SOLUTION EXPLOSANT AU CENTRE ET LE LONG DU BORD POUR UN
PROBLEME ELLIPTIQUE DE NEUMANN AVEC NON-LINEARITE CRITIQUE

JUNCHENG WEI AND SHUSEN YAN

Abstract. We study positive solutions of the equation e2Au — u + uitE = 0, where n = 3,4,5 and ¢ > 0 is
small, with Neumann boundary condition in a unit ball B. We prove the existence of solutions with an interior
bubble at the center and a boundary layer at the boundary 0B.

Résumé. Nous considérons le probleme e2Au —u + uitE = 0, u > 0, dans la boule unité B de R" ou n = 3,4, 5,
€ > 0 est petit et u vérifie les conditions au bord de Neumann. Nous montrons 'existence d’une solution radiale
se concentrant au centre et le long de la frontiere de B quand € tend vers 0.

1. VERSION FRANGAISE ABREGEE
Soient Q CR™", n >3, p>1et e >0 petit. On considere le probleme
EAu—u+uf =0,u>0 dans Q, g% =0 sur Of. (1.1)

Sip< Z—fg, ou sait qu’il existe des solutions se concentrant en des points situés a 'intérieur ou sur la frontiere
du domaine quand € tend vers 0 (voir [7], [8]). Si p = 2£2, I'existence de solutions explosant en un point [13]
ou plusieurs points [5] [18] du bord est counue. La possibilité d’explosions & l'intérieur du domaine demeure
ouverte, méme si 'existence de solutions se concentrant exclusivement loin du bord est exclue (voir [3], [6], [14]).
Par ailleurs, Malchiodi et Montenegreto [10] ont établi ’existence de solutions qui explosent sur tout le bord,
pour tout p > 1 (au moins pour une suite ¢ tendant vers 0).

Dans cette note, nous considérons le cas particulier avec exposant critique,

t-:zAu—u—}-n(n—2)uz_tg =0,u > 0dans B, g—:j:O sur OB (1.2)

ou B est la boule unité de R avec n = 3, 4, 5. Nous montrons l’existence d’une solution radiale u. qui explose
a la fois au centre de B et le long de sa frontiere quand € tend vers 0. Plus précisément, soit w, la famille

de solutions radiales de (1.2) qui explosent le long du bord [10]. Asymptotiquement w, se comporte comme

1-]y|
€

w( ), ot w P'unique solution de I’équation différentielle:

w' —w+n(n—2w"t?/("=2) =0 w >0 dans R, w(0) = gn%}lcw(t), w(t) = 0, quand [t| = +o0.
€

Ou sait d’autre part que les solutions de Au + n(n — 2)u(®*+2/("=2) = 0, 4 > 0 dans R" s’écrivent sous la
n—2

forme U, \(z) = (m) * ) A >0, a€R". Notre résultat principal s’énonce ainsi:
Théoréme. Soit n = 3,4 ou 5. Pour € > 0 assez petit, le probléme (1.2) admet une solution radiale telle que

ue = €200\ 4w+ 0(1), avec Ae = POV sin =3 et A = eETHM)/2¢ iy — 4 5,

2. INTRODUCTION AND STATEMENT OF MAIN RESULT

In recent years, there have been many works devoted to the study of the following singularly perturbed
Neumann problem:

€Au—u+uf =0, u>0in Q,%zOon o0 (2.1)

where 2 C R”, p > 1 and € > 0 is small. Problem (2.1) arises in the study of many reaction-diffusion systems
in chemistry or biology, see [12] and the references therein for backgrounds and progress up to 2004.

When p < Z—fg, it is known that there are many solutions with point condensations in the interior or on the
boundary: for example, Gui and Wei [7] proved that given any two positive integers 1, l>, there are solutions to
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(2.1) with [; interior spikes and I boundary spikes. Lin, Ni and Wei [8] showed that there are at least
number of interior spike solutions.

When p = Z—i'g, it is known that nonconstant solutions exist for € small enough [1], and the least energy
solution blows up, as € — 0, at a point which maximizes the mean curvature of the boundary [2]. Higher energy
solutions have also been exhibited, blowing up at one [13] or several (separated) boundary points [5][18].

