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The stretching of an electrified non-Newtonian jet: A model
for electrospinning
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Electrospinning uses an external electrostatic field to accelerate and stretch a charged polymer jet,
and may produce ultrafine ‘‘nanofibers.’’ Many polymers have been successfully electrospun in the
laboratory. Recently Hohmanet al. @Phys. Fluids, 13, 2201 ~2001!# proposed an
electrohydrodynamic model for electrospinning Newtonian jets. A problem arises, however, with the
boundary condition at the nozzle. Unless the initial surface charge density is zero or very small, the
jet bulges out upon exiting the nozzle in a ‘‘ballooning instability,’’ which never occurs in reality. In
this paper, we will first describe a slightly different Newtonian model that avoids the instability.
Well-behaved solutions are produced that are insensitive to the initial charge density, except inside
a tiny ‘‘boundary layer’’ at the nozzle. Then a non-Newtonian viscosity function is introduced into
the model and the effects of extension thinning and thickening are explored. Results show two
distinct regimes of stretching. For a ‘‘mildly stretched’’ jet, the axial tensile force in the fiber resists
stretching, so that extension thinning promotes stretching and thickening hinders stretching. For a
‘‘severely stretched’’ jet, on the other hand, the tensile force enhances stretching at the beginning of
the jet and suppresses it farther downstream. The effects of extensional viscosity then depend on the
competition between the upstream and downstream dynamics. Finally, we use an empirical
correlation to simulate strain hardening typical of polymeric liquids. This generally steepens the
axial gradient of the tensile stress. Stretching is more pronounced at the beginning but weakens later,
and ultimately thicker fibers are produced because of strain hardening. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1510664#
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I. INTRODUCTION

The so-called nanofibers, i.e., fibers with submicron
ameters, have a potentially enormous role in nanotechnol
with applications ranging from artificial tissues to nanoco
posites and to nanoscale machinery.1–4 A straightforward
method of producing nanofibers iselectrospinning, where
electrostatic forces on a charged polymer jet elongates it
thin fibers before solidification. The first patents on elect
spinning were filed in the 1930s, but its significance for ma
ing nanofibers was recognized only recently during the
surge of nanotechnology. To date, many polymers have b
electrospun in the laboratory, either in melt or solution,
cluding biopolymers, electrically conducting polymers, a
liquid–crystalline polymers.2 In comparison, theoretica
studies of electrospinning are few.

Electrospinning typically involves two stages. In th
first, a polymer jet issues from the nozzle and is accelera
and stretched smoothly by electrostatic forces. In the sec
stage, a ‘‘bending instability’’ occurs farther downstrea
when the jet gets sufficiently thin, and the fiber spirals v
lently. The enormously increased contour length produce
very large stretch ratio and a nanoscale diameter. For
steady stretching in stage one, Spivak and Dzenis5 published
a simple model that assumes the electric field to be unifo
and constant, unaffected by the charges carried by the
Hohmanet al.6,7 developed a slender-body theory for ele
3911070-6631/2002/14(11)/3912/15/$19.00
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trospinning that couples jet stretching, charge transport,
the electric field. The model encounters difficulties, howev
with the boundary condition at the nozzle. Steady solutio
may be obtained only if the surface charge density at
nozzle is set to zero or a very low value. Even after t
drastic assumption, no steady solution was possible for flu
with higher conductivities. For stage two, the bending ins
bility has been carefully documented by two grou
~Renekeret al.;8,9 Shin et al.10!; each has proposed a theo
for the instability. Renekeret al. modeled the polymer jet by
a linear Maxwell equation. Like-charge repulsion generate
bending force that destabilizes the jet. Hohmanet al.6 built
an electrohydrodynamic instability theory, and predicted t
under favorable conditions, a nonaxisymmetric instabil
prevails over the familiar Rayleigh instability and a varico
instability due to electric charges. In theoretical work to da
the rheology of the polymer jet has been represented b
Newtonian viscosity,6,7 a power-law viscosity,5 and the linear
Maxwell equation.8,9

This paper concerns the first stage only. The stea
stretching process is important in that it not only contribu
to the thinning directly, but also sets up the conditions for
onset of the bending instability. Our objective is twofol
First, we wish to clarify the problems with the Newtonia
model of Hohmanet al.7 As will be detailed in Secs. II and
III, the ballooning instability can be eliminated if the calcu
lation of the electric field issimplified in the Hohmanet al.
2 © 2002 American Institute of Physics
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formulation. The simplified model will be tested by compa
ing its predictions with experimental data for various boun
ary conditions and parameter values. Second, we explore
effects of a non-Newtonian extensional viscosity in elect
spinning. As is intuitively expected and confirmed b
experiments,8 the axial tensile force along the fiber is critic
to its stretching and stability. To fit the data, previous mod
had to use an extremely high constant extensional viscos8

This is, of course, indicative of the strong dependence of
extension viscosity on the strain and strain rate for polyme
liquids. In Sec. IV, we will explore the effects of extensio
thinning, extension thickening, and strain hardening on
stretching. These results will form the basis for a more r
orous analysis of the role of viscoelasticity in electrosp
ning.

II. SLENDER-BODY THEORY

In electrospinning, the jet is elongated by electrosta
forces and gravity, while surface tension, viscosity, and in
tia also play a part. As the jet thins, the surface charge d
sity s varies, which in turn affects the electric fieldE and the
pulling force. The flow field andE field are thus intimately
coupled. We assume the liquid is weakly conducting so
‘‘leaky dielectric model’’ applies~see Saville11!. Thus, the jet
carries electric charges only on its surface; any charges in
interior are quickly conducted to the surface. Meanwhile,
fluid is sufficiently dielectric so as to sustain an electric fie
tangential to the jet surface. We will use MKS units for ele
tric properties.

The slender-body approximation is a familiar concept
dealing with jets and drops. It has been widely used in fi
spinning of viscoelastic liquids~e.g., Dennet al.12! and in
electrospraying~e.g., Ganan-Calvo13!. We make the standar
assumptions for slender jets: that the jet radiusR decreases
slowly along the axial directionz:udR(z)/dzu!1, and that
the axial velocityv is uniform in the cross section of the je
Thus, we have simplified the flow to a nonuniform elong
tion, with all quantities depending only on the axi
positionz.

