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Spontaneous Shrinkage of Drops and Mass Conservation in Phase-Field Simulations
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Abstract - In this note we examine the implications of Cahn-Hilliard diffusion on mass
conservation when using a phase-field model for simulating two-phase flows. Even though
the phase-field variable φ is conserved globally, a drop shrinks spontaneously while φ shifts
from its expected values in the bulk phases. Those changes are found to be proportional
to the interfacial thickness, and we suggest guidelines for minimizing the loss of mass.
Moreover, there exists a critical radius below which drops will eventually disappear. With
a properly chosen mobility parameter, however, this process will be much slower than the
physics of interest and thus has little ill effect on the simulation.
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1 Introduction

In recent years, the phase-field model has gained popularity in simulating two-phase flows of
immiscible fluids [1–6], and the method is the subject of several review articles [7–9]. In this
framework, the fluid interface is treated as a thin but diffuse layer where the two components
mix to some extent. The interfacial profile of a suitably defined phase-field variable φ is
governed by a convection-diffusion equation, and the interfacial tension is recovered from
the interfacial mixing energy. The advantages and limitations of the phase-field method, in
relationship to other interface-capturing methods, have been discussed before [9,10]. In this
note we focus on a question often asked of previous methods: how well does the method
conserve mass? Since we consider incompressible fluids only, mass and volume conservation
are used synonymously.

Phase-field methods come in two flavors: the non-conservative Allen-Cahn model and
the conservative Cahn-Hilliard model. The former relies on an extra constraint to maintain
mass conservation [11,12]. We are concerned here only with the latter, which assumes the
diffusion to be driven not by ∇φ but by the gradient of the chemical potential. This leads
to the celebrated Cahn-Hilliard equation:

∂φ

∂t
+ v · ∇φ = γ∆µ, (1)

where the chemical potential µ = δF
δφ is defined from the mixing energy F in the whole

domain, v is the flow velocity and γ is a mobility parameter. With appropriate boundary
conditions (n · v|∂Ω = 0 and n · ∇µ|∂Ω = 0, where ∂Ω is the boundary of computation
domain Ω and n is the normal to ∂Ω), the integration of Eq. (1) over Ω yields

d

dt

∫

Ω
φdΩ = 0, (2)

which means that Cahn-Hilliard dynamics conserves mass over the entire domain. Since
φ takes on constant values in the bulk of each component (±1, say), this further implies
conservation of mass for each component provided that the interfacial layer is thin. Thus,
the difficulty that requires special attention in level-set and volume-of-fluid methods appears
to be nonexistent for the phase-field method.

In actual implementation, volume conservation is in fact an issue because the interface
has a small but finite thickness. As the interface is the level set φ = 0, the volume of a
drop is liable to variations as the φ(r) field evolves. Theoretically, such variations vanish
as the interfacial thickness approaches zero. In practice, the question is how to maintain
mass conservation within an acceptable margin given a finite interfacial thickness. We have
found hints in the literature on choosing parameters to balance the convective and diffusive
tendencies in the Cahn-Hilliard dynamics [1], but no detailed discussion on the factors that
affect mass conservation, much less an explicit criterion on ensuring it. This note aims to
address this issue.

Two factors drive the evolution of φ: flow and diffusion. An external flow may take on
any form and magnitude, and its effect on φ is difficult to analyze in generic terms. Yue
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et al. [5] have touched on such flow effects in shear-induced drop deformation. Cahn-Hilliard
diffusion is governed by an overall energy optimization, and is the fundamental mechanism
for evolving φ. A well-known example of this mechanism at work is the assimilation of a
smaller drop by a larger one nearby [3]. Therefore, we have chosen to analyze the simple
situation of a single drop that shrinks spontaneously in a quiescent fluid. The insights
gained from this exercise will apply to flow situations.

2 Spontaneous shrinking of a drop

For the mixing energy of the two-phase system, we adopt the Ginzburg-Landau functional:

F =

∫

Ω
λ

[

1

2
|∇φ|2 + f(φ)

]

dΩ, (3)

where λ is the mixing energy density and f(φ) is a double well potential f(φ) = (φ2−1)2

4ǫ2 ,
ǫ being the capillary width indicative of the interfacial thickness. In the simplest case
of a planar interface separating two unbounded components, energy minimization readily
yields a one-dimensional (1D) equilibrium with φ = ±1 in the two bulk phases and φ(x) =
tanh( x√

2ǫ
) across the interface located at x = 0. If one takes −0.9 < φ < 0.9 to be the

extent of the interface, this φ profile gives an interfacial thickness of 4.164ǫ. The feasibility
of a diffuse-interface approximation for two-phase flows with practically sharp interfaces
rests on the fact that the bulk components are identified by φ = ±1 and the interface is
well defined at φ = 0.

