AN ELLIPTIC PROBLEM WITH CRITICAL GROWTH AND
LAZER-MCKENNA CONJECTURE

JUNCHENG WEI AND SHUSEN YAN

ABSTRACT. We consider an elliptic problem of Ambrosetti-Prodi type involving critical
Sobolev exponent on a bounded smooth domain. We show that if the domain has some
symmetry, the problems have infinitely many solutions, thereby obtaining a stronger result
than the Lazer-McKenna conjecture.

1. INTRODUCTION

Elliptic problems of Ambrosetti-Prodi type have the following form:

{—Au = g(u) — 5p1(z), inQ, (1.1)

u =0, on OS2,
where g(t) satisfies lim;_, o, @ =v <A, limg o @ = u > A, A is the first eigenvalue
of —A with Dirichlet boundary condition and ¢; > 0 is the first eigenfunction. Here
# = 400 and v = —oo are allowed. It is well-known that the location of u, v with respect

to the spectrum of (—A, H;(2)) plays an important role in the multiplicity of solutions
for problem (1.1). See for example [1], [6, 7], [16]-[18], [21]-[24], [29]-[32]. In the early
1980s, Lazer and McKenna conjectured that if u = 400 and g(¢) does not grow too fast at
infinity, (1.1) has an unbounded number of solutions as § — +oo. See [22].

In this paper, we will consider the following special case:

(1.2)
u =0, on 0f2,
where € is a bounded domain in RY with C? boundary, N > 3, A < A\;, § > 0, up =
max(u,0) and 2* = 2N/(N — 2).
It is easy to see that (1.2) has a negative solution

{—Au = ui*_l + A\u — 501, in

Y ®
D VD

if A < A;. Moreover, if u; + u is a solution of (1.2), then u satisfies

{—Au = (u-— so1)% 4+ du, in Q,

®1,

1.3
u =0, on 052, (13)

_ S
where s = o 0.
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Let us recall some recent results on the Lazer-McKenna conjecture related to (1.3).
Firstly, Dancer and the second author proved in [10, 11] that the Lazer-McKenna conjecture
is true if A € (—o0, A1), if the critical exponent in (1.3) is replaced by sub-critical one.
In the critical case, it was proved in [25, 26, 34] that if N > 6 and A € (0, ), then
(1.3) has unbounded number of solutions as s — +oo. The solutions constructed for
(1.3) concentrate either at the maximum points of the first eigenfunction [25], or at some
boundary points of the domain [34] as s — +00. On the other hand, Druet proves in [19]
that the conditions N > 6 and A € (0, \;) are necessary for the existence of the peak-
solutions constructed in [25, 34]. More precisely, the result in [19] states that if N = 3,4, 5,
or N > 6 and A <0, then (1.3) has no solution us, such that the energy of u, is bounded
as s — +oo. This result suggests that it is more difficult to find solutions for (1.3) in the
lower dimensional cases N = 3,4,5, or in the case A <0 and N > 6.

Note that all the results just mentioned state that (1.3) has more and more solutions as
the parameter s — +o0o. But for fixed s > 0, it is hard to estimate how many solutions
(1.3) has.

In this paper, we will deal with (1.3) in the lower dimensional cases N = 4,5,6,or N > 7
and A < 0, assuming that the domain 2 satisfies the following symmetry condition:

(S1): f x = (x1,--- ,zn) € Q, then, for any 6 € [0, 27], (rcosf,rsinb, x3,--- ,xy) € Q,
where 7 = /2? + 22;
(S2): If x = (1, -+ ,zn) € Q, then, for any 3 <i < N, (1,29, -+, —Ts -+ ,xn) € Q.

The main result of this paper is the following:

Theorem 1.1. Suppose that Q satisfies (S1) and (S2). Assume that one of the following
conditions holds:
(i) N=4,5, A< )\ and s > 0;
(ii) N =6, A < Ay and s > |\|sg for some so > 0, which depends on Q only;
(iii) N>7, A=0 and s > 0.

Then, (1.3) has infinitely many solutions.

The result in Theorem 1.1 is stronger than the Lazer-McKenna conjecture. Note that
in Theorem 1.1, the constant s is fixed. This gives a striking contrast to the results in
[25, 34], where s is regarded as a parameter which needs to tend to infinity in order to
obtain the results there. We are not able to obtain similar result for the cases N = 3, and
N > 7 and XA < 0. But we have the following weaker result for N > 7 and A < 0, which
gives a positive answer to the Lazer-McKenna conjecture in this case:

Theorem 1.2. Suppose that Q0 satisfies (S1) and (S2), and N > 7, A < A;. Then, the
number of the solutions for (1.3) is unbounded as s — +oc.