A. Governing equations

The jet is governed by four steady-state equations re
senting the conservation of mass and electric charges,
linear momentum balance, and Coulomb’s law for theE
field.

Mass conservation requires that

pR2v5Q, ~1!

whereQ is a constant volume flow rate. Charge conservat
may be expressed by

pR2KE12pRvs5I , ~2!

whereE is the z component of the electric field,K is the
conductivity of the liquid, andI is the constant total curren
in the jet. The momentum equation is formulated by cons
ering the forces on a short segment of the jet~Fig. 1!:
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~pR2rv2!5pR2rg1

d

dz
@pR2~2p1tzz!#

1
g

R
•2pRR812pR~ t t

e2tn
eR8!, ~3!

wheretzz is the axial viscous normal stress,p is the pressure,
g is the surface tension, andt t

e and tn
e are the tangential and

normal tractions on the surface of the jet due to electric
The prime indicates derivative with respect toz, andR8 is
the slope of the jet surface. The ambient pressure has b
set to zero. The electrostatic tractions are determined by
surface charge density and the electric field:11

tn
e5 I e

2
~En

22Et
2!I'

s2

2ē
2

ē2e

2
E2, ~4!

t t
e5sEt'sE, ~5!

wheree and ē are the dielectric constants of the jet and t
ambient air, respectively,En andEt are the normal and tan
gential components of the electric field at the surface, a
i* i indicates the jump of a quantity across the surface of
jet. We have used the jump conditions forEn and Et :
ieEni5 ēĒn2eEn5s, iEti5Ēt2Et50, and assumed tha
eEn! ēĒn ~see Ganan-Calvo13! andEt'E. The overbar in-
dicates quantities in the surrounding air.

The pressurep(z) is determined by the radial momen
tum balance, and applying the normal force balance at the
surface leads to

2p1t rr 5tn
e2

g

R
. ~6!

Inserting Eqs.~4!–~6! into Eq. ~3! yields

rvv85rg1
3

R2

d

dz
~hR2v8!1

gR8

R2 1
ss8

ē

1~e2 ē !EE81
2sE

R
, ~7!

where a generalized Newtonian constitutive relation has b
used for the viscous normal stress difference:

tzz2t rr 53hv8, ~8!

and the viscosityh may depend on the local strain rate or t
accumulated strain~see Sec. IV!.

The momentum equation~7! is essentially the same a
that in Ganan-Calvo13 and Hohmanet al.6 The latter authors
used a more formal procedure of series expansion. The in

FIG. 1. Momentum balance on a short section of the jet.
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tive control-volume balance used here corresponds to
leading order of the expansion.14,15Spivak and Dzenis’5 mo-
mentum equation misses several terms: the viscous no
stresst rr ; the surface tension term in thez equation~though
it is included in ther equation!; and the normal electrostati
tractiontn

e in both axial and radial balances. Those terms
not, in general, smaller than the terms retained.

Finally, the electric potential inside the jet is determin
by the free and induced charges on the jet surface. The
duced charges are determined byEn and Ēn : s ind5(e
2e0)En2( ē2e0)Ēn , where e0 is the permittivity of
vacuum. The normal fieldEn is related, via Gauss’ law, to th
axial field E:

2pREn1
d

dz
~pR2E!50.

Since ēĒn2eEn5s, Ēn can also be expressed in terms
E. Now the potential along the centerline of the jet, due
the total surface chargess1s ind , may be obtained by Cou
lomb’s law:

f~z!5f`~z!1
1

2ē E sRdz

A~z2z!21R2

2
b

4 E d~ER2!/dz

A~z2z!21R2
dz, ~9!

where f` is the potential due to theexternal field in the
absence of the jet,b5e/ ē21, and the integration is over th
entire length of the fiberL. To avoid solving an integro-
differential equation, one realizes that the dominant con
bution to the integrals comes from the two regions satisfy
R!uz2zu!L. An asymptotic estimation leads to~cf.
Hinch16!

f~z!'f`~z!1 ln xS 1

ē
sR2

b

2

d~ER2!

dz D ,

where the aspect ratiox5L/R0 , R0 being the characteristic
radius of the jet. The axial field is, therefore,

E~z!5E`~z!2 ln xS 1

ē

d~sR!

dz
2

b

2

d2~ER2!

dz2 D . ~10!

From this point on, we will take the external fieldE` to be
spatially uniform. Equations~9! and ~10! have been previ-
ously derived by Hohmanet al.6 by using the idea of an
effective line charge along the axis of the jet. Spivak a
Dzenis5 neglected the axial field due to surface charges
assumed a constantE5E` everywhere. This will be seen t
be a poor approximation sinceE(z) typically varies greatly.

Now we have Eqs.~1!, ~2!, ~7!, and ~10! for the four
unknown functionsR, v, E, and s. These are similar to
those used in the electrospray literature,13 and are essentially
the same as those derived by Hohmanet al.6 To achieve
better agreement with experimental data, however, Hohm
et al.7 used a more sophisticated method to computeE. First,
Eq. ~9! is not reduced to Eq.~10!. To account for the capaci
tor plates in the experiment and the protruding nozzle, im
charges are added to the integrodifferential equation, as
e
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e

n-

i-
g

d
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e
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‘‘fringe field’’ due to the charged nozzle. Interestingly, th
more complex model suffers from a difficulty with th
boundary condition at the origin of the jet, while the simpl
model does not. This puzzle will be further investigated
Sec. II C as related to the boundary conditions.

B. Dimensionless parameters

Parameters in electrospinning fall into three categor
process parameters (Q, I , and E`), geometric parameter
(R0 andL), and material parameters~r, h0 , e, ē, K, andg!.
Among those,R0 is the radius at the origin of the jet jus
outside the nozzle, andh0 is the zero-shear-rate viscosit
We adopt the following characteristic quantities:

Length:R0 ;
velocity: v05Q/(pR0

2);
electric field:E05I /(pR0

2K);
surface charge density:s05 ēE0 .

Scaling all quantities using these characteristic values,
denoting the dimensionless quantities using the same s
bols, we arrive at the following dimensionless governi
equations:

R2v51, ~11!

