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Abstract - It is well known that neutrophils take much longer to traverse the pul-

monary capillary bed than erythrocytes, and this is likely due to differences in the structure

and rheology of the cells. In this study, we simulate the transit of a neutrophil in a capil-

lary using a Newtonian drop model and a viscoelastic drop model. The cell membrane is

represented by an interface with isotropic and constant tension, and the cell motion and de-

formation are described by a phase-field method. The governing equations are solved using

finite elements in an axisymmetric geometry, and the thin interfaces are resolved by mesh

adaptivity. With a fixed pressure drop, the entry of a cell into a capillary consists of several

stages in which the flow rate varies in distinct manners. The entrance time is consistent

with experimental measurements. It decreases with the pressure drop, increases with the

cell viscosity and generally decreases with the relaxation time of a viscoelastic cytoplasm.

The capillary geometry has a strong effect on the entry and transit of a neutrophil. The

entrance time increases sharply when the capillary diameter decreases or when the capillary

is constricted by a pinch.

Key Terms: entrance time, cytoplasmic rheology, viscoelasticity, numerical simulation,

phase-field method.
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I. INTRODUCTION

Neutrophils often encounter narrow capillary segments during their transit through the

pulmonary and systemic microcirculations. Because the neutrophil diameter (6–8 µm) often

exceeds the diameter of a pulmonary capillary (2–15 µm),1,2 cell deformation is necessary

for passage. It is well known that neutrophils take much longer to traverse the pulmonary

capillary bed than erythrocytes.3 As a result, white cells accumulate in the lungs and form

a reservoir from which they may be readily recruited when needed.1,4 As the pulmonary

bed consists of 50–100 capillary segments,5,6 the longer transit time for neutrophils likely

reflects their relatively poor deformability,7,8 which in turn depends on the structure and

mechanical properties of the cell: membrane rigidity, cytoplasmic viscosity and viscoelas-

ticity, and the properties of the nucleus.

Measuring leukocyte deformation and transit in vivo is a difficult task,3 and so far our

understanding of the mechanical behavior of leukocytes has come mostly from micropipette

aspirations in vitro. By measuring the time-dependent cell deformation at a controlled

pressure, cell viscosity, cortical tension and elastic modulus can be estimated by treating

the cell as a homogeneous continuum.9,10 As a sort of rheometry, aspiration experiments

yield fundamentally important data. But they do not produce direct information on cell

transit in capillaries. The Cell Transit Analyzer11 combines the aspiration process with

subsequent passage through cylindrical pores, and allows rapid measurements of transit

time. However, the cell entry and departure from the micropore is monitored from the

attendant pulses in electric conductivity across the filter. The actual deformation of the

cell is unknown and the interpretation of the signal is subject to much uncertainty.11,12

Recently, Yap and Kamm2 carried out an experiment using microfluidic channels that

seems to have overcome previous difficulties. The device allows direct observation of neu-

trophil deformation and activation upon entering a microfluidic channel, as well as mea-

surement of the cell entrance time as a function of the pressure drop imposed across the

microfluidic channel. The present work is motivated by Yap and Kamm’s experiment, and

aims to extract a fundamental understanding of the cell entry process using dynamic simu-

lations. Yap and Kamm2 also reported interesting results on neutrophil activation probed

by microrheology and pseudopod formation. These will not be accounted for in our simu-

lations.

2



C. Zhou, P. Yue & J. J. Feng, Ann. Biomed. Eng. 35 (2007) 776–780

Analyzing the physical and mechanical processes on the single-cell level remains a chal-

lenge, especially when taking the living and dynamic nature of the cell into consideration.13

Lim et al.14 reviewed the quantitative mechanical models developed so far for the cell. Gen-

erally, these adopt either a microstructural approach or a continuum approach. The former

is based on the cytoskeleton as the main structural component, and has been used widely

to investigate cytoskeletal mechanics in adherent cells.15 On the other hand, the contin-

uum approach takes the cell as comprising homogeneous materials with certain effective

properties. Although providing less insight into the details of intra-cellular processes, the

latter is simpler and has found applications in simulating large-scale transient behavior of

suspended cells such as the corpuscles in the blood.16–18

Continuum cell models come in several flavors. The Newtonian liquid drop model9,19

sees the cell as a homogeneous Newtonian drop enclosed by a cortex that has a constant

and isotropic tension and negligible viscous dissipation. Non-Newtonian drop models, such

as the shear-thinning model20 and the viscoelastic Maxwell model,21 have since been devel-

oped to reflect the non-Newtonian rheology of the cytoplasm in leukocytes. Furthermore,

compound drop models22–25 explicitly account for the cell nucleus as a drop suspended in

the cytoplasm. The cell and nuclear membranes are taken to be interfacial layers with

differing interfacial tensions. So far, micropipette aspiration has been the benchmark prob-

lem for testing these models, and the prediction has been remarkably good considering the

simplicity of the models.19,21,26,27 Moreover, the models have been used to simulate other

modes of controlled deformation in relatively simple geometries, e.g., recovery in a quiescent

medium25,28,29 and deformation in elongational flows24 and shear flows.18,30 Most recently,

the compound drop models have been applied in simulating the adhesion of leukocytes on

the endothelium.31–33 However, only a few simulations have been carried out on the tran-

sit of suspended neutrophils, either through a single capillary6,34 or an idealized capillary

network.5

The present study consists of dynamic simulations, based on the Newtonian and vis-

coelastic drop models, of the deformation and transit of neutrophils through capillaries that

roughly correspond to the experiments of Yap and Kamm.2 Specifically, we study the entry

of a neutrophil from a larger vessel into a narrow capillary using geometry and parameter

values based on the Yap-Kamm experiments. The entrance time, the cell deformation and
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the subsequent motion within the capillary will be compared with observations. The focus

of the study will be on how cytoplasmic rheology affects the entry of a neutrophil into a thin

capillary. The nucleus is not explicitly accounted for, and the cytoplasmic rheology should

be understood as an averaged property of the complex mixture of the nucleus, cytosol and

suspended organelles. Furthermore, we have neglected two physiologically important fac-

tors. First, the cell membrane is treated as thin interfaces having a constant cortical tension,

with no elastic resistance against bending and in-plane shearing and no viscous dissipation.