Problem (1.3) is a bit tricky in the case N = 3. When s = 0, Brezis and Nirenberg [5]
proved that (1.3) has a least energy solution if A € (0, \;), while for N = 3, this result
holds only if A € (A*, A1) for some A\* > 0 (if Q is a ball, \* = 21). The main reason for
this difference is that the function defined in (1.4) does not decay fast enough if N = 3.
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Similarly, the main reason that we are not able to prove Theorem 1.1 for N = 3 is that
the function defined in (1.7) does not decay fast enough.

In the Lazer and McKenna conjecture, the parameter s is large. Let us now consider
the other extreme case: s — 0+. Using the same argument as in [5], we can show that for
A€ (N, M), A*=0if N =4, \* > 0if N =3, (1.3) has a least energy solution if s > 0 is
small. We can obtain more in the case N = 3.

Theorem 1.3. Suppose that ) satisfies (S1) and (S2), and N = 3, A < A\;. Then, the
number of the solutions for (1.3) is unbounded as s — 0+.

Note that the result in Theorem 1.3 is not trivial, because if A < A*, we can not find
even one solution by using the method in [5]. Moreover, we show that (1.3) has more and
more solutions as s — 0+ for all A < A\ if N = 3.

The readers can refer to [4, 8, 9, 15] for results on the Lazer-McKenna conjecture for
other type of nonlinearities.

Before we close this section, let us outline the proof of Theorems 1.1 and 1.2 and discuss
the conditions imposed in these two theorems.

For any 7 € RN, i > 0, denote
N-2)/2

r u
Ui,u(y) = (N(N - 2)) (1 + ,u2|y _ a—c|2)(N—2)/2‘

Then, U;, satisfies —AU;z, = U, 2 =1 1In this paper, we will use the following notation:

(1.4)

'7_87/‘
U - UO,l-
Let
sN2 A
=2 u==, Ae[56!
3 k2 7 M 67 E [ bl ]

and k > ko, where § > 0 is a small constant, and kg > 0 is a large constant, which is to be
determined later.

Using the transformation u(y) — e~

T_2u(%), we find that (1.3) becomes

—Au = (u-— ss¥cp1(ey))i*_l + Ae?u, in Q. (1.5)
u =0, on 0f),, .
where Q. = {y : ey € Q}. Let
u
O:(y) =¢ = ¢iley).
For £ € Q,, we define W, ¢ as the unique solution of
_ NI — Tl
AW — AW = Uy, in Q. (1.6)
W =0 on O0f)..

Define
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Hy={u:w € H'(Q.),uis even in yp,h =2,--- , N,

2mj 219
u(rcos@,rsinf,y") = u(r cos(f + %]),rsin(e + %]),y"),j =1,....,k—1},
and
r 20—-Dm r . 2(j—1)m .
Q?j:(gCOST,gSIDT,O), ]:1, ,k,
where 0 is the zero vector in RV 2.
Let
k
Woea(y) =) W, (1.7)
Jj=1

We are going to construct a solution for (1.3), which is close to W, x for some suitable A
and r and large k.
Theorem 1.1 is a direct consequence of the following result:

Theorem 1.4. Under the same conditions as in Theorem 1.1, there is an integer kg > 0,
such that for any integer k > ko, (1.5) has a solution uy, of the form

U’k = WTk,Ak (y) + wk’
where wy € Hy, and as k — 400, 1, = 19 > 0, Ay = Ag > 0, ||wk||z= — 0.

On the other hand, if N > 7 and A < 0, we have the following weaker result:
Theorem 1.5. Suppose that N > 7 and A < A;. Then there is a large constant so > 0,

. . . (2—20)(N—4) (2-6)(N—4)
such that for any s > sg, and integer k satisfying s ¥-00-2) < f < s-6)N=2) qhere § > 0

is a fized small constant, (1.5) has a solution uy s of the form

Ug,s = Wiga, (Y) + Whs,
where wy s € Hy, and as s — 400, ry = 19 >0, Ay = Ay > 0, ||wk s]|ze — 0.

. (2-6)(N—4) (2—26)(N —4) . .
Since sF-6)"-2) — sN=-6)"-2) — 400 as s — +00, Theorem 1.2 is a direct consequence

of Theorem 1.5. Let us point out that in the case N > 7 and A € (0, \;), the solutions
in Theorem 1.5 are different from those constructed in [25, 34|, where the energy of the
solutions remains bounded as s — +oo.