ER21PeRvs51, ~12!

vv85
1

Fr
1

3

Re

1

R2

d~hR2v8!

dz
1

1

We

R8

R2

1ES ss81bEE81
2Es

R D , ~13!

E5E`2 ln xS d~sR!

dz
2

b

2

d2~ER2!

dz2 D , ~14!

where the dimensionless groups are the following:

Electric Peclet number: Pe5
2ēv0

KR0
,

Froude number: Fr5
v0

2

gR0
,

Reynolds number: Re5
rv0R0

h0
,

Weber number: We5
rv0

2R0

g
,

aspect ratio: x5
L

R0
,

E5
ēE0

2

rv0
2 ,

b5
e

ē
21.

Note, in particular, that Pe indicates the importance of cha
convection relative to conduction,E indicates the magnitude
of the electrostatic forces relative to inertia, andb represents
the significance of induced charges. We have taken the



y
en
fo

-

d
y

p

m
ia
el
n

iq-
len
u
a
-
nd
le
co

-

nt
in
s

a-
e
o

c

he
-

n
ng

x-
-
ts.
able
ld
ids

a-

the

al

ut-
ify

ient

by

of
-
he

a

m
her
nd
ly-
l

el.

3915Phys. Fluids, Vol. 14, No. 11, November 2002 The stretching of an electrified non-Newtonian jet
rent I to be an independent parameter. In reality,I depends
on a host of factors—including details of the setup—in wa
that are poorly understood. For instance, drastically differ
current–voltage relationships have been reported
electrospraying23 and electrospinning7 experiments. In this
paper, we use measuredI values when comparing with ex
periments.

C. Boundary conditions

Mass and charge conservations allowv ands to be ex-
pressed in terms ofR andE, and the momentum andE-field
equations can be recast into two second-order ordinary
ferential equations forR andE, each requiring two boundar
conditions. At the origin of the jet (z50), an obvious con-
dition is

R~0!51. ~15!

We have assumed that the slender-body theory applies u
the nozzle, though conceivably the slopeuR8u may not be
small there. The same assumption has been used in
previous models concerning jets or drops. For Newton
fluids, Eggers and Dupont17 used a one-dimensional mod
to compute the detachment of a drop from an orifice, a
Zhanget al.18 simulated the stretching and breakup of a l
uid bridge. In both cases, the predictions are in excel
agreement with experimental measurements, even tho
uR8u appears to be rather large in certain areas of the jet
drop. Keuningset al.19 carried out two-dimensional finite
element simulations of fiber spinning for Newtonian a
Maxwell fluids. Their results confirmed that it is acceptab
to use the conditions at the nozzle as entrance boundary
ditions for the slender-body model.20

At the ‘‘exit,’’ we apply the asymptotic thinning condi
tions due to Kirichenkoet al.21 Specifically, asR ands drop
to zero andE approachesE` , the stretching of the jet is
governed by a balance among inertia, gravity, and tange
electrostatic force. This leads to the asymptotic scal
R(z)}z2 1/4. Hence, we adopt the following exit condition
at z5x:

R14zR850, ~16!

E5E` . ~17!

Note that if the straight jet is followed by the spiraling inst
bility, the latter may modify the exit conditions for th
straight portion of the jet. This possible complication is n
considered in our model.

The fourth boundary condition concerns the surfa
charge density at the entrances(0), which, through charge
conservation, determinesE(0) for any given currentI . This
is the condition that has caused much difficulty in t
Hohman model.7 In reality, the geometric details of the de
vice and the imposed external field determines(0). Since
such details are not contained in the models, anad hoccon-
dition needs to be introduced. In fact, this has been a lo
standing problem in previous studies of electrosprayi
Ganan-Calvo13 and Hartmanet al.,22 for instance, circum-
vented thes(0) condition by specifying the slopeR8(0).
This introduces the question of where the originz50 is on
s
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the actual jet, and hence difficulties in comparing with e
periments. Hohmanet al.7 took the pragmatic route of deter
mining s(0) by fitting model predictions to measuremen
The surprising outcome is that steady solutions are attain
only if s(0) is zero or very small. Otherwise, the jet wou
bulge into a balloon soon after exiting the nozzle. For liqu
with higher conductivity, evens(0)50 cannot prevent a
long-wave instability of the jet, in contradiction to observ
tions.

We solved our model equations for a wide range ofs(0)
values and different conductivities and found neither of
problems. In fact,s(0) only modifies thes(z) profile within
a tiny ‘‘boundary layer:’’ 0,z<zBL . For z.zBL , the solu-
tion is practically independent ofs(0) ~Fig. 2!. This is remi-
niscent of conventional fiber spinning, where the norm
stress boundary conditiont rr (0) has to be specifiedad hoc
but turns out to have little effect on the solution.12 Then
t rr (0)50 is used since it would otherwise drop to zero o
side the boundary layer. Following this example, we spec
our s(0) according to the slope ofs(z) outside the bound-
ary layer. The rationale for this choice is that a sharp grad
is unlikely in a real jet. Figure 2 also suggests thats(0) is
not a free parameter in reality but should be determined
some physical constraint not incorporated in the theory.

It is astonishing that the more sophisticated model
Hohmanet al.7 suffers from the unrealistic ballooning insta
bility while our model does not, as the latter derives from t
former when the integrodifferential equation~9! is approxi-
mated by the ordinary differential equation~10!. To explain
this paradox, we note that the electric potential due to
charged slender body may be written as in Eq.~9! only if
R(z) is continuous andvanishes at both ends.16 The latter
condition is clearly violated in this situation. Sinces andR
both approach zero downstream, the thinner end~i.e., the
exit! contributes nothing to the electric field. The upstrea
end, on the other hand, does affect the electric field. In ot
words, our ‘‘slender’’ jet does not end at the spinneret, a
Eq. ~9! ignores the effects of the charges carried by the po
mer and the spinneretupstreamof the nozzle. Thus, the axia

FIG. 2. The boundary layer at the origin of the jet predicted by our mod
For the differents(0) values used~0, 30, 36, 40, 50!, the solution is essen-
tially the same forz.zBL50.02. Note thats is made dimensionless by
s05 ēI /(pR0

2K) andz by the initial radiusR0 .
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field is underestimated and radial repulsion of the char
gives rise to the ballooning instability.