These fundamental precepts may come under doubt for more complex geometries. The
requirement of φ = ±1 in the bulk essentially depends on the interface having negligible
volume compared to the bulk so that f(φ) alone matters in the energy minimization. This is
the case for the planar interface discussed above, but not for a drop submerged in a matrix
fluid in a finite domain, for example. This can be easily illustrated by considering the 2D
schematics in Fig. 1, where we impose the hypertangent profile for 1D equilibrium along the
radial direction with φ = ±1 in the bulk phases. Thus, the free energy is concentrated on the
interface, which is effectively the interfacial tension, with zero energy in the bulk. Because
of the finite volume of the bulk, possibly the total energy can be reduced by shrinking
the drop while simultaneously shifting the bulk φ slightly away from the initial values, as
illustrated in Fig. 1(b). This amounts to reducing the interfacial energy at the expense of
raising the bulk energy, which is perfectly permissible within the Cahn-Hilliard framework
but would violate mass conservation for the drop in the physical context.

Such shifting of the interface is not because of the particular initial condition, in this
case the hypertangent φ profile across the interface. In fact, Yue et al. [5, 9] have used the
relaxed φ field, i.e., the 2D equilibrium state for a quiescent drop, as the initial condition
in simulating shear-induced drop deformation. But as soon as the interfacial profile is
perturbed, by flow in this case, the exchange between interfacial and bulk energies will
potentially shift the location of the interface and cause volume loss of the drop. The
phenomenon has also been noted by Jacqmin [1]. Thus, it is a fundamental mechanism
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(a) (b)

Figure 1: Schematic of the shrinkage of a circular drop in a quiescent matrix.

inherent to the Cahn-Hilliard dynamics. For ease of discussion and without loss of generality,
we will consider only the shrinkage of a drop in a quiescent matrix with an initial condition
that consists of the hypertangent profile along the radial direction and φ = ±1 in the bulk.

2.1 Theoretical analysis

Multiplying Eq. (1) with µ and integrating over the whole computational domain Ω, we
obtain the following energy law:

dF
dt

= −γ

∫

Ω
(∇µ)2 dΩ ≤ 0, (4)

where we have used the natural boundary condition n · ∇φ|∂Ω = 0 and zero flux condition
n · ∇µ|∂Ω = 0. So the Cahn-Hilliard dynamics always tends to minimize F , and the drop
shrinks because the relaxed drop shape enjoys a lower energy. The shift of φ can be estimated
based on an energy argument.

We consider a 2D circular drop as shown in Fig. 1. It is convenient to divide the total
energy of Eq. (3) into an interfacial energy F1 (integration over the interfacial region) and
a bulk energy F2 (integration over the two bulk regions). Then for the initial hypertangent
φ profile, F2 = 0 and F1 = σS, where S = 2πr0 is the perimeter of the drop and σ is the

interfacial tension. In the sharp interface limit σ = 2
√

2
3

λ
ǫ .

Under the constraint of Eq. (2), a variation in the drop radius δr must be accompanied
by a shift δφ in the bulk φ values. We assume that the interface is very thin (ǫ ≪ r0) and
the shift δφ is uniform and equal in the two bulk components. To justify the latter, we note

that φ is uniform in each bulk phase and the chemical potential µ = λ (φ2−1)φ
ǫ2 . The spatial

uniformity of µ in equilibrium then requires that the small shifts from φ = ±1 be equal in
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the two bulk phases. Thus, we obtain the relation between δφ and δr:

δφ ≈ −2Sδr

V
= −4πr0δr

V
, (5)

where V is the volume of the whole computational domain Ω. In this equation and hereafter,
we only keep the leading order terms. Now the interfacial energy will be changed due to
the change in interfacial length:

δF1 ≈ σδS = 2πσδr, (6)

where we have neglected the variation in σ: δσ ∼
∫ ǫ
−ǫ λδf dx ∼ σδφ2. The bulk energy will

be changed as well because φ shifts away from ±1:

δF2 ≈
∫

Ω
λδf dΩ ≈ λ

δφ2

ǫ2
V. (7)

Combining Eqs. (5–7), we write the variation of the total mixing energy as:

δF ≈ 2πσδr + λ
(4πr0)

2

V ǫ2
δr2. (8)

Note that λ
ǫ ∼ σ = O(1), and δr

ǫ will turn out to be O(1) as well (see below). Thus, the
second term δF2 = O(δr) is of the same order as the first despite the quadratic form.

