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During polymer foaming with physical blowing agents,
plasticization affects the melt viscosity, gas diffusivity in
the melt, and the gas–melt interfacial tension. In this
paper, we propose a model for plasticization during bub-
ble growth, and estimate its effects under typical foam-
ing conditions. The theoretical model incorporates well-
established mixture theories into a recent model for
diffusion-induced bubble growth. These include the
free-volume theories for the viscosity and diffusivity in
polymer-blowing agent mixtures and the density gradi-
ent theory for the interfacial tension. The viscoelasticity
of the melt is represented by an Oldroyd-B constitutive
equation. We study the radial growth of a single bubble
in an infinite expanse of melt, using parameter values
based on experiments on polystyrene–CO2 systems. Our
results show that even at relatively low gas concentra-
tions, plasticization increases the blowing-agent diffu-
sivity markedly and thus boosts the rate of bubble
growth. In contrast, the reduction in melt viscosity and
interfacial tension has little effect on bubble growth.
Though not intended as quantitative guidelines for pro-
cess design, these results are expected to apply quali-
tatively to typical foaming conditions and common poly-
mer-blowing agent combinations. POLYM. ENG. SCI., 46:
97–107, 2006. © 2005 Society of Plastics Engineers

INTRODUCTION

The foaming of polymer melts has been studied by many
authors, both theoretically [e.g., 1–8] and experimentally
[e.g., 9–12]. Extensive reviews and references can be found

in a handbook edited by Klempner and Frisch [13] and a
monograph by Lee [14]. From a modeling point of view, the
process can be divided into three stages: bubble nucleation,
bubble growth, and possibly coarsening. Bubble growth is
perhaps the most thoroughly studied of the three, with
models incorporating gas diffusion, momentum transfer,
melt viscoelasticity, and bubble–bubble interactions via a
cell model [2, 7]. Shafi et al. [4] and Feng and Bertelo [8]
further combined phenomenological nucleation models with
single-bubble growth models to predict the final cell size
distribution. In such studies, all material properties are
treated as constants. In reality, however, they vary as a
result of changing temperature and solvent concentration.
The dependence of material properties on solvent concen-
tration is the focus of this paper.

Plasticization refers to the change in melt properties due to
small-molecule solvents in the polymer. Deplasticization is the
reverse process when the solvent is removed from the melt. In the
context of polymer foaming, plasticization takes place when a
physical blowing agent is dissolved into the melt under pressure,
whereas deplasticization occurs when, upon release of the pres-
sure or elevation of temperature, the blowing agent separates from
the melt and aggregates into gas bubbles. This paper is concerned
with both processes, and we use the term plasticization generally
to refer to the dependence of the properties of the polymer–gas
mixture on gas concentration. In particular, plasticization affects
three properties that are potentially significant to foaming. (i)
Viscosity �: When a blowing agent is dissolved, the polymer melt
typically experiences a drastic reduction in viscosity. Conversely,
as the gas concentration c drops during foaming, the viscosity
recovers. (ii) Gas diffusivity D: The dissolved gas will modify the
molecular environment for its diffusion through the polymer dur-
ing foaming, typically raising the gas diffusivity. (iii) Gas–poly-
mer interfacial tension �: The interfacial tension reflects the inter-
action between the two species of molecules, which will be
influenced by the presence of the blowing agent molecules in the
melt.
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All three factors directly affect the growth of gas bub-
bles, and therefore may have an impact on the bubble-size
distribution and ultimate properties of the foam product.
Yet, relatively little information is available in the literature.
Gendron et al. [15] described an experimental study of
plasticization of polystyrene (PS) by the blowing agents
HCFC 142b and HFC 134a. The melt viscosity is shown to
decrease by 2 orders of magnitude for gas concentration up
to 15%. Two possible mechanisms have been considered for
this reduction in viscosity: an increase in free volume (FV)
or a simple dilution effect. The William–Landel–Ferry
(WLF) equation (see Eq. 14) can be fitted to the data,
although the fitting parameters need to be adjusted at dif-
ferent temperatures. Ramesh and Malwitz [16] reported
much smaller viscosity reduction (about 50%) in low-den-
sity polyethylene (LDPE) melts with a blowing agent con-
centration up to 20%. The data were fitted to a �(c) corre-
lation that, together with a D(c) correlation from data on
butane in LDPE, was used to calculate bubble growth in a
concentric cell model. Finally, Lee and Flumerfelt [17]
developed a model for the change in the gas–polymer in-
terfacial tension � based on the energy of molecular inter-
actions. The model can be tuned to fit experimental data on
LDPE–N2 systems, which show a nearly 50% reduction in
� at a saturation concentration of about 1.84 wt% N2.