In an effort to account for some of the upstream effec
Hohmanet al.7 added two more features to Eq.~9!: image
charges due to the two equipotential capacitor plates an
fringe field due to the protruding nozzle. Though these
finements increase the axial field, enhance stretching of
jet and bring the thinning curveR(z) closer to measure
ments, they do not address the fundamental defect of Eq.~9!.
Ganan-Calvo23 rejected the picture of a slender jet extendi
up to the nozzle. Instead, he constructed a local asymp
solution for a slender jet attached to a Taylor cone. The e
tric current thus predicted depends on neither the impo
voltage nor the dielectric constant of the jet. This gene
result is supported by electrospraying experiments but d
not agree with electrospinning experiments,7,24,25again high-
lighting the importance of details of the experimental set

In this light, the replacement of Eq.~9! by Eq. ~10! is a
pragmatic approach that avoids the need to account for
effects of upstream charges or details of the device. T
way, the slender-body theory can be applied up to the noz
The tradeoff is that an additional boundary condition,E(0)
or s(0), has to bespecified. Then the boundary layer~cf.
Fig. 2! offers anad hocrepresentation of the actual physi
near the nozzle. In the next section, we will examine
capability of the Hohmanet al. model and our simplified
version in predicting experimental data for Newtonian jet

III. NEWTONIAN JETS

A. Comparison with experiment

Among experimental studies of electrospinning, t
measurements of Hohmanet al.7 are the most comparable t
our model. Two liquids are used: glycerol and an aque
poly~ethylene oxide! ~PEO! solution. Hohmanet al. com-
pared predictions of their theory with measurements only
glycerol; no steady theoretical solution was possible for P
because of its relatively high conductivity. We will compa
the predictions of our model in Eqs.~11!–~14!, with proper
boundary conditions and parameter values, with the m
surements and predictions of Hohmanet al.

Hohmanet al. give the following parameter values for
typical glycerol jet:R050.08 cm,L56 cm, Q51 mL/min,
E`55 kV/cm, I 5170 nA, kinematic viscosity n
514.9 cm2/s, K50.01mS/cm. Additional parameters ar
found in handbooks~e.g., Ref. 26!: g563.4 dyne/cm,r
51.263103 kg/m3, ē58.854310212 C2/N m2, and e/ ē
546.5. Now the dimensionless parameters arex575, b
545.5, Re54.45131023, We51.09931023, Fr58.755
31023, Pe51.83531024, E50.7311, andE`55.914.

Using these parameters, we integrated our ordinary
ferential equations by a relaxation method on a nonunifo
grid.27 The result is compared with the Hohman results
Fig. 3. Apparently, our model grossly overpredicts jet th
ning ~curvea). To explain this discrepancy, we note that tw
of the parameter values listed above differ from those in
literature. First, all sources we found list thedynamicviscos-
ity as 14.9 P at 20 °C, corresponding to a kinematic visco
of 11.8 cm2/s, smaller than that used by Hohmanet al. Us-
s
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ing the lower viscosity increases the Reynolds number
Re55.60831023, resulting in a minorincreasein stretching
~curveb). Second, a wide range of values have been repo
for the conductivityK in the literature,28–30 ranging from
1.631026 to 931026 S/m at room temperature. This scatt
is perhaps attributable to the hygroscopicity of glycerol, b
all values are higher than that used by Hohmanet al. In view
of this uncertainty, we tested differentK values at the higher
Re and found that forK54.831026 S/m, our model pro-
duces an almost perfect agreement with the measured
~curvec). The effect ofK on jet stretching is easy to inter
pret: a higherK causes surface charges to conduct m
readily downstream, hence reducing the charge densitys and
the electrostatic force responsible for stretching the jet. In
context of our model, a higherK corresponds to a lowerE
and hence reduced electrostatic effect on the jet.

Figure 4 compares theE ands profiles predicted by the
two models for the glycerol jet. TheE curves have the sam
general shape. Thes curve of Hohmanet al., however, has
irregular wiggles nearz50, indicating the solution is poorly
converged. Furthermore,s jumps from 0 to a finite value of
about 431025 C/m2 almost instantaneously.~The curve was
read off Fig. 10 of Ref. 7 in which thes curve appears to
intersectz50 at roughly 12 esu/cm2 rather than 0.! In addi-
tion, Hohmanet al.7 suggested thats(0)50 may be physi-
cally reasonable since the charges would not have eno
time to relax onto the surface at the nozzle. Then it would
hard to explain the initial jump ins since nothing else ha
changed in such a short distance. Also shown in Fig. 4 arE
ands profiles obtained by applying a ‘‘universal scaling’’ fo
electrospraying experiments31 to our parameters. The electro
spraying profiles differ markedly from the electrospinnin
models, except for the humped shape. This is not surpris
since the current–voltage relationship is very different in

FIG. 3. A comparison between predictions of our simplified model and
theoretical and experimental results of Hohmanet al. ~Ref. 7! for a glycerol
jet. ~a! Our prediction using the parameters of Hohmanet al.: x575, b
545.5, Re54.45131023, We51.09931023, Fr58.75531023, Pe
51.83531024, E50.7311, andE`55.914. ~b! Our model prediction at a
slightly higher Re55.60831023. ~c! Our model prediction using a highe
conductivity K54.831026 S/m, corresponding to Pe53.82331025, E
53.17331022, and E`528.32. ~d! Model prediction of Hohmanet al.
using the parameters of curve~a!. The data points represent the experime
tally measured thinning curve.
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two operations,7 owing probably to differences in details o
geometric setup and operational conditions.

Figure 5 plots the predictions of our model using para
eters corresponding to the PEO jets in the experimen
Hohmanet al.The high conductivity and strong current lea
to very high levels of surface charge near the nozzle an
local E field almost 100 times higher thanE` . The conse-
quence is extremely severe initial thinning of the jet. In
mensional terms, the initial thinning rateuR8u and the maxi-
mum values ofE ands are all one order of magnitude highe
than the glycerol jet in Figs. 3 and 4. Hohmanet al. did not
present quantitative experimental data for the PEO jet,
direct verification of our predictions is not possible. But
contrast to the Hohman model, our model at least produ
well-behaved solutions for high-K, high-I electrospinning.