It is easy to see that Theorem 1.3 is a direct consequence of the following result:

Theorem 1.6. Suppose that N = 3 and A < A\{. Then there is a small constant s; > 0
and a large constant kg > 0 (independent of s), such that for any s € (0, s1), and integer
k satisfying

ko < k < Cs™ o, (1.8)
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for some T € (0, ), then (1.5) has a solution uy,, of the form

Uk,s = er,/\k (y) + Wk, s,
where wy s € Hy, and as s — 0, 1y = 19 > 0, Ay = Ag > 0, ||w,s||e — 0.

Let make a few remarks on the conditions imposed on Theorems 1.1 and 1.2.
It is easy to see that the first eigenfunction ¢, € H; In this paper, we denote

¢(r) = @1(r,0).
The functional corresponding to (1.5) is

1 1 *
I(u) = 5/ (|Du|2 — /\52u2) — 5/ (u — s@E)i, u € Hi.
Let I" be a connected component of the set 2N {xg ==y = O}. Then, by (S1),

there are ro > r; > 0, such that

f:{rlgwx%-i-x%grg}.

If N =4,5, then % < 2. We obtain from Proposition A.3,

AQS(;_)(T 8¥ A3€N_2kN_2 (N—2)(140)

(W) = k(4o + e~ S O ). @)

It is easy to see that the function
Pe(r), e[, (1.10)

N-—2
has a maximum point 7y, satisfying ro € (r1,72), since r, > @(r;) = 0,7 =1,2. As a result,
Azsp(r) A -
A ~ NN (r,\) € (r1,7m9) x (6,6 1),

has a maximum point (rg, Ag), where

24, o3
Ap=(—288
° (Agsrév_2<,5(7'0)) ’

for any fixed s > 0. Thus, I(W, ) has a maximum point in (r1,72) x (6,671), if £ > 0 is
large.
If N =6, then % = 2. Thus, we find from Proposition A.3,

2 A 4k4
I(Wr) = k(Ao + (—A41 + A250(r) 5 — -+ 0(2)), (1.11)

It is easy to see that we can always choose a constant sy > 0, such that if s > |\|sg, then
the function

g(r) = r?(A38@(r) — A1)), 1€ [r,r9, (1.12)
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has a maximum point 7, satisfying g(rq) > 0, 7o € (r1,72). As a result,

—AA; + Ays8(r A _
UL ) € () x (0,071,

has maximum point (rg, Ag), where

24, 3
Ao = ,
0 ((—)\A1 + AQS(,O(T‘Q))T'3>
for any fixed s > 0. Thus, I(W, ) has a maximum point in (r,79) X (6,6 1), if & > 0 is

large.
If N> 7and A =0, then Proposition A.3 gives

D N-2}[.N-2 N-2)(1+o
25¢(r ) A38 k O(s( a+ )))’ (1.13)

A; fN—ZAN—Q
So, we are in the same situation as the case N =4, 5.
N-2
On the other hand, if N > 7, then 222 > 2. Thus e 2 is a higher order term of 2.
Thus if A < 0, then for each fixed s > 0, we have

I(W,p) = k (Ao +

)\A182 A38N72]€N72
A2 FN-2AN—2

I(W, ) = k(Ao . + o(e”‘f)), (1.14)

But

A A .
B A21 N fN*QA/iNfQ’ (T: /\) € (7'1,’/‘2) X (5,6 1)’

does not have a critical point even if A < 0. So, we don’t know whether I(W, ,) has a
critical point. Thus, to obtain a solution for (1.3), we need to let s change so that

2 N-2
ef<<se 7, e<<L (1.15)
If (1.15) holds, then

Ay@(r)se’ s’ AgeN-2fN-2 Nez .
1W,) = k(A0 + A 2 A L 0((s7) ) ). (1.16)

2

So, we are in a similar situation as A = 0. Note the (1.15) implies

2(N—4 1
k<< s®-D0-8) | >> sN-2,
which gives an upper bound for £. So, in this case, we are not able to obtain the existence
of infinitely many solutions even if s > 0 is large.
In the case N = 3, for fixed s > 0, some estimates which are valid for N > 4 may not
be true due to the slow decay of the function W, ,. Under the condition s < Okt

for some 7 € (0, 1), we can recover all these estimates. But the condition s < Ck 2t

imposes an upper bound (1.8) for the number of bubbles £.
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The energy of the solutions obtained in Theorems 1.4 and 1.5 is very large because k
must be large. This result is in consistence of the result in [19].