We recognize that membrane elasticity has an important role in cell deformation that has

received a great deal of research.17,35 Although membrane elasticity may be incorporated

into the phase-field theory,36,37 we defer the implementation to a future effort. Second, we

have not accounted for the glycocalyx on the inner walls of the capillary, which is known

to greatly increase resistance on red blood cells.38,39 This is partly because very little is

known of the glycocalyx on the pulmonary endothelium, and partly because incorporating

the porous layer model would greatly increase the complexity of the flow simulation. So far,

the only multi-dimensional computation that accounts for the glycocalyx used a drastically

simplified model of a frictionless contact surface.6

In the context of computational fluid dynamics, our problem is a complex one because

of the moving and deforming interfaces and the non-Newtonian rheology of the fluid com-

ponents, each being a major computational challenge.40,41 Recently, we have developed a

diffuse-interface method that incorporates the moving interface and non-Newtonian rheol-

ogy in a unified variational framework.42,43 Implemented using spectral methods and finite

elements, the method has been applied successfully to several problems in drop dynamics

of complex fluids,44–50 and will be adapted here to the task of neutrophil deformation and

transport.

II. THEORY AND NUMERICAL METHODS

Our diffuse-interface model was developed mainly for simulating interfacial dynamics

in complex fluids. For any binary blend, the two nominally immiscible components are

assumed to mix in a narrow interfacial layer and store a mixing energy. Across the interfacial

layer, physical properties such as viscosity and density change steeply but continuously.

The interfacial position and thickness are determined by a phase-field variable φ whose
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evolution is governed by a Cahn-Hilliard equation. The interfacial tension is given by

the mixing energy. This way, the structure of the interface is rooted in molecular forces

and calculated from a convection-diffusion equation; there is no longer a need for tracking

the interface. Moreover, the model uses an energy-based formulation that incorporates

the non-Newtonian rheology of microstructured fluids with ease. This is the main reason

for our selecting this methodology. A more in-depth discussion of the advantages and

disadvantages of the diffuse-interface model, vis-à-vis the classical sharp-interface model

and other interface regularization methods, can be found in the literature.42,43,51

The above methodology has been implemented in a finite-element package AMPHI

(Adaptive Meshing with phase field φ). Yue et al.48 have described the code in detail

and presented numerical experiments to establish its validity and accuracy. In this paper,

we will only summarize the main ideas and give the governing equations. To be specific,

consider a Newtonian fluid in contact with a viscoelastic Oldroyd-B fluid, the interface be-

tween the two being diffuse with a small but non-zero thickness. We define a phase-field

variable φ such that the concentrations of the non-Newtonian and Newtonian components

are (1 + φ)/2 and (1 − φ)/2, respectively. Then φ takes on a value of 1 or −1 in the two

bulk phases, and the interface is simply the level set φ = 0. Starting with the system’s free

energy, comprising the mixing energy of the interface and the bulk elastic energy in the

Oldroyd-B fluid, we can derive the following set of governing equations:44,48

∂φ

∂t
+ v · ∇φ = γ∇2G, (1)

G = λ

[
−∇2φ +

φ(φ2 − 1)
ε2

]
, (2)

τ p + λHτ p(1) = µp[∇v + (∇v)T ], (3)

τ = (
1− φ

2
µn +

1 + φ

2
µs)[∇v + (∇v)T ] +

1 + φ

2
τ p, (4)

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · (−pI + τ ) + G∇φ + ρg, (5)

∇ · v = 0, (6)

where G is the chemical potential and γ is the mobility parameter; λ and ε are the interfacial

energy density and capillary width, respectively. The polymer stress τ p obeys the Maxwell

equation, with the subscript (1) denoting the upper convected derivative and λH being the

polymer relaxation time.52 µp and µs are the polymer and solvent contributions to the
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shear viscosity of the Oldroyd-B fluid, and µn is the viscosity of the Newtonian phase. ρ

is a mixture density: ρ = 1+φ
2 ρ1 + 1−φ

2 ρ2, ρ1 and ρ2 being the densities of the Oldroyd-

B and Newtonian components, and g is the gravitational acceleration. As demonstrated

elsewhere,44,48 the diffuse interface has two important features: (a) The interface has a

thickness on the order of 5ε. The Cahn-Hilliard dynamics ensures that it neither collapses

into a sharp surface nor diffuses into a wide region. (b) In the limit of ε → 0, the above

system reduces to the familiar sharp interface formulation, and 2
√

2λ/3ε gives the interfacial

tension.42 The velocity and shear stress are continuous across the interface and the normal

stress has a jump consistent with the interfacial tension. To accurately reproduce the

cortical tension on a thin “membrane”, therefore, we must use an ε that is much smaller than

the overall dimension and must resolve the φ profile adequately within the thin interface.