However, the question of existence of interior blow-up solutions is still open. Under some assumptions, it is
proved in [3], [6] and [14] that there are no interior bubble solutions.

In another direction, Malchiodi and Montenegro [10] proved that there exists solutions concentrating on the
whole boundary (at least along a subsequence €, — 0). This boundary layer solution exists for any p > 1.

In this paper, we show that in the critical case p = "+2 , one can build up an interior bubble solution on the
top of the boundary layer solutions, at least when the domam is the unit ball and the dimension n = 3,4 or 5.
Namely, we consider the following

e (] ln €)™

n 6
62Au—u+n(n—2)uri§=0, u>0in B, G_ZZOOH 0B (2.2)

where B is the unit ball in R” centered at the origin and n = 3,4,5. Note that interior bubble has zero
dimension concentration set while the boundary layer has n — 1 dimensional concentration set. Our solution
constructed in this paper has both point condensation and (n — 1)—dimensional concentration. This type of
solution is new.

To state our results, we need to introduce two functions. First, it is known that problem (2.2) has radial
symmetric solution concentrating at » = 1. (This is actually true for general domain. See [10].) This boundary

layer solution is denoted as w.. Asymptotically, w, ~ w(l |y|) where w is the unique solution satisfying

W' —w+nn —2)w"tD/ (=2 =0 >0 nR", w(0)= mapliw(t), w(t) = 0, as [t| = +oo.
ter (2.3)

On the other hand, it is well-known that the functions

A
Valz) = (m

are the only solutions to the problem Au + n(n — 2)u(*+2/("=2) = 0, 4 > 0 in R".

T2
) , A>0,aeR?

The main result in this paper is:

Theorem 1. Let n = 3,4 or 5. There exists an €y > 0 such that for € € (0,€p), problem (2.2) has a radially
symmetric solution of the form

U = e(”_z)ﬂUo,)\e + we +0(1), with A, = e?HoW)/e yhen n =3 and A, = e@ToMN/(6=1)) yhen n =4, 5.

Remarks: 1.From the calculations in this paper, we can see that (2.2) does not have a solution which just has
an interior bubble at the origin. Our main result shows that it is the boundary layer that creates a solution
with a bubble at the origin. When n > 6, our computations suggest that such kind of solutions don’t exist.

2. In [11], it is proved that problem (2.2) has radial solutions concentrating on arbitrarily many spheres near
r = 1. We can also show the existence of an interior bubble solution on the top of clustered boundary interface
solutions. See [17].

3. We believe that Theorem 1 also holds in general domains. We conjecture that one can add one (maybe
many) interior bubbles to the boundary layer solution constructed in [10], in the lower dimension case n = 3,4, 5.

The present Note concerns partial results obtained in [17], where the procedure and the proof of more general
theorems is carried out in full detail.

Acknowledgment. The second author is supported by an Earmarked Grant from RGC of Hong Kong. We
thank the referee for careful reading and rewriting the French part.

3. ERROR ESTIMATES AND ENERGY COMPUTATIONS FOR APPROXIMATE SOLUTIONS
We first analyze the boundary layer solution w.. We have
Lemma 3.1. As e — 0, —elogw(|z|) = 1 — |z| uniformly for |z| < % Furthermore, the linearized operator

Lea () = €*Ad — ¢>+n(n+ 2we
is an invertible operator from H?2 ,(B) = H*(B)N{u=u(r),2%* =0 on B} to L?(B).



INTERIOR BUBBLE AND BOUNDARY LAYER 3

Let A be such that

AeA:= (eanT_s,eanTH) (3.1)
where a3 = 2, a, = =, forn=4or 5,and 0 <4 < 100 is a fixed small number. Then by the following scaling
u(z) = (Xe) "4 (y) z = 1y, problem (2.2) becomes the following

n+2
Sxae[u] == Au—(Xe) 2u+n(n—2)ul? =0 in By, % =0 on 0B, (3.2)
where By = % Solutions to (3.2) can be found as critical points of the following energy functional
1 —2)2 2n
T.(u) = —/ (Va2 + (o)) — 222 / i (3.3)
2 /B, 2 B,
We consider a linear Neumann problem whose solution can be viewed as a projection of U, x onto H? ,(B):
_9 :—fg . 6Va A
AVor — € Vor+n(n—2)U,; 3" =0in B, 6—1/’ =0on OB. (3.4)
Define
W= X Voa (), Wai= Q)™ Fwu(), W= Wi + W, (3.5)