Since ∂(δF)
∂(δr)

∣

∣

∣

δr=0
= 2πσ > 0, the total energy will be lowered by drop shrinkage (δr < 0).

This justifies our conjecture in the previous section. It is also obvious from the fact that the
increase in bulk energy is of order δr2 whereas the reduction in interfacial energy is O(δr).

Furthermore, ∂(δF)
∂(δr) = 0 gives the state of lowest energy and therefore the final shrinkage of

the drop:

δr = − σV

16πλ

(

ǫ

r0

)2

= −
√

2V

24π

ǫ

r2
0

, (9)

or in dimensionless form:
δr

r0
= −

√
2

24

(

V

Vd

) (

ǫ

r0

)

, (10)

where Vd = πr2
0 is the volume of drop. Substitute Eq. (9) into Eq. (5), we get the shift of φ:

δφ =

√
2

6

ǫ

r0
. (11)

For a spherical drop in three dimensions, similar results can be obtained:

(

δr

r0

)

= −
√

2

18

(

V

Vd

) (

ǫ

r0

)

, (12)

and

δφ =

√
2

3

ǫ

r0
, (13)

5



P. Yue, C. Zhou & J. J. Feng, J. Comput. Phys. 223 (2007) 1–9

Figure 2: Computational domain for the finite element calculations. Symmetry conditions are
imposed at the two axes. On the outer boundaries n · ∇φ = 0 and n · ∇µ = 0.

where Vd = 4
3πr3

0 is the volume of the spherical drop.

Note that we have neglected terms of higher order than δr/r0 and δφ in the above.
Thus, the validity of Eqs. (10–13) requires δr

r0
≪ 1, which is more restrictive than ǫ

r0
≪ 1

as V
Vd

> 1. In the literature, Cn = ǫ
r0

is defined as the Cahn number. In addition, we have
assumed φ = 1 inside the drop and φ = −1 outside. If this is reversed, δφ in Eqs. (11) and
(13) takes on a minus sign while δr in Eqs. (10) and (12) does not change.

2.2 Numerical verification

To verify the above analysis, we have performed numerical simulations of the spontaneous
shrinking of 2D and 3D drops. In 2D, we use a Fourier-Chebyshev Galerkin spectral method
[5] in a rectangular box of 2π × 2, with periodicity in the horizontal direction. Drops with
initial radius r0 = 0.25, 0.4, 0.5, 0.52, 0.6, 0.7, 0.8 and 0.9 and capillary width ǫ = 0.01 and
0.02 are simulated. In addition, we use a finite-element code with adaptive meshing [6] to
compute shrinking of 2D and axisymmetric 3D drops. The computational domain is shown
in Fig. 2 with L = 2. Thus V = 16 for the 2D and V = 16π for the 3D domain. The initial
drop radius is fixed at r0 = 1 and a range of capillary widths is tested: ǫ = 0.005, 0.01,
0.02, 0.05, 0.1 and 0.2. For all the calculations, we initially set φ = +1 inside the drop and
φ = −1 outside. Mesh size at the interface is roughly ǫ

2 to guarantee numerical accuracy.

Figure 3 compares the numerical and theoretical results of δφ and δr/r0. In the nu-
merical results, δφ is spatially uniform for smaller values of the Cahn number Cn. At
Cn = 0.05, for instance, the variation is below 3.1% over the computational domain in 2D.
With increasing Cn, the spatial variation of δφ becomes more substantial. Thus, we take
δφ to be 1

2 [(φmax − 1) + (φmin + 1)]. The comparison shows excellent agreement between
numerical simulations and theory for relatively small values of Cn, while toward the upper
end of the Cn range, deviations start to appear as the analytical result loses accuracy.
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(a) (b)

Figure 3: Comparison between theoretical and numerical results on (a) shift of the phase field
variable φ and (b) shrinkage of the drop radius.