This is why adaptive meshing is essential to AMPHI.48

These equations are discretized on a finite-element grid using the Petrov-Galerkin for-

mulation with streamline upwinding for the constitutive equation. We will concern ourselves

only with axisymmetric geometry in this study, and the 2D computational domain is covered

by an unstructured grid of triangular elements. To resolve the thin interfacial region, we

have used an adaptive meshing scheme based on the public-domain package GRUMMP.53

The scheme allows one to control the spatial gradient of grid size using a scalar field. In our

application, the phase-field variable φ is a natural choice for this function. Thus, we have a

belt of refined triangles covering the interfacial region. As the interface approaches the edge

of the belt, remeshing is performed with the mesh upstream of the interface being refined

by edge bisection and/or node insertion while that left behind being coarsened. Typically

the interfacial layer requires roughly 10 grid points to resolve, and remeshing happens over

tens of time steps. We use implicit time-stepping, with Newton iteration at every step to

handle the nonlinearity in the equations. The time step is automatically adjusted according

to a set of criteria based on the normal velocity of the interface and the bulk velocity. Nu-

merical experiments with grid refinement and time-step refinement have been carried out,48

and adequate resolution is ensured for the simulations presented in the following.

III. SIMULATIONS USING THE NEWTONIAN DROP MODEL

As the simplest model for a neutrophil, we have a liquid drop containing a homogeneous

viscous Newtonian fluid that represents the cytoplasm and nucleus in an average sense. The
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Figure 1: The geometric setup for simulating a neutrophil’s entrance into a capillary. Two
cylindrical tubes are connected by an arc of 90◦. Shown is the meridian plane and the upper
half is the computational domain.

interfacial tension σ represents a constant and isotropic tension in the cell membrane. The

drop fluid, or “cytoplasm”, has a density ρc and a viscosity µc, and the cell is suspended

in a matrix of density ρm and viscosity µm. Before deformation, the spherical cell has a

radius rc. To simulate the entry of the neutrophil into a capillary, we use the axisymmetric

computational domain illustrated in Fig. 1. The narrow capillary downstream of the con-

traction has a radius a and length L = 10a. A constant pressure drop ∆P is applied over

the entire length of the domain 19a. To construct the dimensionless groups controlling the

process, we use a as the characteristic length and Vf = ∆Pa2/(8µmL) as the characteristic

velocity. Note that Vf is the average velocity in a Poiseuille flow through a uniform pipe of

radius a with pressure gradient ∆P/L. Then five dimensionless groups can be constructed:

Ca =
µmVf

σ
, (7)

Re =
ρmVfa

µm
, (8)

α =
ρc

ρm
, (9)

β =
µc

µm
, (10)

ζ =
rc

a
, (11)

where the capillary number Ca indicates the ratio between viscous and capillary forces,

and the Reynolds number Re represents the ratio between inertial and viscous forces. The

characteristic flow time is tf = a/Vf , and the flow rate will be scaled by Qf = πa2Vf .

For brevity, we use the same symbols for dimensional and dimensionless variables, but will

explicitly indicate which is meant where confusion may arise.
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(a) (b)

Figure 2: (a) The microchannel of Yap and Kamm.2 The scale bar is 100 µm, and the two
arrows indicate the microchannel and the reservoir. (b) Schematic showing the dimensions
of the microchannel. Its cross-section is rectangular with a width of 5 µm and a depth of
2.5 µm. After Yap and Kamm;2 c©2005 the American Physiological Society.

The cell radius, effective viscosity and cortical tension of the neutrophil are taken from

the literature:2,9, 14 rc = 3.5 µm, µc = 2.2 poise and σ = 0.035 dyn/cm. The plasma density

and viscosity are essentially those of water. The neutrophil is nearly neutrally buoyant and

we have taken the density ratio α to be unity in all the simulations. The dimensions in Fig. 1,

with a = 2 to 2.5 µm, approximate these in the experiment of Yap and Kamm2 (Fig. 2).

But their microchannel has a rectangular cross-section and an exact match is impossible.

For the typical flow rates in the experiments,2 the capillary number Ca ranges up to 0.1

and the Reynolds number Re = O(10−3). Thus inertia has little part in the dynamics to

be discussed. The viscosity ratio β is on the order of 200 for an activated neutrophil and

may be as large as 104 before activation.2,9, 14 Highly viscous cells deform less and tend to

press tightly against the channel walls at the entrance. For lack of a proper treatment of

the membrane-wall interaction, such cells often stick to the wall. This drawback limits us

to β values on the order of 50. For convenience, therefore, we have used relatively small

β values. Varying β between 1 and 16 shows a clear trend in the results and we did not

explore higher β values systematically.

As mentioned before, we use an adaptive meshing scheme to resolve the thin interfacial

region so as to produce an accurate cortical tension. In all the simulations, we have used

a capillary width ε = 0.008a. The finest grids occur at the interface with grid size h1 =

0.005a, while the bulk mesh size inside and outside the cell are h2 = 0.12a and h3 =

0.2a, respectively. These, along with the time step ∆t, have been tested in numerical

experiments48 to ensure adequate resolution. At the beginning of the simulation, the cell is
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placed on the centerline at x = 5a and the velocity is zero everywhere. Then the pressure

drop ∆P , imposed over the whole length of the domain, drives a flow from the left to the

right in Fig. 1. At the inlet and the outlet, we set the boundary conditions to be v = 0 and

∂u/∂x = 0. On the centerline we use symmetry conditions: v = 0 and ∂u/∂y = 0.

A. The process of cell deformation and entrance

For one set of parameters, the process of cell entrance is illustrated by the snapshots in

Fig. 3. The variations of the flow rate Q and cell length l are plotted in Fig. 4 as functions

of time. One may discern four stages in the process. (i) First, the neutrophil deforms

and moves into the contraction while the flow rate drops sharply (t < 5). This is because

the front of the cell is sucked into the capillary and plugs most of the flow area. The cell

length increases steadily, and this stage continues until roughly half of the cell is within the

capillary. (ii) Once the plugging of the capillary has reached its maximum level, the flow

rate more or less keeps constant until the whole cell enters the capillary (5 < t < 9). The

elongation of the cell continues in this second stage; its rear is “held” by the contraction

while its front is stretched by the flow (Fig. 3c). (iii) The third stage is a transient as the

rear of the cell clears the contraction (9 < t < 12). As the contraction loses its “grip” on

the cell (Fig. 3d), the high capillary pressure inside its rear produces a sudden forward flow

and a retraction of the cell’s back surface. This temporary shortening of the cell (see Fig. 4)

in turn increases the blockage in the capillary and causes the flow rate to drop. Both l

and Q recover in time as the cell attains an equilibrium shape. (iv) Finally, the cell moves

downstream with a constant shape and velocity (t > 12).