Finally, let us point out that the eigenvalue ¢; is not essential in this paper. We can
replace 1 by any function ¢, satisfying ¢ > 0 in €2, ¢ =0 on 02 and ¢ € H,.

We will use the reduction argument as in [2, 3], [12]- [14], [27, 28] and [36] to prove the
main results of this paper. Unlike those papers, where a parameter always appears in some
form, in Theorem 1.4, s is a fixed positive constant. To prove Theorem 1.4, the number
of the bubbles k is used as a parameter to carry out the reduction. Similar idea has been
used in [33, 35].

2. THE REDUCTION

In this section, we will reduce the problem of finding a k-peak solution for (1.3) to a
finite dimension problem.

Let
k —1
[Jwlls = sup u(y)l, (2.1)
X 1+|y—w]\> =)
and
k 1 o
[ f]|4x = sup Es) f(W)l, (22)
y (; (1+\y—évj|)2”>

where 7 € (0,1) is a constant, such that

Z P < C. (2.3)

Recall that € =

j
In order to achieve (2.3), we need to choose 7 according to whether s > 0 is fixed or not.
We choose 7 as follows:

_ %, in Theorems 1.4 and 1.5; (2.4)
| the number in (1.8), in Theorem 1.6. '
Let
Yii= L Zi1 = =AY, — N2V, = (2F — 1) UZ 2724w
)1 oA )1 )1 Ae )1 ( )UAM oA

and
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OWh s,

Yio = ;
-2 or

We consider

Zig = =AYy = A’V = (2" = 1)U} 2=

e

. 2k
“Agk = Ay = (2= 1)(Won = 5®) L k= h+ U X%, in Qe
]: :
) % € (2.5)

<Z zgv¢k>:07 J=12,

\
for some number c;, where < u,v >= fQ uv.
We need the following result, whose proof is standard.

Lemma 2.1. Let f satisfy || f||« < 0o and let u be the solution of
—Au—X*u=f in Q, u=0 on 0.,
where A < A1. Then we have

|WMSCAT£%%S@'

Next, we need the following lemma to carry out the reduction.

Lemma 2.2. Assume that ¢y solves (2.5) for h = hg. If ||hg||+« goes to zero as k goes to
infinity, so does ||dk||«-

Proof. We argue by contradiction. Suppose that there are k — +oo, h = hy, Ay € [§,6 1],
and ¢y, solving (2.5) for h = hg, A = Ay, with ||hg|l. — 0, and ||@g||« > ¢ > 0. We may
assume that ||@x||« = 1. For simplicity, we drop the subscript k.

By Lemma 2.1,

6(y)] <C / ﬁ 2,22(2)) dz

(2.6)
0 = (TR ) S
QE | ‘ j 1 Z 1
Using Lemma B.4 and B.5, there is a strictly positive number # such that
‘/ ;WQ*’2 (2) dz‘
e yRE
k 1 (2.7)
<C||¢ll =t
jz:; (14 [y — o))"=+t

It follows from Lemma B.3 that
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‘/QE 7‘2 — 21/|N2h(z) dz‘

1 k 1
<CIlh **/ dz
=Clitll [, |Z—y\N2;(1+|z—xj|)¥+T (2:8)

k

<cil-. 3 1

L+ ly— )=

and

k
1
[ S
<C’Z/ ! d (2.9)
N\z—y\N21+\z—x|)N+2 ‘ '

<Z

Next, we estimate c¢;. Multiplying (2.5) by Y7, and integrating, we see that c; satisfies

+Iy—x sl

2 k
O Zi Yigye = (—A¢ — Xe?p — (25 = VW20, Vi) — (b, Yey). (2.10)
7j=1

=1

It follows from Lemma B.2 that

[(hy Y1) §O||h||**/ (ENPET == [,Z o de

1+\z—xg|>2

<CllAll+,

since # > 0 can be chosen as small as desired.
On the other hand,

(A — AP — (2° = YW 7%, Y1)
=(=AYy — XYy, — (25 = YWY, 9) (2.11)
=(2" — 1)<Uijw_128lUA,z1 WQ*_QYU, 9),

where 0, =0y if l=1,0, =0, if | = 2.
By Lemmas B.1,

6(y)| < Cligl..
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We consider the cases N > 6 first. Note that ﬁ <1 for N > 6. Using Lemmas A.1
and B.2, noting that

k
2*—2 2*—2 2*—2
|WT,A - WA,arl | S E :WA,wj )