The objective of this paper is to assess the effect of
plasticization on polymer foaming. This is done by integrat-
ing well-established theories for the viscosity, diffusivity,
and interfacial energy of fluid mixtures to the model of Feng
and Bertelo [8] for diffusion-induced bubble growth in a
viscoelastic melt. We have chosen to simulate the foaming
experiment of Han and Yoo [9] for a PS–CO2 system.
Among experiments reported in the literature, this provides
the most detailed description of the experimental conditions
and results. Still, some physical parameters required by the
mixture theories were not given. For these, we will have to
adopt values in the literature for comparable materials.
Besides, Han and Yoo’s [9] experimental conditions are not
necessarily representative of industrial foaming operations.
For example, the CO2 concentration of 0.2 wt% is much
below commercial levels. Although solubility varies greatly
among blowing agents, concentrations over 10 wt% are
routinely used [15, 16]. For these reasons, we have not
intended our model predictions to be quantitatively mean-
ingful for process design. Rather, we will illuminate the
fundamental physics that causes plasticization, establish the
processing conditions under which it does or does not
influences bubble growth, and provide estimates on the
magnitude of the effects.

BUBBLE GROWTH MODEL

Diffusion-Induced Bubble Growth Without Plasticization

The model to be used in this work is based on Feng and
Bertelo’s simpler model [8] for diffusion-induced bubble

growth without plasticization. In that model, a gaseous
blowing agent is dissolved into a polymer melt under high
pressure P0 to saturation. Then the pressure is reduced to Pa

suddenly, and the blowing agent becomes super-saturated
and bubbles nucleate. A viable bubble proceeds to grow as
the dissolved gas diffuses into the bubble. The isothermal
growth of a spherical bubble in an infinite sea of melt is
governed by the coupled processes of mass and momentum
transport. The rheology of the polymer melt, represented by
the Oldroyd-B model, contributes through the polymer
stress as the melt undergoes biaxial extension. To make the
governing equations dimensionless, we use the initial drop
radius R0 as the length scale and R0

2/D as the time scale,
where D is the constant diffusivity of the gas in the melt.
Pressure and stresses are scaled by �D/R0

2, where � � �s

� �p is the constant viscosity of the Oldroyd-B melt with
solvent and polymer contributions. The gas concentration c
is scaled by its initial value c0. Then we can write the
following dimensionless transport equations for mass and
momentum and constitutive equations for the Oldroyd-B
melt:
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Oldroyd-B constitutive equations
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where the dot above R indicates time derivative, and the
radial velocity v � R2Ṙ/r2. The five unknowns are the
bubble pressure Pg(t), the bubble radius R(t), the mass
concentration of the blowing agent inside the melt c(r,t),
and the two polymer stress components �rr(r,t) and ���(r,t).
The dimensionless parameters are defined as [8]: Pa* �
PaR0

2/(�D), Pa being the constant ambient pressure; the
diffusion Reynolds number Re � �D/�; the capillary num-
ber Ca � �D/�R0, � being a constant interfacial tension; �
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� �s/�; k* � k�D/c0R0
2, k being the Henry’s law constant;

A* � A/k, A being the ratio between gas density and
pressure inside the bubble; and the Deborah number De
� 	D/R0

2, 	 being the polymer relaxation time. These
equations are supplemented by the following initial and
boundary conditions: c(r,0) � 1, c(Ṙ,t) � k*Pg(t) (Henry’s
law), c(�,t) � 1, R(0) � 1, R(0) � 0, Pg(0) � Pa* � 2/Ca,
�rr(r,0) � ���(r,0) � 0.

Diffusion-Induced Bubble Growth With Plasticization

Equations 1–5 are based on constant physical properties.
As the bubble starts to grow, the gas concentration outside
the bubble drops, and a radial c(r) profile develops. In real
materials, this will imply spatial profiles of the viscosity and
gas diffusivity, which also evolve in time. Together with a
changing interfacial tension, these enter the mass and mo-
mentum transfer and modify the growth rate of the bubble.
We will introduce plasticization effects by making these
three properties dependent on the gas concentration: poly-
mer viscosity �̃p�c̃�, blowing agent diffusivity D̃�c̃�, and
interfacial tension �̃�c̃�. The tilde indicates dimensional
quantities. We will use their values at c̃�0 (i.e., for pure
polymer) in nondimensionalizing the equations. The plasti-
cization effects are then represented by ratios such as D
� D̃�c̃�/D̃(0). Now the governing equations, in dimension-
less form, are as follows:
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The initial and boundary conditions are the same as those
for constant material constants.

