However,

since our simulations involve a finite interfacial thickness, it is important to under-

stand how Laplace’s law fits into the model. To this end we ran several simulations.

The first simulation is the relaxation of a circular bubble in a square domain with

side length 100. The initial conditions are zero velocity and the phase field

φ = −0.99 tanh

[√
(x − 50)2 + (y − 50)2 − 20

5

]
, (4.1)

which represents a bubble of radius 20 in the center of the domain, and 0.99 is simply

a relaxation factor meant to allow the bubble to reach equilibrium more quickly. The

above φ profile is not an energy minimizer, and therefore relaxes toward an equilibrium

A. NABER, C. LIU, AND J. J. FENG104



Fig. 4.1. Relaxation of bubble pressure as predicted by our phase-field model. The dotted
horizontal line indicates the pressure from Laplace’s formula.

state. Figure 4.1 plots the temporal evolution of bubble pressure in this process, where

the dotted line is the prediction by Laplace’s formula, based on the final bubble radius.

Note that the pressure drops steeply at the beginning, and then climbs up toward the

Laplace value. In the end, the pressure is within about 5% of the predicted value.

The second simulation involves the nucleation and growth of many bubbles. A

square domain with side length 500 is initially filled with a homogeneous 70/30 mix-

ture of liquid and gas. We impose a random perturbation of the concentration at each

grid point so the gas concentration varies between 25% and 35%. This destabilizes

the homogeneous state, and over time the random gas clumps aggregate to nucleate

bubbles, which then grow by diffusion and interact with surrounding bubbles. In time

an apparent equilibrium point is reached when the bubbles attain steady-state sizes

and a circular shape, with no further growth. Rigorously, this is not a true equilib-

rium but a “quasi-equilibrium” where the bubbles are far enough apart that they do

not change much over the time scale of the simulation. At this stage, the bubbles

have various sizes and the pressure differences inside and outside the bubbles can be

measured. These discrete measurements are compared with the pressure due to the

Laplace formula in Figure 4.2. Again, the phase-field model with the coefficients used

here, and in particular a relatively large value of ε, predicts pressure values slightly

less than that of the classical model. A more complete description of this simulation

and the other phenomena occurring in it can be found in section 6 below.

4.2. Henry’s Law. Henry’s law states that the amount of gas dissolved in a

liquid is proportional to the gas pressure:

pg = kcg, (4.2)
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Fig. 4.2. Bubble pressure as a function of bubble radius: comparison between phase-field pre-
dictions (data points) and the Laplace law (curve).

where pg is the gas pressure, cg is the equilibrium gas concentration, and k is the

Henry’s law constant. This linear relationship can be derived from the thermody-

namics of solutions in the limit of low solubility of an ideal gas [26, § 88]. Empirically

it is found to hold if the pressure is not too high.

In our phase-field model, we do not have, nor need, a Henry’s law. Instead we

can derive a relationship between the gas concentration and the osmotic pressure that

resembles Henry’s law. The purpose of making this connection is to set the backdrop

against which the model predictions can be related to empirical observations.

Since we have assumed incompressibility for both components, strictly speaking

we cannot model Henry’s law for an ideal gas. But the mixing energy affords an

interesting relationship between gas concentration and the osmotic pressure, which

can be considered the counterpart of Henry’s law in our case. Let φ = 1 for the pure

gas phase inside the bubble. Just outside the bubble, the gas-melt mixture assumes

a value φ = φ0 between 0 and -1 (Fig. 4.3). A variation of the mixing energy in

Eq. (2.3) gives rise to the following elastic stress tensor (cf. [49]):

τ = −(pt − Wmix)I − λ∇φ ⊗∇φ, (4.3)

where pt is the thermodynamic pressure and Wmix = λ(|∇φ|2/2 + (φ2 − 1)2/4ε2) is

the mixing energy. Inside the bubble, the bulk mixing energy F = 0 since φ = 1.