B. Effects of dimensionless parameters

Before applying our simplified model to non-Newtonia
fluids, we further investigate the Newtonian solutions by e
amining the effects of the dimensionless parameters. Th
accomplished by using the solution depicted in Fig. 3~curve
c) and Fig. 4~corresponding toK54.831026 S/m) as the
base, and varying the parameters one at a time.

FIG. 4. A comparison of the predictions of the two models for~a! E and~b!
s. Different parameter values, corresponding to curve~c! and~d! in Fig. 3,
are used for the simplified model and the Hohman model, respectively.
shown are profiles obtained by applying the universal scaling of Gan
Calvo ~Ref. 31! to the parameters of curve~c! in Fig. 3.
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The qualitative features of the solution stay the sa
when the parameters are varied by two orders of magnit
about their base values. We will analyze these basic feat
first. The rate of thinninguR8u is maximum atz50, and then
relaxes smoothly downstream toward zero~cf. Fig. 3!.
Downstream of the origin, bothE ands shoot up to a peak
and then relax; the maxima typically occur within five initi
radii but do not coincide~cf. Fig. 4!. To understand these
features, we realize that the thinning of the jet and the va
tions in E ands are all interconnected. Mathematically, E
~12! implies s85(123ER2)R8/Pe2E8R3/Pe'22R8/Pe
sinceER2'1 for the small Pe used here andE8 is typically
very small at the start of the jet. Hence,s8@0 and the sharp
rise in s can be explained. Physically, the shrinking cro
section reduces the amount of charges that can be condu
To maintain the same current, convection has to carry m
charges. Given the low jet speed near the nozzle, the ch
density surges. The electric fieldE is induced by the axial
gradients of surface charges (sR)8 and induced charge
(ER2)9. For the parameters tested, the former dominates
may be estimated as (sR)8'22RR8/Pe. Equation~14! then
leads toE8' ln x(R2)9/Pe, which is a large positive numbe
for convexthinning curves~cf. Fig. 3!. Hence,E jumps up.
As the jet gets thinner and faster, electric conduction gra
ally gives way to convection. Toward the end, Eq.~12! re-

o
n-

FIG. 5. Predictions of our simplified model using parameters for the P
jet. ~a! The thinning curveR(z). Most of the stretching occurs within a
distance of less than one initial radius from the nozzle;~b! E ands increase
by two to three orders of magnitude within this short distance.
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FIG. 6. Effects of the dimensionless parameters~a! Re,~b! Pe, and~c! E on the Newtonian jet. Each parameter is varied alone with the others fixed at the
values:x575, b545.5, Re55.60831023, We51.09931023, Fr58.75531023, Pe53.82331025, E53.17331022, andE`528.32.
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quiress'(PeRv)215R/Pe to decrease withR. As the sur-
face charges diminish,E→E` and the asymptotic behavio
emerges. With this qualitative picture in hand, we will exa
ine next the quantitative changes due to the various par
eters.

As expected, gravity enhances stretching while surf
tension opposes it. But both effects are weak for our rang
parameters. Reducing Fr or We by a factor of 10 brings ab
roughly a 5% change inR. Another relatively insignificant
parameter isb, which represents the magnitude of induc
charges. In terms of the electric fieldE @Eq. ~14!#, the in-
duced charges contribute roughly 1% of the total field a
thus is overwhelmed by the free charges. Repulsion am
the induced charges enhances stretching of the jet thro
the bEEE8 term in Eq. ~13!. Increasingb from 1 to 100
causes up to a 20% decrease inR for the base parameter
used here.

Perhaps anti-intuitively, the solution is also insensitive
E` . Much of the thinning occurs near the beginning of t
jet, whereE can be an order of magnitude higher thanE` .
Evidently, the strongE field is inducedlocally by the surface
charges on the jet, and has little to do with the ‘‘externa
field E` . Hence, varyingE` with other parameters fixed ha
little influence on the solution. However, the physical int
ition that the external field should to a large extent determ
-
-

e
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d
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’

e

jet stretching is still correct. In reality, raising the fie
strength also raises the currentI , more or less linearly~cf.
Fig. 4 of Hohmanet al.7!. Then the characteristic fieldE0

5I /(pR0
2K) increases in proportion and the dimensionle

E` would change little. It isE that will reflect the increase in
the electrostatic pull due to the elevateddimensional È .

Figure 6 depicts the effects of Re, Pe, andE. Increasing
Re promotes stretching of the jet@Fig. 6~a!#, as has been
noticed in Fig. 3. Re appears in the momentum equation@Eq.
~13!# only, and exerts its impact via the gradient of the ax
tensile forceT5(tzz2t rr )R

253hv8R2. The variation ofT
along the jet can be nonmonotonic, however, meaning
viscous normal stress may promote or resist stretching
different part of the jet and under different conditions. Thu
the effect of Re is rather subtle. We postpone a deta
analysis to the next section~see Fig. 10!. IncreasingPe re-
duces jet stretching, and the effect has a straightforward
planation@Fig. 6~b!#. Charge conservation@Eq. ~12!# implies
that s decreases with increasing Pe, other conditions be
fixed. In experimental terms, increasing Pe alone can
achieved by reducingK and I simultaneously, giving rise to
lower surface charge densitys. The result is a weaker elec
trostatic pulling force on the jet and reduced stretching. T
solution for PEO in Fig. 5 illustrates how a low Pe valu
~due mainly to the higherK andI ) boosts stretching. Finally
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sinceE denotes the ratio of electric to inertial forces, increa
ing E promotes stretching in Fig. 6~c! as one may expec
from Eq. ~13!.

To summarize our study of Newtonian jets, the difficu
in modeling electrospinning and electrospraying is to
count for the upstream effects on theE field. Not having
accomplished this, the model of Hohmanet al.7 fails near the
nozzle in the form of the ballooning instability. Our simpl
fied model avoids the difficulty at the cost of introducing
extra boundary condition. This leads to a thin boundary la
at the nozzle. Away from the nozzle, both models predict
qualitative trend very well, and may even claim quantitat
agreement~we must note that Fig. 3 is complicated by th
uncertainty in K!. Therefore, we will use the simplified
model as a platform for exploring the effects of no
Newtonian rheology on electrospinning.