The c-dependent coefficients �, D, and � do not change
the structure of the equations, and we use the same method
of lines as in Feng and Bertelo [8] for their numerical
solution. Briefly, we transform the radial domain from [R,�)
to [0,1], and adopt a nonuniform grid with denser grid
points near the bubble’s surface. The diffusion and consti-

tutive equations are discretized on this grid and the resulting
system of ordinary differential equations is solved implicitly
in time. Grid refinement and time step refinement have been
carried out to ensure convergence of the results. Feng and
Bertelo [8] have presented benchmark calculations validat-
ing the numerical algorithm.

VARIABLE VISCOSITY EFFECT

The Free Volume Model

The most widely used model for viscosity-reduction of
polymers by a dissolved small-molecule “solvent” is the
free volume (FV) model, based on a monomeric friction
coefficient that varies with the exponential of the fractional
FV [e.g., 15, 18]. This model in general fits experimental
data quite well. Although some researchers argued that the
FV model might not be suitable for molten polymers when
the temperature is too high above the glass transition tem-
perature Tg, evidence suggests that the FV effect will be
dominant when the melt temperature is below Tg � Tc, with
the temperature margin Tc typically around 100°C.

The free volume VF is the difference between the real
volume V0 of a polymer melt or solution and the “occupied
volume” of the molecules [19]. Doolittle [20] proposed an
empirical equation for the viscosity in term of FV:


�A exp�B
V0

VF
��A exp(B/f) (11)

where A and B are constants and f is the FV fraction. Cohen
and Turnbull [21] provided a physical justification of this
equation on the basis of molecular transport in the fluid.
They assumed that the movement of molecules occurs
where there is a nearby cage larger than some critical value.
Under the assumption that no energy is needed for redistri-
bution of FV at a constant volume, the self-diffusion coef-
ficient D can be derived as

D � ga*u exp� � 
v*/VF) (12)

where g is a geometric factor, a* is roughly the diameter of
the cage with a molecule in it, u is the molecular velocity
that is proportional to the square root of temperature T1/2, 

is a parameter to correct for overlap of FV, and v* is the
minimum void volume that permit a molecule to jump in,
which is close to the molecular volume. Since the molecular
diffusion is directly related to translational friction and the
viscosity of material, Eqs. 11 and 12 are equivalent.

On the basis of the Doolittle’s model, the most popular
version of FV viscosity theory is the WLF equation [19].
When the liquid temperature is above Tg, the dependence of
the FV on temperature can be written as

f � fg � �f(T � Tg) (13)
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where fg is the FV fraction at Tg, and �f is the thermal
expansion coefficient of the FV. Substituting Eq. 13 into Eq.
11, we get the WLF equation,

log(
/
g)��
c1(T�Tg)

c2�T�Tg
(14)

where the parameters c1 and c2 are practically independent
of the solvent fraction for concentrated solutions [19]. Tg is
the sole parameter reflecting the compositions of the mix-
ture.

By assuming the same entropy for the pure polymer and
its dilution in glassy state, Chow [22] successfully predicted
Tg for 13 kinds of dilutions in PS, using the following
model:

ln�Tg

Tg0
���[(1��) ln(1��)�� ln�] (15)

��
�/MW1

z(1��)/MW2
(16)

��
zR

MW2�Cp
(17)

where Tg0 is the glass transition temperature for the pure
polymer and Tg for the solution whose weight fraction of
diluent is �. MW1 and MW2 are solvent and polymer
molecular weights, respectively. �Cp is the change in spe-
cific heat of the polymer at its glass transition temperature,
and R is the gas constant. The coordination number z is the
number of possible neighboring sites around a monomer
that permit other molecules or monomers to fit in. A value
of z � 2 is found appropriate for mixtures of PS with a
variety of diluents, and we will use z � 2 in our calcula-
tions. Equations 14–17 allow the calculation of the viscos-
ity of a diluted polymer melt �(c) in our bubble growth
model (Eqs. 9 and 10).

Bubble Growth With Variable Viscosity

Because the unique properties of CO2 as a solvent for
polymers [23], much research has been devoted to the
plasticization effects of CO2 on various polymers [24, 25].

Using a high-pressure slit-die rheometer, Royer et al. [26]
measured the viscosity changes of PS with dissolved CO2.
Using the WLF equation with Chow’s model, they showed
that the theory successfully predicts viscosity variations
with both plasticization and pressure. This is advantageous
for us, since the foaming experiment of Han and Yoo [9],
against which we will compare our model predictions, is
also done on a PS–CO2 system. Therefore, we will adopt the
WLF–Chow parameters determined by Royer et al. [26] in
our bubble-growth calculation. These are given in Table 1.