Outside the bubble, F = F0 = λ(φ2
0 − 1)2/4ε2. Thus, the osmotic pressure across the

bubble surface is

po = F0 =
4λ

ε2
c2
g(1 − cg)

2, (4.4)

where cg = (1 + φ)/2 is the gas concentration. This relationship between the osmotic

pressure and the gas concentration corresponds to Henry’s law for ideal gases. The
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Fig. 4.3. A sketch of the φ profile across the bubble surface. The osmotic pressure is related to
the gas concentration outside the bubble by a relationship akin to Henry’s law.

leading-order term being quadratic in cg is due to our choice of the mixing energy

Wmix. Indeed, if we use the Flory-Huggins energy, the leading term will be linear in

the gas concentration.

In sharp-interface models for diffusion-induced bubble growth, Henry’s law is used

to determine the gas concentration outside the gas bubble, which serves as a boundary

condition for the diffusion equation in the melt [2, 15, 40]. In our formalism, such

a boundary condition is unnecessary. Instead, we use the correspondence between

Eqs. (4.2) and (4.4) as a condition to determine the parameter values λ and ε. More

specifically, the osmotic pressure po and the gas pressure pg, averaged over all concen-

trations 0 ≤ cg ≤ 1, are equated. This provides a means to incorporate the Henry’s

law constant k into our model.

4.3. Fick’s Law. In the foaming literature, the diffusion of the dissolved gas

is usually modeled by Fick’s law, which is based on the idea that mass diffusion

is driven by gradients in composition. Moreover, the diffusivity is usually taken to

be a constant. From statistical mechanics, however, equilibrium requires a uniform

chemical potential, which does not necessarily imply a uniform composition. Thus,

a generalized Fick’s law can be postulated whereby the mass flux is proportional to

the gradient of a chemical potential δWmix/δφ. This immediately leads to the Cahn-

Hillard Eq. (2.8). Expanding the right hand side of this equation using the double-well
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bulk energy, we arrive at:

φt = ∇ · (f ′(φ)∇φ) − γ∆∆φ, (4.5)

where f ′(φ) = (3φ2 − 1)/ε2. The biharmonic term on the right hand side, due to

the gradient energy in Wmix, makes the Cahn-Hillard diffusion non-Fickian. The first

term resembles Fickian diffusion with a diffusivity of f ′, which can be either positive

or negative. The zeros of f ′ define the spinodal lines: φspin = ±1/
√

3. Within

these limits, the Cahn-Hillard system exhibits “negative diffusion”; the instability

leads to spinodal decomposition. Beyond the limits, normal diffusion prevails. We

will revisit spinodal decomposition in sub-section 6.1 with concrete numerical results.

The presence of the gradient term in the mixing energy produces a nonlocal diffusion

mechanism in space. It provides a growth mechanism for the bubble, through this

generalized diffusion, even when the local gas concentration gradient outside of the

bubble is temporally zero.

It is well-known that small-molecule substances often follow non-Fickian diffusion

in polymer melts [42, 43, 4]. This can be attributed to the fact that the penetrant

molecules disturb the polymer chains, whose relaxation produces an additional vis-

coelastic stress. The phenomenological Cahn-Hillard model, of course, was not built

specifically to reflect this process. Nevertheless, it provides us with a way to model

non-Fickian diffusion of dissolved gas in polymer melts. In fact, such a non-Fickian

term plays an important role in the bubble growth process in our theory. Without

gas compressibility and the conventional Henry’s law, the gas concentration at the

bubble surface is usually not much lower than that in the far field. Thus, the clas-

sical process of gas diffusion through the melt toward the bubble is not adequately

represented by the Fickian term. The non-Fickian (and nonlocal) character of the

Cahn-Hillard diffusion provides the needed mechanism for bubble growth.

5. Validation of Phase-Field Results. In validating the phase-field model it

is important to compare its results with those of the classical model when possible.

The classical model itself is limited to the simplest situation, the spherically symmetric

growth of a single bubble. We therefore start there and show a relation between the

results. Then we simulate more complicated situations with two and several dozen

bubbles. By comparing the growth of each individual bubble in the complicated case

to the single bubble case, we evaluate how good an approximation it is to use the

single bubble growth curve to predict the behavior of numerous bubbles, as is done

in the classical case [15].
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Fig. 5.1. The φ profile for a pre-existing bubble that is used as the initial condition for our first
simulation. The abscissa is the distance from the center of the bubble.