The scenario described above is observed for most of the simulations but is not universal ;

some aspects vary depending on the parameter values. In section III.C, we will see different

behaviors of the flow rate in stage (ii) for higher and lower cell viscosities (cf. Fig. 7). In

the more extreme case of very high pressure drops, both the flow rate and the cell length

vary monotonically, and no obvious stages can be discerned. This is because the cell is

highly elongated by the contraction flow upstream of the capillary and the entry becomes

relatively uneventful. We have observed in the simulations that the flow rate Q and cell

length l generally vary in opposite directions (cf. Fig. 4). This will be explained in the next

subsection in terms of the increased flow resistance due to the cell.
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(a) t = 2.49 (b) t = 4.41

(c) t = 6.16 (d) t = 8.84

(e) t = 10.96 (f) t = 12.74

Figure 3: Snapshots of the neutrophil during its entrance into the capillary. Ca = 0.0893,
β = 3 and ζ = 1.4. Time is made dimensionless by tf = a/Vf .

Figure 4: Variations of the flow rate Q and cell length l during the entrance process. Q
is made dimensionless by Qf . The cell length l is the distance between the foremost and
rearmost points of the cell and is scaled by a. Ca = 0.0893, β = 3 and ζ = 1.4.

B. The entrance time

As in Yap and Kamm’s experiment,2 we define the entrance time τent as the time interval

between the leading edge of the cell crossing the entry to the capillary (namely, the axial

position where the straight portion of the capillary starts) and its trailing edge clearing

the entry. Figure 5 shows the numerically computed τent for a range of applied pressure

drop (or capillary number). The dimensionless entrance time increases with the imposed
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Figure 5: Log-log plot of the dimensionless entrance time τent as a function of the capillary
number Ca. The data points are numerical results while the solid curve represents Eq. (18)
derived from scaling arguments. β = 3 and ζ = 1.4. Time is made dimensionless by a/Vf ,
and Ca is defined using the applied pressure ∆P in Eq. (7).

pressure; the slope suggests a weak power-law with an index of around 0.1. Intuitively, the

dimensional τent should decrease with ∆P or the velocity Vf since a higher pressure will

induce a faster flow and a more rapid entry of the cell. If the cell followed the surrounding

fluid perfectly, its velocity would be proportional to Vf and the dimensionless entrance

time, scaled by a/Vf , would be independent of the imposed pressure or the flow rate. In

reality, however, the cell’s motion is hindered by the channel walls. The weak increase of

τent with Ca in Fig. 5 suggests that the cell lags the matrix fluid more at faster flow rates.

In the following, we will provide a more quantitative explanation for the effect using scaling

arguments.

With negligible inertia, the constant pressure drop ∆P is entirely expended on over-

coming the viscous friction on the channel walls. The presence of the cell increases the wall

friction in its vicinity. To quantitate this effect, we adopt a simplified geometry of the cell.

Figure 3 suggests that during much of the entry process, the rear of the cell is constricted

by the pinch and hardly moves forward. The front of the cell extends into the capillary in a

slug shape. We make three assumptions about the gap δ between the cell and the capillary

wall: (a) δ is much smaller than the capillary radius a; (b) δ is constant along the length

of the cell lc that is inside the capillary; (c) δ does not change in time during the entry
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process. Volume conservation of the cell then allows us to calculate δ from the cell length

le at the end of the entry process:

δ = a−
√

4r3
c

3le
, (12)

rc being the radius of the initial spherical cell. Note that we have assumed a cylindrical

shape for the part of the cell inside the capillary. Now the pressure drop ∆P can be divided

into two parts: ∆Pcell to overcome the elevated wall friction over the cell length lc inside

the capillary, and ∆Pwall for the rest of the channel wall. The former will be calculated

from the shear rate inside the gap δ, while the latter is to be estimated from the pressure

drop needed to drive the same flow rate in the absence of the cell. This dichotomy is not

exact, and further simplifications will be made in the following. The errors will be lumped

in the end into a single adjustable coefficient.

At the instantaneous flow rate Q, the velocity within the gap scales with Q/(2πaδ) and

the viscous shear stress scales with µmQ/(2πaδ2). Because of the tangential velocity on the

cell surface, the actual flow rate through the gap δ is smaller than Q. But this discrepancy

will be accounted for by the adjustable coefficient. Balancing ∆Pcell against the shear stress

in the gap leads to the scaling

∆Pcell ∝ µm

πa2δ2
Qlc. (13)

For ∆Pwall, we modify the Poiseuille formula on account of the wider section and the

contraction upstream of the capillary:

∆Pwall =
9.9µm

πa4
Q(L− lc), (14)

where the coefficient 9.9 is determined for our geometry from pressure drop in the absence

of the cell. Now we may write the total pressure drop as

∆P = ∆Pwall + ∆Pcell =
9.9µm

πa4
Q(L− lc) + c

µm

πa2δ2
Qlc. (15)

The adjustable parameter c accounts for the geometric simplifications made above and the

slip velocity on the cell surface. Therefore, it should depend on the geometry and the cell-

matrix viscosity ratio β. It is to be determined by fitting the entrance time. As the presence

of the cell increases the local wall friction, Eq. (15) implies that if lc increases, the flow rate