In the experiment of Han and Yoo [9], the saturation CO2

concentration is merely 0.2 wt%. According to the predic-
tions of the WLF–Chow model, shown in Fig. 1, this
concentration produces a reduction in Tg of �3%, and a
reduction in viscosity of roughly 10%. Figure 2 compares
our model predictions using a constant and a variable vis-
cosity with the experimental data from [9]. The plasticiza-

TABLE 1. Parameter values for the WLF-Chow model as determined
by Royer et al. [26] for CO2 in PS.

Parameter Value

c1 13.7
c2 50
MW1 44 g/mol
MW2 104.15 g/mol
�Cp 30.7 J/(K mol)
Tg 100.0°C

FIG. 1. Predictions of the WLF–Chow model, using the parameters of
[25] for PS with CO2. (a) Glass transition temperature Tg as a function of
CO2 concentration. (b) Viscosity as a function of CO2 concentration.
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tion effect on bubble growth is surprisingly small in this
case; the bubble radius R is only about 0.2% greater at the
end of the simulation. Both predictions underpredict R at the
beginning of bubble growth but overpredict it at later times.

To understand how an expected 10% viscosity reduction
produces a mere 0.2% increase in bubble growth, we plot
typical c(r) and �(r) profiles during bubble growth in Fig. 3.
Shortly after the onset of bubble growth, a “boundary layer”
forms outside the bubble in which the gas concentration
drops and the viscosity recovers much of the pure-melt
value. The viscosity affects the bubble growth mainly
through the normal stresses �rr and ��� in Eqs. 9 and 10,
which enter the integral in Eq. 6. Despite the relatively
small thickness of the boundary layer, it is located next to
the bubble where the normal stresses make the greatest
contribution to the integral because of the 1/r factor. Thus,
the bubble “feels” the reduced viscosity in the melt during
the initial moments of growth. Afterwards, deplasticization
largely restores the viscosity in the melt next to the bubble.
Although the lower viscosity prevails in the plasticized melt
outside the boundary layer, it imparts only a minor enhance-
ment on the bubble growth, for the low c0 used in [9]. Note
the difference between this scenario and prior calculations
for constant-viscosity fluids, e.g. Ref. 1, where the value of
the viscosity does affect bubble growth strongly.

Since actual foaming operations typically use saturation
concentrations much higher than c0 � 0.2%, we have also
carried out numerical experiments with higher initial c0

values. Figure 2 includes a theoretical curve with initial CO2

concentration of 0.4%. The WLF–Chow model indicates
that the initial viscosity is reduced by 17%. At the end of the

simulation, the bubble radius R is roughly 100% larger than
that for c0 � 0.2%. However, this increase is mostly be-
cause doubling c0 implies doubling the amount of dissolved
gas surrounding the bubble, and is equivalent to doubling
the gas diffusivity. Compared with calculations at c0 �
0.4% without plasticization, the effect due to viscosity re-
duction is only about 1% in this case. At a more realistic
concentration of c0 � 10%, the rate of bubble growth
increases more or less in proportion. However, the enhance-
ment due to plasticization amounts to roughly 1.8%. There-
fore, the variation of melt viscosity due to plasticization
does not have a major effect on bubble growth, at least for
PS–CO2 systems under normal processing conditions.

In the foregoing discussion, we have neglected the effect
of hydrostatic pressure, which tends to elevate Tg and coun-
teract the effect of dissolved gas [19]. On the basis of the
data in Royer et al. [26], it can be found that the rate of

FIG. 2. Comparison between model predictions of bubble growth R(t),
with the experimental measurement of Han and Yoo [9]. The experimental
conditions correspond to the following dimensionless parameters (con-
structed using pure-polymer properties): Pa* � 0.04605, Re � 1.21
	 10�10, Ca � 78.57, � � 0, k* � 4.686, A* � 2.983, and De � 495.0.
The solid line is computed by assuming a constant viscosity �0, given in
[9] for the pure melt. The circles represent prediction with deplasticization
with c0 � 0.2%. The dash curve is a prediction at 0.4% initial CO2

concentration.