IV. NON-NEWTONIAN JETS

It is well known that polymeric and Newtonian liquid
exhibit a maximal difference in elongation.32 Two aspects of
this rheological difference are especially relevant to elec
spinning. When stretching a polymeric liquid from rest, t
transient extensional viscosityh̄1 shoots up with strain, as
the polymer molecules uncoil, producing a large transi
Trouton ratio, which, for dilute solutions, can be in th
thousands.33 This is commonly known asstrain hardening.
In the event that a steady state is attained, the steady elo
tional viscosityh̄ may decrease or increase with the stea
stretching rate, creatingextension thinningor extension
thickening, respectively. Strain hardening reflects t
memory of the liquid and is thus a viscoelastic behav
Extension thinning or thickening, on the other hand, can
seen as purely viscous and is representable by a genera
Newtonian viscosity.

Like conventional fiber spinning, electrospinning is ne
ther a startup of elongation from rest nor a steady exten
in the Lagrangian sense. A fluid particle exits the spinne
with a certain strain history, and then experiences an appr
mately uniaxial extension with a time-dependent strain ra
To simplify the picture, we will explore the viscous and ela
tic aspects of extensional rheology separately. First, we
regard strain hardening altogether and assume that the p
mer experiences roughly steady-state stretching everyw
at the local strain rate. This corresponds to the sm
Deborah-number limit, and the viscous reaction of the liq
is then described by a thinning or thickening extensio
viscosity. Second, we represent strain hardening appr
mately by using a transient Trouton ratio that depends o
on the total strain up to that point. This is, of course, anad
hocapproach that allows us to incorporate the memory ef
without using complex viscoelastic constitutive equatio
Since no steady stretching is achieved, extension thinnin
thickening is irrelevant in this case. The two scenarios w
be discussed separately in the following.

A. Extension thinning and thickening

Song and Xia34 proposed a convenient empirical formu
to represent extension thinning and/or thickening:
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h̄5h0F11S lAII

2 D 2G ~n21!/2

•Tr~ III !,

with

Tr~ III !5Tr`1~32Tr`!~11m3uIII u!~m21!/3,

where h0 is the Newtonian or zero-strain-rate viscosity,
and III are the second and third invariants of the rate-
strain tensor,35 Tr` is the asymptotic Trouton ratio at a hig
strain rate,l and m are the relaxation times for shear an
extension, andn and m are the corresponding power-la
indices. The formula was devised as a universal viscosity
shear, extension, and intermediate flow types. In our con
of pure extension, the ‘‘shear-thinning’’ part works with th
variable Trouton ratio to fit the viscosity curves.

In our nonuniform elongational flow, II56(dv/dz)2,
III 56(dv/dz)3. The viscosity function can be made dime
sionless for use in Eq.~13! in place of 3h:

h̄5~11De2 v82!~n21!/2

3@Tr`1~32Tr`!~11D̄e3 v83!~m21!/3#, ~18!

where the Deborah numbers are defined as De5)v0l/R0

and D̄e5A3 6v0m/R0 . Figure 7 plots three typical viscosit
curves. Increasingn andm moderates the degree of thinnin
and thickening; varying the Deborah numbers shifts
curves horizontally and changes the strain rate where t
ning or thickening onsets. For the rest of the paper, we w
fix Tr`545, and assumel5A3 6m/), so that De and D̄e are
always equal.

1. Extension thinning

First, we consider the case ofm51, when Eq.~18! sim-
plifies to a ‘‘shear-thinning’’ Carreau viscosity function wit
a constant Trouton ratio of 3. As mentioned in Sec. III
when discussing Fig. 6~a!, the viscous term in the momen

FIG. 7. Typical viscosity curves generated by Eq.~18!. The dotted line
indicates the Newtonian value of 3, and the asymptotic Trouton ratio is fi
at Tr̀ 545. ~a! Pure extension thinning withn50.5, m51, and De510; ~b!

extension thickening followed by thinning atn50.5, m50.5, and De5D̄e

510; ~c! n50.5, m50.5, and De5D̄e5100. The parameter values ap
proximate those determined by fitting the data of Laun and Mu¨nsdedt~Ref.
36! for LDPE melts~see Song and Xia~Ref. 34!!.



3920 Phys. Fluids, Vol. 14, No. 11, November 2002 J. J. Feng
FIG. 8. Stretching is delayed by extension thinning on a severely stretched jet. The parameters arex575, b545.5, Re55.60831023, We51.09931023,
Fr58.75531023, Pe53.82331025, E53.17331022, andE`528.32. ~a! The radius of the jetR; ~b! the stretching rateR8; ~c! the tensile forceT.
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tum equation influences jet stretching in different ways
pending on how the tensile forceT(z) varies along the jet. In
dimensionless terms, we write

T5~tzz2t rr !R
25h̄v8R2522h̄R8/R.

Thus, the shape of theT(z) curve depends mainly on how
fast uR8u relaxes to zero asR decreases. It is convenient t
demarcate two scenarios forsevere stretching andmild
stretching depending on whetherT(z) has a maximum. For
the severely stretched jet,R drops so fast thatT initially
rises, reaches a peak, and then relaxes downstream. H
the viscous normal stress enhances stretching initi
@T8(z).0# but resists it farther downstream@T8(z),0#.
For the mildly stretched jet, on the other hand,T decreases
monotonically down the jet, and resists stretching eve
where. The variation ofT marks a major difference from
conventional fiber spinning, where a stretching force is
plied only at the wind-up spool, and thus the tensile fo
remains constant throughout the length of the fiber. This
tinction will be seen to strongly affect the stretching of t
fiber.