2.3 Guidelines for conserving mass

Equations (10–13) lead to the following guidelines for conserving mass for each component
in phase-field simulations. First, use a small Cahn number Cn ≪ 1. This amounts to the
requirement that ǫ be much smaller than drop size. Based on 1D solidification calculations,
Fabbri and Voller [13] suggested that ǫ should be smaller than 0.0025 of the domain size.
Our experience indicates that Cn . 0.01 is generally sufficient. Second, avoid using very
large computational domains relative to the size of the dispersed phase. If the volume ratio
V/Vd is large, a drop may shrink considerably even for a small Cn. In fact, drops with
an initial size below a critical size will disappear altogether (see Section 3). Again, these
guidelines apply to flow situations as well despite the fact that they have been developed
here in the simpler case of no external flows.

Two interesting comments may be made on the condition Cn ≪ 1. First, this is the
condition for approaching the sharp-interface limit. Taking a diffuse interface as an approx-
imation of the sharp interface, it is easy to show that the error in the interfacial tension is
O(Cn2), and the error in mixture properties such as density and viscosity is O(Cn). Thus,
the requirement of mass conservation partially overlaps with that for approximating the
sharp-interface situation. Thinner interfaces are computationally more costly to resolve, of
course. Our recent work has shown adaptive meshing as an attractive strategy for reaching
down to smaller values of Cn [6]. Second, the Cahn number should be understood more
generally as the ratio between ǫ and the smallest length scale of interest. In singular events
such as interfacial rupture and coalescence, the local radius of curvature approaches zero,
or more appropriately ǫ, since no interfacial feature below ǫ is meaningful in the diffuse-
interface context. Thus, Cn → 1 no matter how small ǫ is. One may view this as the failure
of the phase-field method since its convergence to the sharp-interface limit breaks down.
However, such events are dominated by short-range forces and the classical sharp interface
model cannot represent the real physics either. In fact, the phase-field model contains a
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phenomenological “short-range force” that resembles the van der Waals force [14]. In this
sense, the phase-field model is superior in treating such singular events.

3 Critical drop radius

Equations (10) and (12) suggest that a drop may disappear completely when V
Vd

ǫ
r0

is large
enough. But this is inconclusive since these equations hold only for δr ≪ r0. In the
following, we present an alternative analysis that establishes a critical drop radius rc such
that all the drops with r0 < rc will disappear eventually in a process analogous to Ostwald
ripening. The only assumption is ǫ ≪ r0 or Cn ≪ 1.

Consider a 2D drop of initial radius r0 with φ = 1 inside the drop and φ = −1 outside.
When the drop radius shrinks to r, we again assume an equal and uniform shift δφ inside
and outside. The conservation of φ over the entire domain gives:

δφ =
2π(r2

0 − r2)

V
. (14)

Although r2
0 − r2 is now finite, it can be confirmed a posteriori using Eq. (17) that δφ ∼

r2
c

V ∼ (V ǫ)2/3

V = ǫ2/3

V 1/3
≪ 1. Neglecting cubic and quartic terms in δφ, we write the total free

energy at drop radius r as:

F ≈ 2πrσ + λ

[

(1 + δφ)2 − 1
]2

4ǫ2
(πr2) + λ

[

(−1 + δφ)2 − 1
]2

4ǫ2
(V − πr2)

≈ 4
√

2π

3

λ

ǫ
r + 4π2 λ

ǫ

1

V ǫ
(r4

0 − 2r2
0r

2 + r4), (15)

where we have tacitly assumed r ≫ ǫ and approximated the interfacial tension by the
asymptotic formula. Although a vanishing drop eventually has its radius reduced to r ∼ ǫ,
we will find below that the r of interest in our analysis is O(r0).

Now the derivative of F with respect to r is:

∂F
∂r

=
4
√

2π

3

λ

ǫ
+ 4π2 λ

ǫ

1

V ǫ
(4r3 − 4r2

0r). (16)

Since ∂F
∂r

∣

∣

r=0
= ∂F

∂r

∣

∣

r=r0

> 0, the F(r) curve must have an inflexion point at ri ∈ [0, r0]

as shown in Fig. 4; ri is readily calculated from ∂2F
∂r2 = 0: ri =

√
3

3 r0. If ∂F
∂r

∣

∣

r=ri
< 0, the

energy F(r) will exhibit a potential well at some rw > ri. Then the shrinking drop will be
trapped at rw and will not vanish even if F(r = 0) < F(r = r0). Therefore a vanishing
drop requires ∂F

∂r

∣

∣

r=ri
≥ 0, which is satisfied by

r0 ≤ rc =

(√
6

8π
V ǫ

)1/3

. (17)
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Figure 4: Schematic of the mixing energy F as a function of drop radius r. The dashed curve with
r0 = rc has zero slope at r = ri.