FIG. 3. Radial profiles of (a) gas concentration c(r) and (b) viscosity �(r)
at different times during bubble growth. The initial concentration is c0

� 0.2%.
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change for PS is roughly 0.048 K/atm. This implies an
increase in Tg of up to 3°C in Han and Yoo’s experiment
[9], comparable to the decrease due to dissolved CO2.
Therefore, Tg probably changed little in this particular case
as the two effects tend to cancel. Although this does not
modify the conclusion that viscosity plasticization has little
effect on bubble growth, one needs to consider the effects of
solvent and pressure separately in general.

VARIABLE DIFFUSIVITY

FV Diffusion Model

Diffusion in a polymer is much more complex than
diffusion in simple fluids since the polymer molecules may
not remain in equilibrium conformation as they are dis-
turbed by the solvent. For instance, the penetration of a
small-molecule solvent into a bulk polymer may swell the
chain network and introduce an additional stress. Such a
stress enters the relaxation dynamics of the entangled chains
and consequently the diffusion of the solvent [27, 28].
Under certain conditions, however, the classical Fickian
diffusion theory works well for polymer melts [29–35].
These conditions have been formulated by Vrentas and
Duda [32] in terms of a diffusion Deborah number.

The diffusion Debroah number (Dd) is defined by

Dd�
	m

�D
(18)

where 	m and �D are the characteristic times of the polymer
relaxation and the diffusion process [32]. If Dd 

 1, the
solvent molecules move in a material that appears to be an
elastic solid, and the process is called elastic diffusion. If Dd

�� 1, on the other hand, both the polymer and the solvent
behave like purely viscous liquids. For this regime of vis-
cous diffusion, the classical Fickian theory applies. Finally,
when the polymer relaxation and solvent diffusion have
comparable time scales and Dd is of the order of 1, the
process is known as viscoelastic diffusion. For molten poly-
mers (T 
 Tg), Joubert et al. [35] have shown that the
diffusion of a small-molecule solvent usually falls in the
viscous regime. It is for glassy polymers that the diffusion-
induced stress plays a significant role and non-Fickian dif-
fusion prevails [27, 28].

In our context of polymer foaming, we will consider
Fickian diffusion with the mutual diffusivity determined by
a FV theory originated by Cohen and Turnbull [21] and
further developed by Vrentas and Duda [30, 31]. The theory
is based on the same FV ideas used in the last section to
account for viscosity changes (see Eq. 12). Here, there are
two kinds of FVs: interstitial FV and hole FV. The former
relates to the molecular conformation of the polymer chain
itself, while the latter occurs due to density fluctuation of the
polymers [30]. The redistribution of the interstitial FV
needs a large amount of energy, while the hole FV can be

redistributed without changing the system’s free energy.
Therefore, it is reasonable to assume that the diffusion of a
solvent is predominantly through hole FV. When a hole
void is large enough, a nearby solvent molecule will jump
into the hole if it can overcome the attraction from neigh-
boring molecules. At high temperatures, the FV is abundant,
and diffusion is mainly determined by molecular forces
between the solvent and polymer molecules. If the temper-
ature is below a threshold, typically taken to be Tg � 100°C,
the solvent diffusion is dominated by the distribution of hole
FV. Note that this is the same temperature range in which
the FV theories for the viscosity apply.

In analogy to Eq. 12, one can write out the self-diffusiv-
ity D1 for the solvent molecules in terms of the FVs of both
components in a polymer–solvent mixture:

D1�D01 exp��

�1V̂*1���2V̂*2

V̂FH
� (19)

where �1 and �2 are the weight fractions of the solvent and
polymer (subscripts 1 and 2 will designate the two compo-
nents hereafter), 
 is the same overlap factor as in Eq. 12. V̂*1
and V̂*2 are the specific critical hole FV for solvent and
polymer. V̂FH is the average hole FV per gram of the
mixture. The pre-exponential factor D01 is effectively a
constant. � is the ratio of the critical molar volume of the
solvent to that of the polymer jumping units:

��
V̂*1M1

V̂*2Mj
(20)

where M1 and Mj are molecular weight of the solvent and
the polymer jumping unit. V̂FH is calculated from the FV of
the solvent and the polymer, using an additive rule [31, 33,
34]:

V̂FH



��1

K11


1
(K21�T�Tg1)��2

K12


2
(K22�T�Tg2) (21)

where the component FV is computed from its thermal
expansion coefficient. The free-volume parameters K11,
K12, and K22 are related to c1 and c2 in the WLF equation,
and will be determined from thermal variation of the com-
ponent viscosities [33]. Finally, the mutual diffusivity D of
the solvent can be expressed in terms of the self-diffusivity
via the Flory–Huggins theory:

D�D1(1��1)
2(1�2��1) (22)

where �1 is the solvent volume fraction and � is the Flory–
Huggins interaction parameter for the polymer/solvent pair.
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Bubble Growth With Variable Gas Diffusivity

To predict the mutual diffusivity D in a polymer–solvent
mixture from the FV diffusion model, one must determine
some 10 model parameters. As pointed out by Vrentas and
Vrentas [34], all parameters except � can be obtained from
properties of the pure components such as viscosity–tem-
perature data. From the literature [36–39], we have com-
piled in Table 2 all the parameter values for a PS–CO2

mixture.
The free-volume parameters for pure CO2 K11/
1 and

K21 � Tg1 are determined from viscosity–temperature
data of Xu [38], at a pressure of 1000 psi (or 6895 kPa).
The pre-exponential factor D01 in Eq. 20 is usually de-
termined by fitting the diffusivity data at the limit of 0%
solvent concentration [36]. In addition, Han and Yoo [9]
provided a value for the mutual diffusivity D � 5.5
	 10�6 cm2/s, but did not specify whether this is for the
pure melt or the CO2 saturation concentration c0 � 0.2%
in their experiment. For the theory to produce this D
value at c0 � 0% or c0 � 0.2%, we would need D01 �
7.79 	 10�6 or 1.26 	 10�6 cm2/s, respectively. The
proximity of the first value to that in Table 2 [36] might
suggest that Han and Yoo’s D was for pure melt. In our
model calculations, however, we have tested all three
values of D01, and compared the results with experimen-
tal data on bubble growth. Figure 4a plots the D(c) curves
predicted by the FV theory, using the three D01 values.
For the Flory–Huggins interaction parameter �, Sheehan
and Bisio [39] listed values for PS with a number of
solvents, which are all close to 0.5. Figure 4b shows that
D is rather insensitive to �, especially at low gas con-
centration. Thus, we have used a constant � � 0.5 in our
bubble-growth calculations. Note that D achieves a max-
imum for an intermediate c value, in agreement with
experimental measurements of a large number of poly-
mer–solvent pairs [36, 37].

Since D is very sensitive to c at low CO2 concentra-
tions, we expect plasticization effect on D to play a major
part in bubble growth. Figure 5 partly validates this
expectation. First, note that the prediction based on D01

� 1.26 	 10�6 cm2/s (curve b) fits the experimental data
fairly well. This seems to suggest that Han and Yoo’s [9] value D � 5.5 	 10�6 cm2/s corresponds to the mutual

diffusivity at a CO2 concentration of 0.2%. Second, the
difference between curves (a) and (b) is fairly small. This
is because the far-field diffusivity is the same, and (b)
experiences a reduction in D only within the thin bound-
ary layer outside the bubble (see Fig. 2a). In contrast, the
difference between curve (a) and curves (c) or (d) is
much larger. For the latter curves, an elevated D due to
plasticization prevails through most of the melt, and
produces a more rapid bubble growth. Lastochkin and
Favelukis [40] have computed diffusion-controlled bub-
ble growth, with an empirical relationship for the variable
diffusivity. The enhancement in bubble growth depends
strongly on an empirical parameter, and cannot be com-
pared quantitatively with our results.

TABLE 2. Parameters in the free-volume diffusion theory for a PS-
CO2 mixture.

Parameter Value Source

V̂*1 0.770 cm3/g [36]

V̂*2 0.850 cm3/g [37]
K12/
2 5.39 cm3/(g K) [37]
K22�Tg2 �323.0 K [37]
K11/
1 0.505 cm3/(g K) Fitting from [38]
K21�Tg1 �293.8 K Fitting from [38]
� 0.5 [39]
� 0.252 [36]
D01 7.48	10�5 cm2/s [36]

FIG. 4. Mutual diffusivity D predicted using the parameters in Ta-
ble 2 with the following variations: (a) the effect of D01; (b) the effect
of �.
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VARIABLE INTERFACIAL TENSION

Density Gradient Theory for Interfacial Tension

The interfacial tension � is the areal energy density on an
interface between two immiscible fluids. A popular method
for calculating � assumes a diffuse interface of a small
thickness within which the fluids do mix. Then the excess
free energy due to the mixing, calculable from the density
profiles of the components across the interface, gives rise to
�. Sanchez [41] and Poser and Sanchez [42] developed a
widely used version of the theory by combining the density
gradient model of Cahn and Hilliard [43] with a lattice–fluid
equation of state [44, 45]. By assuming a linear density
profile in the interfacial region, Harrison et al. [46] proposed
a modified expression based on Sanchez’s model:

���2
�[�22

1/2��11
1/2(��1/��2)]

v*m,2
�

�2
I

�2
II

�̃�a1/2 d�2 (23)

where �i (i�1,2) are the volume fractions of the solvent and
polymer respectively, �ii are the interaction parameters for
the pure components, ��i are the density differences of each
species across the interface, with �i��̃�i/v*m,i, �̃ being the
reduced density from the equation of state and v*m,i being the
characteristic monomer volume defined as MWi/�i* divided
by the degree of polymerization. Here MWi and �i* are
molecular weight and close-packed mass density, respec-
tively. �a is the excess mixing energy defined by

�a��̃�g�� �1

vm,1*
��1

e�� �2

vm,2*
��2

e� (24)

where g is the Gibbs free energy density of a homogeneous
system for a given composition within the interfacial region,
and �i

e are the equilibrium chemical potentials for the two
pure components, which can be determined from the lattice
fluid model. The interaction parameters can be further writ-
ten in terms of dimensionless reduced interaction parame-
ters �̃ii

�ii�2P*ivm,1
* 8/3�̃ii (25)

where P*i is the characteristic pressure [44]. Harrison et al.
[46, 47] and Li et al. [48] assumed �̃11 � �̃22 and deter-
mined this parameter by fitting the model prediction of � to
the measured value at a certain low pressure or CO2 con-
centration. All other parameter values are obtained from
pure-component properties. The two groups used different
�̃ii values for their respective materials. Harrison et al. [47]
showed quantitative agreement between the model predic-
tion and experimental data. In Li et al.’s case, the agreement
is qualitative, with considerable deviations. We will revisit
this issue in the next subsection. In both cases, the predicted
interfacial tension decreases with the amount of dissolved
CO2, consistent with the results of Lee and Flumerfelt [17]
for LDPE–N2 systems.

Bubble Growth With Variable Interfacial Tension

As we will benchmark our model prediction by the
foaming experiment of Han and Yoo [9], we need the
parameter values in the above theory to calculate � for the
CO2 in PS (Styron 678 from Dow Chemical) system used in
that experiment. Unfortunately, those were not given in [9].
Li et al. [48] used two kinds of PS: Nova 1037C (NOVA

FIG. 5. Effect of plasticization-dependent gas diffusivity D on bubble
growth. Experimental data of Han and Yoo [9] are also shown for com-
parison. The theoretical curves are (a) for a constant D � 5.5 	 10�6

cm2/s, and for a variable diffusivity computed using (b) D01 � 1.26 	 10�6

cm2/s, (c) D01 � 7.79 	 10�6 cm2/s, and (d) D01 � 7.48 	 10�6 cm2/s.

FIG. 6. Measured interfacial tension between PS and CO2 [48] and
prediction by the density gradient theory. By Henry’s law, the pressure is
related to CO2 concentration in the melt by a constant coefficient given in
[9].
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Chemicals, MWn � 77,100) and Styron 685D (Dow Chem-
ical, MWn � 120,000). The latter exhibits an interfacial
tension � � 27.7 dyn/cm at atmospheric pressure and
200°C, very close to the value 28 dyn/cm cited by Han and
Yoo [9] for Styron 678. Therefore, we have adopted the
fundamental parameters of Li et al. [48] in our computation.

To fit the predicted � to the measured value at atmo-
spheric pressure, we have chosen �̃ii � 0.21. Figure 6
compares our theoretical prediction with the experimental
data for Styron 685D from Li et al. [48]. Note that the
density gradient theory naturally predicts the dependence of
� on pressure P. By Henry’s law, this implies the depen-
dence of � on the gas concentration in the bulk of the
polymer. The experimental data in Fig. 6 can be fitted to a
linear �–P relationship:

�(dyn/cm)�27.4�0.103P(atm). (26)

The theoretical curve is highly nonlinear, however, and
underestimates �, especially for intermediate pressure
value. A similar discrepancy was noted by Li et al. [48] for
Nova 1037C. We believe this indicates that the theory of
Sanchez and Poser [41, 42] is incomplete in some sense.
According to Sanchez and Lacombe [45], the reduced in-
teraction parameter �̃ii is determined by the mer–mer attrac-
tive potential between parts of like molecules occupying
neighboring lattice sites. Thus, it seems reasonable to expect
�̃ii to be independent of the overall size of the chain or the
molecular weight. For three PS samples with increasing
molecular weight, the oligmeric PS (MWn � 1850) of [47]
and Nova 1037C and Styron 685D of [48], the best-fitting
�̃ii values are: �̃ii � 0.084, 0.5, and 0.21. This large varia-
tion suggests that the theory does not contain all the impor-
tant physics of the material. In the following, we will use
both the theoretical (Eq. 23) and experimental (Eq. 26)
results in our bubble-growth simulation.