For the severely stretched jet, an extension-thinning
cosity h̄(v8) causesdelayed stretching. Figure 8~a! shows
that with stronger extension thinning~at a smallern and/or a
higher De!, stretching is hampered at the beginning of the
-

ce,
ly

-

-
e
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-

t

but intensifies downstream, resulting in more or less
same fiber radius at the end. The delay in stretching is m
clearly shown by the stretching rateR8 in Fig. 8~b!. As is
apparent from Fig. 8~c!, extension thinning reduces the slop
of the initial rise inT(z). This is due to the acceleration o
the jet reducingh̄ outside the nozzle, and explains the wea
ened initial stretching in Figs. 8~a! and 8~b!. Interestingly, the
T(z) profiles in Fig. 8~c! resemble the prediction of th
theory of Renekeret al.8 using a linear Maxwell model. Fo
the parameters considered, apparently, the humped sha
mainly due to the rate of severe stretching rather than
viscosity h̄.

To understand how extension thinning causes enhan
stretching farther downstream, we first explain why for Ne
tonian jets,uR8u is maximum atz50 and relaxes monotoni
cally to zero downstream. The reason the high level
uR8(0)u cannot be sustained downstream, despite the ris
E ands ~cf. Fig. 4!, lies with the momentum equation@Eq.
~13!#. Balancing the accelerationvv8522R8/R5 with the
electrostatic force on the net charges 2EsE/R, we have
uR8u;EsER4. Thus, uR8u has to drop downstream becau
R4 decreases too rapidly. Another way of viewing this is th
even the risingE ands cannot maintain the accelerationv8
in the face of a rapidly increasingv. All this is changed by
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extension thinning. As explained before, the initial stretch
rate uR8(0)u is reduced by extension thinning andR thins
with a milder slope. Then the electric force is able to ma
tain the initial level ofuR8u farther downstream. In the cas
of more severe extension thinning, the stretching rate e
increases downstream to a local maximum before relax
@cf. Fig. 8~b!#. Thus, the delayed stretching phenomenon
curs. One may notice delayed maxima inuR8u, T as well as
v8, E, ands ~not shown!, though the exact positions of th
peaks do not coincide.

It is illuminating to contrast the behavior of a
extension-thinning jet in electrospinning with that in conve
tional fiber spinning.37 In the latter case,T stays constan
alongz, and the normal stress differencet rr 2tzz increases
monotonically downstream as the fiber gets thinner. Con
quently, the stretching rateuR8u increases rapidly toward th
wind-up spool.R(z) assumes a concave shape, with mos
the thinning of the fiber occurring at the spool rather than
the spinneret as in Fig. 8.

The picture is much simpler for the mildly stretched je
The tensile forceT522h̄R8/R decreases monotonicall
alongz @Fig. 9~a!#. Thus, the viscous normal stressresistsjet
stretching everywhere. With extension thinning,T lowers be-
cause of the reduced viscosity, and so doesuT8u over most of

FIG. 9. Extension thinning enhances stretching on a mildly stretched
De510. The other parameters arex5600, b540, Re5531023, We
50.1, Fr50.1, Pe50.1, E51, andE`50.1. ~a! Tensile forceT; ~b! radius
R.
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the jet. Hence, stretching is enhanced by extension thinn
@Fig. 9~b!#.

As a byproduct of the preceding discussion, we may n
explain the effect of Re on a Newtonian jet@cf. Fig. 6~a!#.
From Eq.~13!, it is T/Re that determines the effect ofh0 on
the stretching of a Newtonian jet. Figure 10 shows that
solutions in Fig. 6~a! correspond to mild stretching at low R
and severe stretching at higher Re. For mild stretching,
creasing Re lowersT/Re and reduces its downhill slope. Fo
severe stretching, the initial rise inT becomes more pro
nounced with increasing Re, so much so thatT(z)/Re as-
sumes a steeper initial upturn. In both cases, therefore
creasing Re intensifies stretching of a Newtonian jet.

2. Extension thickening

We now turn to ‘‘humped’’ h̄ curves with extension
thickening followed by thinning, typical of LDPE melts.37

We will first studymild stretchingby using the same param
eter values as in Fig. 9, except for the rheological para
eters. The power-law indices are fixed atm5n50.5 and two
Deborah numbers are tested: De5D̄e510 and De5D̄e
5100. In both cases,v8 falls in the range of 0.09–0.31@Fig.
11~a!#, which produces extension thickening for De510 and
extension thinning for De5100~see Fig. 7!. The range of the
viscosity is roughly the same in the two cases, between
and 3.8 times the zero-strain-rate valueh0 @Fig. 11~b!#. As a
result of the higherh̄, jet stretching is milder in both case
than a Newtonian jet of viscosityh0 or a purely extension
thinning jet @Fig. 11~c!#. This is consistent with the analysi
of Fig. 9; stretching is resisted by a decliningT for mildly
stretched jets. Furthermore, extension thickening (De510)
is more effective than extension thinning (De5100) in re-
ducing jet stretching. The reason for this difference is app
ent from the almost symmetric shapes of theh̄ curves. For
extension thickening,h̄ is higher at the upstream part of th
jet where most stretching occurs. This leads to a higher
sile force upstream that suppresses jet stretching more e
tively.

For a humped viscosity curve, the contrast between
vere and mild stretching is not as striking as for the pur

t.

FIG. 10. Profiles ofT/Re for the Newtonian solutions in Fig. 6~a! at various
Re. Stretching increases with Re for both mildly and severely stretched
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FIG. 11. The effects of a humped viscosity curve on a mildly stretch jet. The parameters are the same as those in Fig. 9 except for the powerm
5n50.5) and the Deborah number.~a! Strain ratev8; ~b! viscosity h̄; ~c! radius R. A Newtonian jet and a purely extension-thinning jet (n50.5,
m51, De5100) are also shown for comparison.
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thinning viscosity in Figs. 8 and 9. In fact, as the hum
becomes more prominent, the severe-stretching behavio
Fig. 8 gives way to the mild-stretching dynamics of Fig.
To illustrate this transition, we use the parameter values
severe stretching, and reducem gradually to hunch the vis
cosity curve@Fig. 12~a!#. This monotonically increases th
peak ofT as well as the slopeuT8u on both sides of the pea
@Fig. 12~b!#. More importantly, the downhill portion of the
T(z) curve expands and eventually dominates the uphill p
tion. Then the mild-stretching dynamics prevails. The tran
tion can also be discerned from the thinning curves in F
12~c!. The delayed thinning form51 is characteristic of
severe-stretching behavior. Asm is decreased to 0.99, th
degree of delayed thinning is reduced; stretching is enhan
at the beginning of the jet and reduced farther downstre
This effect is evidently due to the change ofT @Fig. 12~b!#.
As m lowers to 0.96, the viscosity curve is close to Newto
ian in the range of extension rate covered (1,v8,184), and
the thinning curveR(z) also approaches the Newtonian s
lution. Whenm is farther reduced to 0.9, the thinning ra
increases at the origin but decreases farther downstrea
that the overall thinning is reduced. For even lowerm, mild-
stretching dynamics dominates; theR(z) curve moves up
and away from the Newtonian curve as stretching is lesse
by increasing viscosity.
of
.
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B. Strain hardening