Q will decrease and vice versa. This explains the trend in Fig. 4.
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As lc(t) is the cell length within the capillary, it increases in time from 0 at the start of

cell try to le at the end. Thus, the entry time τent is largely determined by how fast the cell

is elongated by the flow. Since the rear of the cell moves little in this process (cf. Fig. 3),

cell elongation depends on the motion of its leading edge. We assume that this motion is at

the instantaneous average velocity within the capillary: dlc/dt = Q/(πa2). Then Eq. (15)

leads to an ordinary differential equation for the cell length lc(t):

∆P = µm

[
9.9(L− lc)

a2
+

clc
δ2

]
· dlc

dt
. (16)

Now the entrance time τent can be obtained by integrating the above equation:

τent =
µm

∆P

[
4.95(2Lle − l2e)

a2
+

cl2e
2δ2

]
. (17)

Noting that L = 10a and scaling τent by tf and the lengths by a, we arrive at the dimen-

sionless entrance time

τent =
1
80

(
99le − 4.95l2e +

cl2e
2δ2

)
. (18)

The cell length le depends on ∆P or Ca. Figure 6 indicates that the cell is longer

(and thinner) inside the capillary at higher capillary number. This dependence cannot be

easily modeled, however. Generally speaking, le(Ca) is determined by the balance between

capillary and viscous forces. But it is also influenced by the wall confinement and the inner

circulation. Thus, we have decided to use the numerical results Fig. 6 in Eq. (18). Finally

the coefficient c can be determined by a least-square fitting of the equation to numerical

data in Fig. 5. The best fitting is achieved for c = 0.13 in this case. The fact that c < 1 is

mainly because the flow rate through the gap δ is typically only a fraction of Q on account

of the cell’s motion.

Equation (18) describes the numerical results well at low Ca, but underestimates τent

at high Ca. As the pressure drop ∆P and Ca increase, the cell becomes thinner and more

elongated. Not only does this violate the assumption δ ¿ a, but the cell develops a conic

nose and the uniform gap assumption becomes less accurate. Hence the failure of the scaling

at higher Ca. Finally, the scaling argument indicates that the weak increase of τent with

Ca in Fig. 5 is due to the weak rise of the cell length le with Ca in Fig. 6. Since the latter

is plotted in dimensionless parameters, it can be interpreted alternatively as the cell length

13



C. Zhou, P. Yue & J. J. Feng, Ann. Biomed. Eng. 35 (2007) 776–780

Figure 6: The cell length le at the end of the entry process as a function of the capillary
number Ca for ζ = 1.4 and β = 3.

le decreasing with the interfacial tension σ, which is intuitively obvious. Thus, the entrance

time τent is expected to decrease with the cortical tension σ at a constant pressure drop.

C. Effect of cytoplasmic viscosity

In the above simulations, the viscosity ratio between the fluid inside the cell and the

suspending medium is set to be β = 3. This is much below the cytoplasm-plasma viscosity

ratio in vivo,2,9 as well as the experimental value in Yap and Kamm2 who used water as the

suspending fluid. As indicated earlier, the use of a modest β value is a numerical expedient.

In this subsection, we will vary the viscosity ratio to see how the cytoplasmic viscosity

affects the process of neutrophil entry and passage in a capillary.

We carried out a series of numerical simulations at capillary numbers Ca = 0.0893. The

viscosity ratio β is varied between 1/16 to 16 with all other dimensionless groups unchanged.

At higher Ca, we were able to reach larger β values without having the cell stuck on the

walls, but the results have the same trend as discussed below. For three β values, Fig. 7

illustrates the temporal evolutions of the flow rate Q and total cell length l. In all three

cases, the flow rate manifests the stages described in Section III.A. However, the character

of the second stage changes with β. For a small β, Q keeps constant or even increases in

this stage, whereas for a large β, Q continues to decrease, albeit at a milder slope than in

the previous stage. Recall that at the second stage, the cell has reached maximum blockage
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(a) (b)

Figure 7: The flow rate (a) and cell length (b) during cell entry for three viscosity ratios.
Ca = 0.0893, ζ = 1.4. Q, t and l have been made dimensionless by πa2Vf , a/Vf and a. The
inset in (b) compares the blockage of the entrance for two β values.

of the capillary, with roughly half of the cell inside the capillary (cf. Fig. 4). The differing

trends in Q are because the cell approaches the capillary entrance with differing shapes and

thus causes differing degrees of blockage. For a lower cell viscosity and smaller β, the cell

deforms more quickly in the contraction flow upstream of the capillary, and has already

developed the protruding nose by the time the cell starts to enter the capillary. As the

front of the cell extends further into the capillary, the rear deflates simultaneously, thereby

enlarging the gap between the cell surface and the wall at the “shoulder” of the contraction

where the blockage is the greatest. Thus, Q increases in time in stage two. A more viscous

cell, on the other hand, has a stouter shape when it approaches the capillary and thus plugs

the entry more severely. The inset in Fig. 7(b) shows a narrower gap at the shoulder for

β = 16 than β = 1, and this explains the generally lower Q for higher β. Moreover, as the

cell continues to deform and its front protrudes into the capillary, the gap between the cell

and the wall is squeezed further at the shoulder, causing the continued decline in Q until

the cell is completely inside the capillary.

Then it comes as no surprise that the entrance time τent increases with β (Fig. 8). The

effect is rather weak, and follows a power law with an index of 1/7. Evidently, this is

because a more viscous cell deforms more slowly as in Fig. 7(b). In fact, the cell has an

inherent visco-capillary time scale µ̄rc/σ, where µ̄ is a certain combination of the cell and
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Figure 8: The entrance time as a function of the viscosity ratio. The matrix viscosity is
kept fixed while the cell viscosity is varied. ζ = 1.4.

matrix viscosities.50 The fact that τent scales with β1/7 instead of β is because the external

fluid, whose viscosity is kept constant, also affects the deformation process.