We first need to analyze the projection Vo x(z). For n = 3, we write V, x as

1 1 —|z|/e
%,)\(x):U()v\( ) )\1/2| |(1_€ | |/)+(10)\6( )

Then it is easy to see that (see e.g. estimate (2.10) of [15])
1 efl/e

(z) =0 3.6
Pre(T) (62)\3/2(1 ) oniz) (36)
Hence for n = 3, we obtain
Iyl 1 et
= ——(1—e S S .
Observe that when n = 3, |y| > 0A or |z| > 6, (3.7) gives
Iyl la|
1 e e 1 e e
[Wi(y)| = O()\2+ o ——), Voa(z) = 0(@*‘6)\—%)- (3-8)
When n =4 or 5, we have (similar to estimates in Lemma A.1 of [16])
1
W) = Uoa ) - @2(%) + O3 (39)
where o () satisfies Aps — € 2 + € 2Upx =0 in B, %“"— 0 on 8B. Hence
C
2 < 1
|‘10 (.’17)' = )\263(1+A|.’L'|)n_4 (3 0)
Next we define two Sobolev norms. (See [4] and [16].) Let
n— n+2+8
¢l = sup (L+1[yl) = [e(@)l, Ifllex = sup (L +Jyl) > [f(»)])- (3.11)
y€eBx yEBx
Then we compute that
nt2 nt2 nt2
|SA’€[W]|:TL(TL—2) (W1 +W2)_;i_2 —W U0n12 <CW" 2W2+CW" 2W1 +CU0"12|W1 U0,1|.
(3.12)

_a_
The most difficult term in (3.12) is W' ~*W;, which we now estimate: when n = 3 and |y| < d), we have

Wy Wy < CAT?Whiwf < CA>(L+Jy|)~'e™/« <ONT32(1 + [y|)~°
while when n = 3 and |y| > 0, we use (3.8) to obtain

Wi W < CAT2Wwt < OA2A3/2 < CAY(1 + Jy)) /2
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Thus when n = 3 we have
_4
Wy Wi [l < A0, (3.13)
Similarly, using (3.7) and (3.9), a straightforward computation shows that

Lemma 3.2.
Bn 426

[1Sx,e[W ][l < CA™ (3.14)
where B, =1 when n = 3, and B8, = 2 when n > 4.
Next, we compute the energy expansion-J[W]. Observe that
n — 2)? 2 n(n—2 nt2
J[Wh] = ! ) / (Uo1 + W1 —Up1)»-2 nin —2) Usi* (Uoq + Wi —Uop)-
2 B, 2 By
Using (3.7) and (3.9), we obtain
Lemma 3.3.
2n 3 5 1 _3-38
2n, 3 [esUS1=+0(e” <), whenn=3
. —_ _ 2 n—2 2 fR3 0,1 \e ) ’ 1
Je) = (n )/R" Ui+ { 22 [gUEA+O(e7 A== when n > 4. (3:15)

Based on the above Lemma, we have the following asymptotic behavior of the energy expansion J. (W):

Proposition 3.1. For n = 3, we have

J(Wy + Wa) = J.(Ws) + / U, + (21 +0(1)e A = (Bs + o(1)e /e /A2 4 0 (e 7,
R3 (3.16)
where Bz > 0 is a positive constant. For n > 4, we obtain
2n/(n—2 _
J(Wi +Wa) = J(Ws) + 2) [ Upt/ " + 12 [, Ugx (3.17)

(B +0( ))6(2 n)/2 —l/e)\ (n— 2)/2+O( —1)\ ),
where B, >0 is a positive constant.