5.1. Single Bubble. We compare two simulations with the results of Venerus

and Yala [46], who computed the growth of a bubble in an infinite domain of a

Newtonian melt using a classical sharp-interface model. In this work, the process of

nucleation is not considered; instead, a bubble with a certain radius and initial prop-

erties is used as the initial condition. Similarly, in our first simulation, we disregard

the nucleation stage and start with a pre-existing bubble. In the second, we perturb

a homogeneous mixture to initiate nucleation at multiple sites, which is then followed

by bubble growth.

In the first simulation we start with an initial bubble centered in a square domain.

The initial conditions are zero velocity and a radially symmetric φ profile depicted

in Figure 5.1, which is extracted after a small time interval. Note that φ > 0 in the

center, which is the interior of the bubble. The initial bubble radius Rinit = 1 matches

that in [46]. To match the slope of the diffusion-controlled growth curve [curve (a) in

Figure 5.2], we use a smaller value for γ: γ = 8889.

The result is shown in Figure 5.2 by curve (c), which exhibits much the same

behavior as curve (b) representing the classical solution. The main difference occurs

in the early stage of bubble growth, where the phase-field solution attains the long-

time asymptotic growth sooner than the classical solution. There are two possible

causes for this. First, the combined Fickian and non-Fickian diffusion discussed earlier

may contribute to this phenomenon. Second, this may also be due to the lack of

compressibility in our phase-field equations. As the gas diffuses into the bubble, its

volume remains the same in our model. This produces a lower bubble pressure and a

lower gas concentration on the interface. Hence faster gas diffusion into the bubble.

The effect of the compressibility will be discussed in detail in a future publication.

φ
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Fig. 5.2. Comparison of single bubble growth between classical and phase-field models. The
solid line (a) indicates the diffusion-controlled limit with R ∝ √

t. Curve (b) is the classical result
from [46]. Curves (c) and (d) are our results without and with the nucleation stage, respectively.

In our second simulation, we start with zero velocity and a φ distribution:

φ = −0.3 − 0.1 tanh

[√
(x − 50)2 + (y − 50)2 − 16

4.62

]
. (5.1)

Such an initial condition represents not a bubble, but a small gas clump in a 70/30

liquid/gas mixture. As the simulation continues, nucleation occurs and the clump

grows into a bubble. Then the bubble expands through diffusion of gas from the

outside mixture into the bubble. Once the bubble has formed we measure the growth

of the bubble and plot the data in Figure 5.2 as curve (d). The long-time behavior

is similar to the first simulation, showing the diffusion-controlled asymptotic growth.

But in a short interval of time after nucleation, the slope of the R ∼ √
t curve is

greater than the asymptotic slope. This contrasts curves (b) and (c), which have

started from a pre-existing bubble without nucleation. This discrepancy highlights

one of the failings of the classical models: its inability to integrate bubble nucleation

with growth. Ignoring the former, one has to postulate an initial bubble and prescribe

its initial properties. Such initial conditions have been subject to much debate [15, 45].

Those used in [46, 15] assume an initial force balance on the bubble surface so the

bubble starts with zero acceleration. This may have caused the slow initial growth of

the classical result represented by curve (b) in Figure 5.2.

5.2. Multiple Bubbles. Next we have carried out a simulation with two bub-

bles near each other. The idea is to compare the growth rate of each bubble with the

single bubble solution. The simulation was run in a square domain with side length

100. The initial conditions had zero velocity and a 70/30 liquid/gas mixture with

two gas clumps having liquid/gas mixture of 60/40 and radius 16, whose centers are
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Fig. 5.3. Growth of bubbles in the presence of nearby bubbles. The solid line (a) indicates
the diffusion-controlled limit. Curve (b) is the growth of one bubble in a two-bubble pair, and is
essentially identical to the single bubble growth curve in Figure 5.2, re-plotted here as (c). Curves
(d, e, f, g) represent 4 bubbles in a foam containing dozens of bubbles (cf. Figure 6.1).

located a distance of 50
√

2 apart. The growth of each bubble is shown by curve (b)

in Figure 5.3. It is essentially identical to the single bubble case, curve (d) in Figure

5.2. Therefore, as long as the bubbles are sufficiently far apart, as they are in this

simulation, they do not interact with each other and their behavior can be predicted

by single-bubble simulations.