While the density gradient theory deals with the small
length scale within the gas–polymer interface, our bubble-
growth model is “coarse-grained,” in the sense that it con-
cerns macroscopic length scales with respect to which the
interface is sharp. As an input to our model, � is determined
from the bubble pressure Pg (or, equivalently, from the gas
concentration on the interface), which varies in time. Figure
7 plots theoretical predictions of bubble growth with a
constant � and a variable � computed from Eqs. 23 and 26.
The experimental data of Han and Yoo [9] are also included.
The theoretical curves are almost identical, and show little
effects of the variable interfacial tension. One reason for this
is that Han and Yoo’s experiment used a low CO2 concen-
tration (0.2%) and a low saturation pressure (4.6 atm), at
which the plasticization effect on � is minor. In Fig. 7, this
corresponds to 18% of reduction in � from the theoretical
curve and 1.7% from the experimental correlation (Eq. 26).
A second and more important reason for the insignificance
of � plasticization is that the capillary number Ca � �D/
�R0 � 78.57 is large. From Eq. 6, this implies that the
interfacial tension plays a very small role in bubble growth;
the latter is dominated by mass diffusion and momentum
balance.

As mentioned earlier, real foaming processes employ
much higher blowing-agent concentrations and processing
pressures than those of Han and Yoo [9]. The reduction in
� can be considerable. Lee and Flumerfelt [17] reported, for
instance, a roughly 50% decrease in interfacial tension for
LDPE plasticized by nitrogen, which leads to a tremendous
increase in bubble nucleation rate. On the other hand, the
physical parameters—melt viscosity, gas diffusivity, and
interfacial tension—used in [9] and our modeling are rep-
resentative of typical melts and blowing agents. Thus, we
may expect the capillary number to be generally much
greater than 1, and the interfacial tension � and its plasti-
cization to have little effect on bubble growth during foam-
ing.

FIG. 7. Bubble growth as affected by a variable interfacial tension � due
to plasticization. For the processing condition in Han and Yoo [9], a
variable � has little effect on R(t).

FIG. 8. Comparison between predictions with and without plasticization
effects.
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Finally, we compare model predictions with none and all
three types of plasticization effects with experimental data
in Fig. 8. For diffusivity, we have taken Han and Yoo’s
value in [9] as corresponding to the saturated melt at c0 �
0.2%, with D01 � 1.26 	 10�6 cm2/s (see Fig. 4). Upon
start of bubble growth, deplasticization causes D to drop,
and the smaller D tends to suppress bubble growth. In the
meantime, plasticization effects on viscosity and interfacial
tension will increase bubble growth slightly. In the end,
plasticization amounts to a small decrease in the rate of
bubble growth in this case, and brings the theoretical pre-
diction into better agreement with experimental data.

CONCLUSIONS

Plasticization and deplasticization play important roles in
foaming of plastics through changes in the viscosity, solvent
diffusivity, and gas–melt interfacial tension. Various theo-
ries have been proposed for these changes, including FV
theories for the plasticization effects on the viscosity and
diffusivity and the density gradient theory for the interfacial
tension. This paper strives to incorporate these theories into
a model for diffusion-driven bubble growth, and to explore
the effects of plasticization under conditions for a foaming
experiment in a PS–CO2 system.

Our results show that the increase of blowing-agent
diffusivity due to plasticization can greatly boost the rate of
bubble growth, even at relatively low gas concentration. In
contrast, plasticization-induced variations in the melt vis-
cosity and interfacial tension have little effect on bubble
growth. These conclusions are expected to hold for typical
foaming conditions and common polymer-blowing agent
combinations.

To some extent, this work is handicapped by the lack of
pertinent experimental data for comparison. Plasticization
and deplasticization occur naturally during foaming. To
quantify their effects, one would have to run control exper-
iments that are free from plasticization, which is difficult if
at all possible. In lack of such direct comparison, we have
established the plasticization effects by studying model
parameters that are correlated to experiments. In this con-
nection, we also note the scarcity of reliable data, for
example on diffusivity [7], and the need to further test the
conclusion of this work as more data become available. As
far as we are aware, the only prior modeling of plasticiza-
tion during bubble growth is by Ramesh and Malwitz [16]
and Lastochkin and Favelukis [40]. They showed that using
a viscosity and a diffusivity that depend on the blowing-
agent concentration greatly improves the prediction of their
model. This is consistent with our findings.
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