D. Effects of capillary diameter and geometry

While the human neutrophil has a diameter close to 7 µm, the diameter of the pulmonary

capillary ranges from 2 µm to 15 µm.2 Naturally, a neutrophil will enter and traverse a

larger capillary much more readily than a narrower one. In exploring how the entrance

time τent depends on the capillary diameter a, it is more convenient to use the cell radius

rc as the characteristic length. Then varying a amounts to varying the size ratio ζ = rc/a

without affecting any of the other dimensionless groups. However, to match the data in

prior subsections where rc = 1.4a, we have used rc/1.4 instead of rc as the characteristic

length. Similarly, the characteristic velocity Vf = ∆P (rc/1.4)2/(8µmL) is used in scaling

τent and Q and in defining the capillary and Reynolds numbers. The radius of the upstream

vessel is kept constant at 1.43rc.

Not surprisingly, the entrance time increases steeply as the capillary narrows (Fig. 9a).

The τent(ζ) curve does not follow a power-law, its slope on the log-log plot increasing from

3.2 for the smallest ζ to 5 at the upper bound. Bathe et al.6 computed the transit time of a

cell in a capillary with a constriction, and correlated the results with the minimum radius
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(a) (b)

Figure 9: Effects of the capillary size on (a) the entrance time τent and (b) the flow rate Qe at the
end of the cell entry. Ca = 0.0893 and β = 3.

at the nip of the constriction. If we equate this minimum radius with our capillary radius

a, their correlation is τent = τ0(ζ5 − 1) in our notation. Despite the different geometry, the

5th power law is comparable to our data in Fig. 9(a) for large ζ. As ζ decreases toward

unity, Bathe et al.’s empirical equation deviates from a 5th power law, as do our data.

Since the pre-factor τ0 cannot be defined unambiguously for our geometry, a more detailed

comparison cannot be made.

As an indication of the transit time of the cell once it is entirely inside the capillary,

Fig. 9(b) plots the instantaneous flow rate Qe at the end of the entrance process (when

the cell’s trailing edge clears the entry) as a function of the capillary radius. Note that

Qe has been scaled by a characteristic value π(rc/1.4)4∆P/(8µmL) that is independent of

a. For the Poiseuille flow in a pipe, the flow rate is expected to scale as a4 or ζ−4. Over

the range of ζ in Fig. 9(b), the data fall on a gentle curve whose slope is close to −4. The

deviation from the power law is such that toward the upper bound of ζ (i.e., for the smallest

capillaries), Qe decreases more than ζ−4 as the capillary radius decreases. This is because of

the impenetrable cell surface hindering the flow in its vicinity. The effect becomes stronger

for smaller capillaries which are more severely plugged by the cell.

A related issue is how a neutrophil traverses a partially blocked capillary. It has long

been known that in falciparum malaria, parasitized erythrocytes tend to adhere and block

17



C. Zhou, P. Yue & J. J. Feng, Ann. Biomed. Eng. 35 (2007) 776–780

Figure 10: A snapshot of a neutrophil entering the capillary with an elliptic obstacle after
the entrance. Ca = 0.0893, β = 3 and ζ = 1.4.

the lumen of brain capillaries,54 with potentially fatal consequences. More recently, direct

visualization in a microfluidic channel demonstrated that P. falciparum-infected erythro-

cytes lose their elasticity and deformability and become lodged in the channel.55 Bathe

et al.’s simulation6 used a geometry of a cylindrical capillary with a constriction formed by

a smooth protrusion on the inner walls. Although this is intended to mimic the entrance

to a segment in the pulmonary capillary network, their result suggests that the passage of

a neutrophil will be greatly delayed by blockage of a capillary.

Our computational geometry in Fig. 10 is based on images of brain capillaries partially

obstructed by sequestered erythrocytes.54 The blockage is modeled by an annular pinch in

the shape of half an ellipse in the meridian plane. The major axis of the ellipse is fixed

and equal to the capillary radius a, and its minor axis is varied to change the degree of

constriction. We denote the height of the protrusion (or the minor semi-axis of the ellipse)

by h. The constriction is right after the entry; the ellipse starts where the circular arc

of the contraction would have connected to the wall of the capillary. In the results to be

presented, we have reverted to using a as the characteristic length.

Figure 11 shows that the entrance time τent increases with h, and the increase becomes

steeper when the blockage gets more severe. When the obstacle height is 30% of the capillary

radius, τent is almost doubled. Conceivably, for a critical h value, the cell will fail to

pass completely, and this critical h should increase with the imposed pressure drop or

Ca. Figure 11 also plots the aforementioned correlation of Bathe et al.6 recast in terms

of h. Since our obstacle is elliptic and theirs is part of a circular arc, the pre-factor τ0 is

determined by taking the average between the major and minor axes of our ellipse as the

diameter of the circular arc. The correlation shows a much stronger effect than our results.

This is mostly because in their geometry, the obstacle has a radius greater than the cell
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Figure 11: The entrance time as a function of the obstacle height h. τent is made dimen-
sionless by a/Vf , and h by a. Ca = 0.0893, β = 3 and ζ = 1.4. The correlation of Bathe
et al.6 is also shown for comparison.

radius rc. Therefore, during much of the passage the cell is entirely within the constricted

segment. In our geometry, the extent of the constriction is much smaller (cf. Fig. 10), and

therefore the correlation does not apply.

E. Comparison with experiment

As mentioned before, this numerical work was motivated by the experiment of Yap and

Kamm,2 and naturally the numerical results should be compared with their measurements.

The experimental device includes a microchannel connecting two water-filled reservoirs that

maintain a constant pressure drop during the transit of a single neutrophil (Fig. 2). By

adjusting the water level, the pressure drop can be varied systematically in a series of

experiments. The microchannel is rectangular in its cross section with an effective radius

of 2 µm. The human neutrophils have a diameter close to 7 µm and a very large viscosity,

around 2.2 poise in the adherent spread cells and even higher in passive round cells.