Tirtaatmadja and Sridhar33 noticed in startup-of-
elongation experiments that the stress-growth curves at
ferent strain rates collapse more or less onto a master c
when plotted using the Hencky straing. This has inspired us
to use an empiricalh̄1(g) function to represent strain hard
ening. The following formula is capable of representing t
Tirtaatmadja and Sridhar data for PIB-in-PB Boger fluids

h̄1

3h0
5H expH pF12cosS g2

gs
2 p D G J , if g<gs ,

exp~2p!, if g.gs ,

~19!

where gs is the strain at which a steady-state extensio
viscosity is attained, and the parameterp determines the
steady-state Trouton ratio. The data of Tirtaatmadja a
Sridhar33 suggest thatgs'6 andp'3.3. We will explore the
effects of strain hardening by varyingp with gs56 fixed,
and Fig. 13 plots Eq.~19! for several values ofp. Needless
to say, Eq.~19! is intended only as a crude representation
the memory effect in a viscoelastic fluid. Besides, conc
trated solutions and melts typically exhibit less strain ha
ening than Boger fluids.

We further assume that the jet exiting the spinneret ha
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FIG. 12. The effects of a humped viscosity curve on a severely stretch jet. Here De5D̄e51, n50.7. The other parameters are the same as in Fig. 8.~a!
Viscosity curves for variousm values;~b! profiles of the tensile forceT(z); ~c! stretching curvesR(z). The severely stretched Newtonian jet is also sho
for comparison.
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fixed ‘‘prestrain’’ of g050.1. The strain increases along th
jet according to

g2g05E ġdt5E )v8dt5E
0

z

)
v8

v
dz

5) ln v522) ln R,

FIG. 13. Strain hardening represented by Eq.~19! for several values ofp.
The extensional viscosityh̄1 is scaled by 3h0 .
where all parameters are dimensionless andv(0)5R(0)
51.

Figure 14~a! plots the jet radius for the mild-stretchin
parameters of Fig. 9 at various degrees of strain harden
With increasingp, stretching is enhanced initially but weak
ens downstream. Eventually,thickerfibers are produced as
result of strain hardening. This effect can be readily e
plained by examining the profiles of the tensile forceT(z)
@Fig. 14~b!#. For mild stretching,T decreases monotonicall
along z and resists stretching. As a consequence of st
hardening,h̄1 increases alongz, rapidly at the beginning
and plateauing towardg5gs @Fig. 14~c!#. This has two ef-
fects onT. First, the descending slopeuT8u is reduced at the
beginning of the jet and so initial stretching is enhanced,
seen in Fig. 14~a!. Second, the higher level of viscosity afte
g.gs produces a larger negativeT8 for the rest of the jet.
Thus, stretching isdampenedfarther downstream. Becaus
of the competing actions in the upstream and downstre
portions of the jet, the overall effect on the final fiber radi
is remarkably small considering the drastic increase in v
cosity caused by strain hardening. Forp53.3, the fiber is
approximately 60% thicker at the exit than a Newtonian
ber. The more severe initial stretching is accompanied
steeper rises inE ands for reasons explained in Sec. III B
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FIG. 14. Effects of strain hardening on the mildly stretched jet.~a! Jet radiusR; ~b! tensile forceT; ~c! scaled extensional viscosityh̄1.
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On the severely stretched jet, strain hardening has s
lar effects. Stretching is enhanced initially but suppres
farther downstream to produce thicker fibers@Fig. 15~a!#.
Strain hardening raises the level of the tensile force eve
where@Fig. 15~b!#. In particular, the rise ofT at the start of
the jet steepens, resulting in greater initial stretching. T
higher peak ofT necessitates a more pronounced decl
downstream; hence the suppression of stretching over
rest of the jet. In fact, strain hardening can be underst
more generally regardless of the hump inT. The initial
growth in h̄1 implies an increase inT8, be it positive or
negative; an increasingT will increase more rapidly and a
declining T will decline more slowly. This intensifies th
initial stretching and sets up the conditions for greater s
pression of stretching farther downstream. Thus, strain h
ening affects the severely and mildly stretched jets in m
the same way.

V. CONCLUDING REMARKS

In this paper, we have introduced non-Newtonian rhe
ogy into a theoretical model for electrospinning, and exa
ined the effects of extension thinning, extension thickeni
and strain hardening. The results are summarized as follo

~a! For a purely extension-thinning fluid, mildly and s
i-
d

y-

e
e
he
d

-
d-
h

l-
-
,
s.

verely stretched jets behave differently. The thinni
viscosity enhances stretching for the former and del
stretching for the latter.

~b! For a fluid that extension thickens at lower strain ra
and thins at higher strain rates, stretching is hampe
by the higher viscosity for both mildly and severe
stretched jets.

~c! Strain hardening enhances stretching upstream
suppresses it downstream, and eventually produ
thicker fibers.

This work has two limitations. First, the slender-bod
theory avoids treating the physics near the nozzle direc
Instead, it models the rapid dynamics there by a bound
layer. Though not as intellectually satisfying as a rigoro
solution, this model represents experimental observati
reasonably well provided that the correct current is input a
parameter. Second, non-Newtonian rheology is incorpora
ad hocvia empirical expressions for the extensional visco
ity. A future task is to incorporate viscoelastic constituti
equations into the electrohydrodynamics of the problem.
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