Now we consider a situation with several dozen bubbles in close proximity so that

their interaction stunts the growth of some bubbles. The simulation is described in

detail in section 6. A homogeneous 70/30 liquid/gas mixture is subject to a spatially

random perturbation of the concentration. The random gas clumps then serve as seed

sites for bubble nucleation. Once the gas clumps become bubbles, we track several of

the bubbles during their growth, and compare the results to the single bubble growth

curve in Figure 5.3. Curves (d) and (e) follow the single-bubble growth curve up to

a certain point, and then they level off since the bubbles begin to interact with their

neighbors. The growth curve (f) for the third bubble breaks away from the single-

bubble case much earlier; it levels off, and then begins to decrease at a rapid rate. This

is because the third bubble has close neighbors with which it interacts strongly from

the beginning. It eventually diffuses into the surrounding bubbles. Curve (g) follows

the paths of (d) and (e) for a period of time, and then begins a sudden increase. In

fact, the bubble represented by (g) grows at the expense of the bubble represented by

(f), whereby (f) diffuses into (g) by the growth/shrink process discussed in Section 6.2.

From this comparison, we conclude that applying single-bubble dynamics to multiple

bubbles is invalid as soon as they start to interact.
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6. Numerical Results on Foaming. As mentioned before, the foaming pro-

cess consists of bubble nucleation, growth and coalescence, and to account for all

three stages in a self-contained theory is our primary motivation to adopt a phase-

field model with diffuse interfaces. The phase-field model used here is built on the

dynamics of mixing fluids, with no special attention to the foaming stages. Yet, as we

demonstrate below, with a simple initial condition we can reproduce all three stages in

the correct order. As in an actual foaming process, diffusion is the dominant physics

throughout. But each stage has its unique mechanism that drives the system. For the

nucleation stage, it is phase separation via spinodal decomposition or nucleation and

growth. In the growth stage, the bubbles are forced to interact through a diffusion

process where larger bubbles grow at the expense of smaller ones. In the final stage,

of course, the mechanism of importance is the coarsening itself.

We simulate a complete foaming process in a square domain with side length 500.

Initially the domain is filled with a homogeneous gas-liquid mixture with 30% gas.

Velocity is zero everywhere. Now we impose a random disturbance of the concentra-

tion at all grid points so the gas concentration varies between 25% and 35%. This

inhomogeneity allows gas clumps to randomly form throughout the domain, which

become bubbles in time and set off the foaming process. Figure 6.1 illustrates this

process using snapshots. The first picture shows the initial state. The next two show

the nucleation process, with the gas clumps beginning to collect in the second picture,

and the bubbles fully formed in the third. The following two pictures show the bubble

growth stage, with smaller bubbles being “eaten” by larger neighbors. The arrows

indicate two examples of this process. The final picture shows the beginning of the

coarsening stage. The bubbles continue to grow, and begin to coalesce with neighbors

once they get too close. In the following, we will analyze each stage in greater detail,

sometimes with supplemental results.

6.1. Stage I: Nucleation. The Cahn-Hillard dynamics gives a phenomenolog-

ical explanation of the phase separation of two mixtures [10, 12]. Many models have

been proposed for this process [13, 27], and Larson’s [28] discussion of spinodal de-

composition versus nucleation and growth is particularly relevant to our system. The

double-well bulk energy F (φ) = 1
4ε2 (1 − φ2)2 has two minima at φ = ±1. Thus,

it favors complete separation between the gas and the liquid. The spinodal con-

centrations can be determined from the inflection points of F (φ): φspin = ±1/
√

3,

which correspond to a gas concentration of 21.1% and 78.9%. Therefore, if the initial

concentration falls between these two numbers, the system undergoes spinodal de-

composition and instantaneously separates into a bi-continuous network. This will in
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Fig. 6.1. Snapshots of the foaming process at times t = 0, 0.66, 1.2, 1.5, 1.75 and 2.1, showing
the nucleation, bubble growth and coarsening stages. Arrows in slides 4 and 5 point out examples of
small bubbles being absorbed by larger neighbors.

time break down to a drop-in-matrix morphology unless the two species are perfectly

balanced at 50% each. If the gas concentration is below 21.1% or above 78.9%, the

system is metastable and separation may only occur via the relatively slow process of

nucleation and growth.