Yap and Kamm observed that if the pressure drop is below a threshold of 3.92 Pa (0.4

mm H2O), the cell fails to enter the orifice. We observed a similar stoppage at a pressure

of 3.0 Pa, and found the threshold pressure to be sensitive to the geometric parameters.

For instance, the threshold is lower for the rounded corner shown in Fig. 1, and increases

markedly as the entry corner gets sharper. It also increases when the reservoir-to-capillary
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Figure 12: Comparison of the dimensional entrance time with experimental data. A pressure
drop ∆P = 100 Pa corresponds to Ca = 0.0893. In both simulations and experiments, the
cell-to-capillary size ratio is ζ = 1.75. The experimental viscosity ratio β = 220 for the
activated cell while the simulation has β = 16. The triangles are data extrapolated from
β = 16 to 220 using the 1/7 power law of Fig. 8.

contraction ratio increases. However, the resemblance between simulation and experiment

may belie an important difference. In micropipette aspiration at a pressure lower than that

required to suck the whole cell into the pipette, the cell seems to completely block the flow

and make solid contact with the walls.10 It is not clear whether the same happened in

Yap and Kamm’s experiment. In our simulations, the cell is always separated from the

walls by a thin fluid layer, and the stoppage is owing to the cell’s cortical tension resisting

deformation.

Yap and Kamm reported entrance time data at several driving pressure drops, and

these are reproduced in Fig. 12. As expected, the dimensional entrance time decreases

with increasing pressure drop. We have carried out a series of simulations for comparison

with the experiments. The capillary radius a = 2 µm matches that in the experiment.

However, it is difficult to reproduce the experimental flow conditions owing to a numerical

limitation. When the cell viscosity is high and/or the pressure drop is small (but still above

the threshold), the cell deformation is mild and its surface is pressed against the channel

walls. In the experiment, Yap and Kamm treated the PDMS walls with a copolymer

surfactant solution to passivate the surface and deter cell adhesion. In the simulations,
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on the other hand, there is no cell membrane. The Cahn-Hilliard energy implies neutral

wettability of the cell fluid. So the cell tends to adhere to the walls with its surface at a

90◦ contact angle.48,49 This problem does not arise if the cell deforms readily, say at high

pressure or low cell viscosity. Thus, we have a numerical dilemma between probing low

pressure and high cell viscosity. Although the difficulty can be alleviated by modifying the

expression for the surface energy to increases the hydrophobicity of the wall,56 we have not

yet implemented this capability in our code. In Fig. 12, we present data for β = 16 and

∆P above the experimental range.

Despite the non-overlapping pressure ranges, the numerical data exhibit a trend that is

consistent with the experimental data. Quantitatively, the numerical τent appears lower than

the experimental value, owing probably to the low β value. Since the effect of cytoplasmic

viscosity has been established in subsection III.C, we have extrapolated the τent data for

β = 16 to β = 220 by using the 1/7 power law of Fig. 8. These are in better agreement

with the measured values in Fig. 12; the difference is roughly 18% if extrapolated to lower

∆P .

IV. VISCOELASTIC EFFECTS

The idea of the leukocyte cytoplasm being viscoelastic comes not only from its content—

numerous organelles behaving as deformable capsules and various biopolymers—but also

from phenomenological observations of transient effects in micropipette aspiration.14,21 The

Maxwell model has been used to simulate cell deformation during aspiration21 and passage

through a capillary with a constriction.6 In the latter study, Bathe et al. examined the

transit time as dependent on the viscoelastic parameters of the model and the geometry.

We have simulated the entrance of a neutrophil when the cytoplasm is modeled as a

viscoelastic Oldroyd-B fluid and the outer matrix is Newtonian. The Oldroyd-B model (cf.

Eqs. 3, 4), based on a dilute suspension of elastic dumbbells in a Newtonian solvent,52 is

essentially the same as the Maxwell model except for an additional viscous stress due to the

solvent. This viscous stress has two benefits: it avoids the unphysical situation of a Maxwell

cell having zero viscosity at startup of deformation, and it enhances numerical stability.41

The viscoelasticity is represented by a new dimensionless group, the Deborah number

De =
λHVf

a
, (19)
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Figure 13: The entrance time τent decreases with the Deborah number De when the relax-
ation time λH increases. Ca = 0.0893, β = 3 and ζ = 1.4. The arrow indicates the entrance
time for the comparable Newtonian cell.

which is the relaxation time of the dumbbells λH scaled by the characteristic flow time

tf = a/Vf .

The geometry is the same as in Fig. 1, and the following parameters are used in the

simulations. We fix the density ratio α = 1 and viscosity ratio β = 3. We define β using

the total viscosity µt = µp + µs of the Oldroyd-B model, with equal contribution from

the polymer and the solvent: µp = µs. This β is matched with the Newtonian β when

comparing with simulations in the preceding section. The radius of the undeformed cell

is still rc = 1.4a, and the capillary number will be given later for individual runs. Inertia

is negligible. For the viscoelastic relaxation time, Bathe et al.6 obtained λH = 0.167 s

from cell indentation. Dong et al.22 found a somewhat larger value of 0.25 s by fitting

micropipette aspiration data. Under our flow conditions, these correspond to De = 416 and

624, respectively.