Drops with initial radius r0 below the critical radius rc will eventually disappear. Similar
results may be derived for 3D drops: ri = r0

22/3
and

rc =

(

21/6

3π
V ǫ

)1/4

. (18)

These formulae have been verified by finite-element computations, and the results are plot-
ted in Fig. 5.

Equations (17) and (18) indicate that rc is largely determined by the domain size, and
only depends on ǫ weakly. Once the domain size is chosen, there is little room for raising
rc by reducing the capillary width ǫ. Fortunately, rc does not necessarily set the minimum
feature size that may be simulated. If the time scale of interest tf , e.g. related to flow or
interfacial deformation, is much shorter than the shrinkage time tsh, then the process can
be computed accurately with minimal loss of mass even for r0 < rc. This depends on the
Cahn number Cn as well as the mobility parameter γ.

To estimate the shrinkage time tsh, we write the Cahn-Hilliard diffusion flux as F = γ∇µ.
The chemical potential µ may be estimated as the phase-field analogue of interfacial tension
times curvature [1]: µ ∼ σ

r0
. The length scale l over which µ varies is much larger than ǫ; it

may be estimated by scaling arguments [15], but will be determined below from numerical
data. Now we have F ∼ γσ

r0l . When the radius shrinks by ∆r in time tsh, the “mass” of φ
that passes through unit area of the interface is ∆r = Ftsh, which gives

tsh ∼ r0∆rl

γσ
. (19)

Comparing this scaling with numerical data shows that for the few ǫ values tested, l
ǫ is on

the order of 100:

tsh ≈ 100
r0∆rǫ

γσ
. (20)
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Figure 5: Comparison between theoretical and numerical results on the critical drop radius rc.
The range of V is achieved by using L =1, 2, 4 and 8 in the computational domains (see Fig. 2).
Numerically, discrete r0 values are tested to bracket rc within 3%.

Comparing the diffusive and convective fluxes, Jacqmin [1] suggested a scaling for the mo-
bility γ ∼ ǫn with n between 1 and 2. In our simulations of flow-induced drop deformation,
we have found γ ∼ Gr0ǫ

2/σ to be a good choice, G being the characteristic strain rate.
Substituting this γ into Eq. (20) gives

tsh ≈ 100
∆r

r0

r0

ǫ

1

G
= 100

∆r

r0
Cn−1 G−1. (21)

Therefore, the time needed for the drop to shrink by a significant fraction is at least two
orders of magnitude longer than the flow time tf = G−1. The smaller the Cahn number
Cn, the greater the disparity between tsh and tf . In other words, by using a small Cn and
a judicious choice of the γ parameter, drop shrinkage can be kept under control even for
small drops with r0 < rc.

This conclusion has been borne out by numerical simulations of drop deformation in
elongational flow (see Ref. [6] for details). The axisymmetric computational domain has
L = 10 (see Fig. 2), and the other parameters are r0 = 1, ǫ = 0.01, G = 1, and σ = 10.
We have chosen γ = 2.0 × 10−5 ∼ Gr0ǫ

2/σ. Equation (18) gives rc = 1.65 > r0 so the drop
is subject to disappearance. As an example, a drop of equal viscosity to the external fluid
achieves a steady-state spheroidal shape in a flow time of tf ≈ 5. The shrinkage time from
Eq. (20) is tsh ≈ 5000 ≫ tf . At t = 5, the drop volume has decreased by 1.4%, equivalent
to a decrease in the effective radius of 0.5%. Therefore, mass is conserved to a great degree
of accuracy even though we are calculating a drop smaller than the critical one, and the
numerical result agrees well with the sharp-interface result.
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4 Summary

In this note, we have demonstrated that the shift of the phase-field variable φ and shrinkage
of drops are phenomena inherent to the Cahn-Hilliard dynamics. The shift δφ and drop
shrinkage δr are calculated and turn out to be proportional to the Cahn number Cn = ǫ

r0
.

Based on these, guidelines are suggested for maintaining mass conservation in phase-field
simulations of two-phase flows. In particular, the mass loss becomes negligible if a small
enough capillary width ǫ is used. Although the results are derived for a specific set of initial
conditions in the absence of external flow, the guidelines are general.

Furthermore, there exists a critical drop radius rc for a given computational domain and
capillary width so that drops smaller than rc will eventually vanish. This rc could be rather
large for large computational domains. Fortunately, with the proper choice of the mobility
parameter γ and a small enough ǫ, drop shrinkage can be very slow and thus causes little
loss of mass during the time of interest based on global dynamics.
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