Proof. We first prove (3.16). Since w, is a solution to (2.2), we have J.(Wy + Ws) = J (W) + J.(W3) — I,
where

L=3%[, ((W1 + W) — WE — W — 6W25W1)
=L f, (W1 + W2)® — WP — WS — 6WEW: — 6Wo W ) +3 [ WoW§

= Ie,l + Ie,2

where

Io = 3 [ WoWP =312 / Vo aWe (3.18)
B B

= 3671/2/ wEVOEZ)\ + 0(61/2)\*5/2) = (Bs + 0(1))671/2671/6/\71/2 + 0(61/2/\*5/2). (3.19)
lz[<8

On the other hand, by (3.8), Vo = O(5375 + ) for |z| > 8. Thus

1
Iy = 5_275/ we Voo +0(€_3/2/ w?%‘o’,,\ +<—:_1/ wfVo,A) =0(e7 A3 4 e7Hea )
B B B (3.20)

Substituting (3.20) and (3.19) into I, and using the fact that [o, U§, = we obtain (3.16) for n = 3.

The proof of (3.17) is similar and easier by noting that when n > 4

3 ?

_4
Wy 2 WE = O(e tA~(=2), (3.21)
B
Note that

In A
/ Ugv)‘ ~ n2 ’ lfTL - / UO AT N2 lfn Z 5; (322)
B

we see that the last term in (3.21) is a higher order term. O
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4. FINITE-DIMENSIONAL REDUCTION

In this section, we perform a finite-dimensional reduction procedure which is similar to that of [15] and [16].
We first consider the following linear problem: Let Z = Up,; + %52yVUy . Given h = h(r), find a pair (¢, c)
satisfying

6—f =0 on 0By, oZ = 0. (4.1)

Ap—(Ne)*p+n(n+2)W] ¢ =h+cZ, in By, 3
B

We have the following a priori estimates.
Lemma 4.1. Let (¢,c) satisfy (4.1). Then for € sufficiently small, there holds ||d||« < C||h|+x-
Proof: Observe first that the Green function of AG — (Ae)"2G + d, = 0 in By, 2¢ = 0 on 0B, has the

v
4
following decay property: G(z,y) < W Secondly, the operator A — (Xe)™2 + n(n + 2)W,"~? is uniformly
invertible by Lemma 3.1. The rest of the proof is similar to Proposition 3.1 of [16]. We omit the details. O
By Lemma 3.2 and Lemma 4.1 and a contraction mapping principle, we derive the following main reduction

lemma:

Lemma 4.2. There exists g > 0 such that for € < €, the following problem
n+2

AW +¢) — (Ae) 2(W + ¢) + n(n — 2)(W + ¢)1 7% = exZ in By, 2—? =0 on 0B,, ¢Z =0
By

(4.2)
has a unique solution (¢x,cy). Moreover the map X — ¢y is C1 and the following estimates hold
gl < CA=*57, (4.3)
Now we define
M) = W +65] = J(Wa) = (n—2) | Ugh/"™ (4.4)

Rn
Note that J.(W3) is independent of A. Then we also have

Lemma 4.3. If A = A is a critical point of M(X) in A, then uc = W + ¢, is a solution to (3.2).
Thus we are reduced to finding a critical point of M ().

5. PROOF OF THEOREM 1

We first expand M () : using Lemma 3.2 and Lemma 4.2, we deduce that

M) = J(W+¢2) = J(Wa) = (n—2) / yen/n=
Rn
= L)+ [ SV + Ol — TWa) — (=2 [ U3/
B, n
When n = 3, we use (3.16) to derive that
M) = (2 +o(1)e A = (Ba+ o(L)e 2 VX2 4 0(e ). (1)
Observe that the function
(27 + o(1))e’A™" — (Bs + o(1))e"1/2e1/e\=1/2

attains its minimum at A, = e € A. On the other hand, when n = 4 or 5, we have
1 _
M) = 56—2 /B Ug x — (Bn + 0(1))e®@=m/2e=1/ex=(n=2)/2 1 O(e1172). (5.2)
Using (3.22), we find that the function

Lot [ 0= Bt iy 639
B

_ o(1) 2+0(1)
has a critical point A, = 6(2:—"%6 . Thus, the reduced energy functional M () also has a critical point A, = eT=n)<.
By Lemma 4.3, W1 + Wy + ¢, is a solution to (3.2). Let uc(z) = Wi (Aez) + Wa(Aex) + da. (Aez). Then u,

satisfies all the properties of Theorem 1. O
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