Figure 13 illustrates the effect of the Deborah number De on the entrance time τent

with all other parameters being fixed. This corresponds, in dimensional terms, to varying

the relaxation time of the cytoplasm. The entrance time decreases monotonically when the

Deborah number increases. To understand this trend, we show in Fig. 14 the flow and stress

fields inside a viscoelastic cell that is roughly 2/3 through the entry. Roughly speaking, the

flow field consists of three zones. The middle of the cell contains mostly rotational flow with
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Figure 14: The streamline pattern (upper half) and contours of the shear stress τpxy (lower
half) inside the cell during its entrance. The nominal Deborah number is De = 25 and the
dimensionless time t = 7.66. The streamlines are in a reference frame fixed on the front of
the cell. The shear stress is scaled by τcell = µtum/a, where um is the maximum horizontal
velocity in the cell.

closed streamlines. The rear is practically a “dead water” zone with low deformation and

stress. Finally, there is a small area in the front where the flow is extensional. Except for

the front, the elastic dumbbells within the cytoplasm experience a very low level of strain

rate. Note that our De is defined using the nominal shear rate Vf/a in the capillary. The

actual strain rate within the cell is much smaller, and the actual De is as low as 0.15. As a

result, the dumbbells largely remain in the coiled state and the stress level is low. This is

reflected by the low shear stress τpxy in Fig. 14. Note that τpxy is scaled by τcell = µtum/a,

um being the maximum horizontal velocity in the cell. The fact that τpxy < 1 in most of the

cell implies that the cytoplasm assumes a lower shear stress than expected for steady shear

at the strain rate um/a. This is because the viscoelastic stress takes a finite time (λH) to

develop, and attains only a fraction of τcell under the transient strain on the recirculating

streamlines. For longer relaxation times or higher values of De, even lower levels of stress

can be achieved. Therefore, the cytoplasm manifests a lower effective viscosity at a larger

De. Thus, the entry time becomes shorter as the relaxation time increases for the same

reason as shown in Fig. 8. This argument is also borne out by Fig. 15, which shows that

with increasing De, not only the flow rate increases, but the Q(t) curve develops a more

prominent upswing in stage two, resembling the case of a lower cytoplasmic viscosity β = 1

in Fig. 7(a).

It is interesting to compare the above with Bathe et al.’s results.6 They observed that

the transit time increases with the modulus G of the Maxwell model for smaller G and levels
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Figure 15: Effects of the Deborah number on the temporal evolution of the flow rate.
Ca = 0.0893, β = 3 and ζ = 1.4. Note that with increasing De, the Q(t) curve assumes a
resemblance to that of a Newtonian cell with a lower cell viscosity (cf. Fig. 7a).

off for large G. They interpreted the saturation as the limit of purely Newtonian rheology

because the elastic spring becomes too stiff to stretch. Since the relaxation time λH = µp/G,

their increase of τent with G corresponds to our decrease with De. Moreover, their insight

on the elastic and viscous responses is entirely consistent with our analysis above. Note that

Bathe et al. used the linear Maxwell model which would differ from our nonlinear model

for large strains. This and the difference in geometry preclude a quantitative comparison.

But the viscoelastic response is qualitatively the same.

The dumbbell stretching can be boosted by increasing the flow rate or ∆P while keeping

the relaxation time λH fixed. This amounts to increasing the Deborah number De and

the capillary number Ca simultaneously. Figure 16 shows that the entrance time for the

viscoelastic cell increases toward that of the comparable Newtonian cell as Ca increases,

and catches up with the latter approximately at Ca = 1.01, estimated from interpolation.

For still higher ∆P , τent exceeds that of the Newtonian cell. This is because at high flow

rates, the cytoplasm experiences increasingly severe deformation and the viscoelastic stress

can grow beyond that of the Newtonian fluid.44,52

V. CONCLUSION

In this paper, we have examined the entrance time of a neutrophil as affected by the

size and geometry of the capillary and the viscosity and viscoelasticity of the cytoplasm.
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Figure 16: The ratio of entrance times between the viscoelastic cell and the Newtonian one
increases with the flow rate, indicated by Ca. β = 3 and ζ = 1.4. The Deborah number De
increases with Ca in proportion: De = 25 at Ca = 0.0893 and De = 250 at Ca = 0.893.

The results are explained by investigating the fluid mechanics of the process. Qualitatively,

the results are consistent with prior numerical and experimental data. Within the ranges

of parameters covered, the results can be summarized as follows.

(a) The entrance time τent decreases when the pressure drop over the capillary is in-

creased, and the numerical results are in semi-quantitative agreement with the measure-

ments of Yap and Kamm.2

(b) The entrance time increases sharply with decrease of the capillary diameter, and

also when an obstacle inside the entry constricts the capillary.

(c) The entrance time increases with the cell viscosity according to a power-law with an

index of 1/7.

(d) Viscoelasticity inside the cell tends to facilitate cell deformation and shorten τent at

moderate flow rates. With increasing flow rate, this effect is reversed when the cytoplasm

develops large viscoelastic stresses.

Harking back to the sequestration of leukocytes in the lung, the longer transit time for

leukocytes, as compared with erythrocytes, seems to involve two of the above mechanisms:

the white cells are larger in size (b), and they have a more viscous interior than the red
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cell (c). Besides, the white cell also has a highly viscous nucleus, but that is neglected in

the simulations. The simulations predict the correct trend, but a more detailed comparison

is hampered by simplifications in the models and the geometric setup of the simulations.

In particular, we should emphasize the limitations in the physical models employed in the

simulations. First, the cell membrane is represented by a fluid interface with a constant and

isotropic tension. No elastic resistance to in-plane shearing and bending is incorporated.

Second, the neutrophil membrane is wrinkled with roughly 100% excess area over that of

a smooth sphere enclosing the same volume, whereas in our simulations, the interface in

principle has unlimited extensibility. Third, the cell undergoes internal structural adapta-

tion when it deforms and activates under mechanical load.57 Such dynamics are ignored in

our model, and indeed little work has been done on the multi-scale coupling between the

cytoskeleton conformation and the mechanics of the cell as a whole. In light of the above,

this work represents an initial step in an effort to simulate cell mechanics using continuum

models.
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