For a gas concentration of 30%, Figure 6.1 clearly illustrates the formation of

a bi-continuous network by spinodal decomposition (second snapshot at t = 0.66).

This breaks down in time to nucleate individual bubbles (third snapshot at t = 1.2).

We have run additional simulations to explore the nucleation stage at different gas

concentrations. Figure 6.2 shows three simulations with initial gas concentration

of 50%, 40% and 30%. As before, the initial velocity is set to zero, and the uniform

concentration is perturbed randomly in space by up to ±5%. In the symmetric case of

50% gas, a bi-continuous morphology appears and remains indefinitely. For the lower

gas concentrations, on the other hand, the bi-continuous network breaks down to form

gas bubbles. As the gas concentration is lowered, the phase separation becomes slower.

It also takes longer for the simulation to reach an equilibrium state. We have also

attempted a simulation with 15% gas, where the mixture is meta-stable. Nucleation

and growth occurs only when we supply a large enough disturbance that drives the
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Fig. 6.2. Nucleation via spinodal decomposition with liquid/gas ratios of 50/50, 60/40, and
70/30. The snapshots are taken at times t = 0.5, 1, and 2, respectively.

local gas concentration about the threshold of 21.1%. Otherwise the disturbance dies

out.

In the context of foaming, “nucleation” refers to the appearance of a bubble-in-

melt morphology that arises either from nucleation and growth or from the breakup of

a bi-continuous network resulting from spinodal decomposition. Although the gas sol-

ubility is typically low for foaming materials, either process can be relevant depending

on the pressure, temperature and other foaming conditions. In addition, nucleating

agents are routinely added to generate spatial inhomogeneities in gas concentration

and induce nucleation [15].

In the classical homogeneous nucleation theory, a key concept is the “critical

bubble” that is in thermodynamic and mechanical equilibrium with its environment

[2, 15, 40] . Local mass and momentum balances then determine the critical radius

for the viability of the bubble. In our phase-field model, the Cahn-Hillard diffusion

makes nucleation a nonlocal process. For example, the pressure inside an emerging

bubble is not given by the local Laplace’s law; rather it depends on the overall envi-

ronment. This non-locality will be better appreciated when we discuss bubble-bubble

interactions in the next sub-section.

6.2. Stage II: Bubble Growth at the Expense of Smaller Bubbles. After

nucleation, the bubbles grow by diffusion of gas from the melt into the bubble. A

salient feature of this process is Oswald ripening: the larger bubbles grow at the

expense of the smaller ones [10]. To understand this process, we recognize that in

this case the chemical potential is directly proportional to the mean curvature of the

bubbles [11]. This can be derived directly through an asymptotic expansion of the

chemical potential near the configuration. Thus, a larger bubble possesses a lower

chemical potential and a smaller bubble a higher potential; the former will grow at
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Fig. 6.3. Non-interaction between two small bubbles. The snapshots are at times t = 0, 0.1125
and 0.225.

Fig. 6.4. Diffusion of smaller bubble into a larger one. The snapshots are at times t = 0, 0.05
and 0.1.

the latter’s expense. This phenomenon has been considered in classical models of

foaming [40]. In that framework, it is explained by the fact that smaller bubbles have

higher interior pressure (Laplace’s law), which implies higher gas concentration at the

surface (Henry’s law) and thus reduced diffusion to the bubble.

To illustrate this mechanism, we carried out two additional simulations on bubble-

bubble interaction. The first has two small bubbles of equal size, radius 10, placed

a distance of 14 apart (Figure 6.3). Since they possess equal chemical potential, the

only interaction between them is the blurring of the region between them. There is

no coalescence. In the second simulation, we place two bubbles of radius 20 and 7 a

distance of 14 apart. Figure 6.4 shows that the smaller bubble diffuses into the larger.

This is exactly the type of interaction that appears in the second stage of the foaming

process (t = 1.5 in Figure 6.1). In fact, one may consider this process as contributing

to the coarsening of the bubbles; the boundary between stages II and III is therefore

not a sharp one.

6.3. Stage III: Coarsening. When the growing bubbles get close enough to

their neighbors, coalescence occurs, and the foam texture coarsens. This process
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Fig. 6.5. Coarsening between two larger bubbles. The snapshots are at times t = 0, 0.45 and 1.35.

Fig. 6.6. Velocity field around the two coarsening bubbles at time t = 0.3, showing drainage flow.

is evident in the last panel of Figure 6.1, and further illustrated by a coalescence

simulation shown in Figure 6.5. In a square domain with side length 100, we place

two bubbles, both of radius 17, a distance of 11 between their respective φ = 0

boundaries. Soon after the simulation starts, the bubbles begin to deform and extend

toward each other. Once they initially “touch”, surface effects take over and they

continue to deform until they have coalesced into a single large bubble.

This process differs from cell collapse in real foams in several aspects, and high-

lights the unconventional features of our diffuse-interface model. First, the coalescence

during foaming is caused by the high pressure in neighboring bubbles squeezing the

matrix fluid out of the film separating the bubbles. In Figure 6.5, the coalescence

is driven by Cahn-Hillard diffusion. Figure 6.6 illustrates the flow field around the

two merging bubbles. Although the local flow resembles the familiar film drainage

picture [47], the underlying mechanism is not the same. Second, the final rupture of

the film separating the two bubbles is believed to be mainly governed by short-range
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forces such as van der Waals force. Since the Cahn-Hillard energy indeed represents

inter-molecular forces, it gives rise to a similar short-range force, although the scaling

behavior differs from that of the van der Waals force [50].

Finally, surfactants play major roles in real foams. Their effects can be incorpo-

rated into a phase-field model by including an energy functional that concentrates on

the interfacial region. Details will be discussed in future publications.

7. Conclusion. This paper proposes a phase-field theory for gas nucleation and

bubble dynamics in a liquid matrix with potential applications to polymer foaming.

As compared with classical sharp-interface models, this theory has the advantage

that various stages of foaming can be predicted naturally, based on a simple princi-

ple governing mixing and separation of fluids. In particular, nucleation and bubble

coalescence, two processes that have largely eluded previous efforts, can now be fully

incorporated. This avoids two difficulties in prior models: determination of initial con-

ditions for bubble growth and tracking interfacial motions during bubble coalescence.

We have established the relationship of the new model to classic models, illustrated

its advantages by numerical simulations, and pointed out the limitations in its current

form.

The energetic variational approaches guarantee that the resulting coupled sys-

tems are consistent with the thermodynamics — the basic energy laws. By relating

the current approach to the classical empirical laws, with the advantage of easy in-

corporation of more complicated material properties, we conclude that this theory

represents a promising new approach for complex interfacial problems as encountered

in polymer foaming.

We conclude by noting the limitations of the current work in the context of a

real foaming operation. First, the parameter values used here are chosen more for

convenience than to mimic real materials. In particular, the density and viscosity of

the two species differ greatly in reality. Though presenting no conceptual difficulties,

incorporating these differences will entail a numerical effort. Second, foaming typically

involves great variations in ambient pressure and temperature. These have not been

considered. Third, the phase-field model implies transport laws that differ from the

familiar Henry’s law and Fick’s law. To some extent, a connection can be made

between the two approaches. But further study is needed to explore the implications

of the differences to bubble growth in foaming. Finally, our study is limited to two

dimensions. Currently we are developing general three-dimensional numerical codes

that also allow unequal density and viscosity. To keep the problem size manageable in
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3D, we have developed moving-grid and adaptive meshing algorithms to better resolve

the interfaces.
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