=2

and

ec ¢
1+ |z — x4

we obtain

‘wzyalm,z,. )

k
1 1
<C||o||« ‘
<O | v X e

. Ale? i 1
C . 2*—2(_ N-2 |
+Cligll /Q Ui (8772 + T ‘y_xj|)N—4—ﬁ) > e (2.12)

Ae? 2
+C / Upw (eN72+ |
||¢|| Q. A, 1( (1+‘y_£JDN,4713)

*
|
N
'M?r
—_
(M)
+
\]

k
1
<Ol Y o + oMol = o) o]
j=2

For N = 3,4,5, we have —*- > 1. By Lemmas B.1, B.2,

N—-2
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‘<U/2C;231UA,% — WZ*A_QK,I, ¢>‘

k
<0/ WA;’ZWM,MM + 0/ (3 Waa) ™ Vig
Qe j=2

k
oy A€ 1

+C¢*/U225N2+ -

ol | VR (H‘y_M)N45)]2_;(1”2_%0%7

k
_ |\le2 252 1
+Clll [ Una (2 + - .
o, U Ty )7 Z (1 [z — ) "™

k
1 1
<C||9|l
<OWl- || e L T

/ ZUl 5V T |, 18] + o(1)]|6)]-

k

1 sy 1
SC“(ﬁ”*/QE 1+ |Z_x1|)N—2—ﬂ(j2:;UA:$j) Z N2,

i L+ ly—ml)
+o()]|4l]..

Let

!
Q={y=0v")e: (L TiV> st
= =W €0 () 2 0k

If y € Qy, then

k k
Sl 1 > :
e 1+|y_$1|)N 2—7—(N-2)3-0 |.’L' —$1|T+0
1
=o(1)

(14 |y — aq|)N-2-7—(N-2)-0"

and

So, we obtain

11



12 JUNCHENG WEI AND SHUSEN YAN

k

k
/(+|z—m1 N-2-8 Z; A) ZZ

N—2
P 1+|y—xz|) =T

1
—o(1) [ = o(1),
U (14 |z — ay|)VHF S -9

since 212 4(T+0 — 483 >0, if 3> 0 and 6 > 0 are small.
InyQl,ZZQ then

Ui :
— L [\N—2—7—(N-2
e 1+ |y —x)) (N=2)°
and
i C
i1 1+\y—$z\) ST (1 |y — )
As a result,

of |
o, A F = m NP (1 4y — ) “wa iy
C

|~/El — $1|N+27%7074ﬁ,

IN

where 6 > 0 is a fixed small constant.
Since 7 = 3 for N > 4, and 7 < 5 for N = 3, we find that for # > 0 and 8 > 0 small,

N 4T
T+2—N_2—0—4ﬁ>7'. Thus

k

f e (™Y =

j=2 o (L4 |y — i)

k

<o(1) + CZ RES)
= |t — x| 2 N

So, we have proved

(Ux 520U g, — W2T2Y1, 0)| = 0(1) |9l

But there is a constant ¢ > 0,
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2k
<Z Z Zij, Y1) = e+ o(1)

j=1 i=1
Thus we obtain that

¢ = o([|[l+) + O([|A]l)-
So,

k
1

J=1 (=) 7+
91l < (o) + el + 7 ) (214)
SN S
gz:: (tly—aj) "2+
Since ||@[|« = 1, we obtain from (2.14) that there is R > 0, such that
l¢W) || Ba(z:) > co >0, (2.15)

for some i. But ¢(y) = ¢(y — x;) converges uniformly in any compact set of RY to a
solution u of

Au+ (2 = 1)U; s 2u =0 (2.16)

for some A € [§,6 '], and u is perpendicular to the kernel of (2.16). So, v = 0. This is a
contradiction to (2.15).

d

From Lemma 2.2, using the same argument as in the proof of Proposition 4.1 in [12], we
can prove the following result :

Proposition 2.3. There exists kg > 0 and a constant C' > 0, independent of k, such that
for allk > ko and all h € L*>®(S).), problem (2.5) has a unique solution ¢ = Ly(h). Besides,

[Le(W)lls < Cllhllss, ] < C[h]ss (2.17)
Moreover, the map Ly (h) is C' with respect to A.

Now, we consider

( 2 k

“AWea+6) = A (Won +9) = (Won + 6= 50) " + 3 Y26 Zig, in 0,

j:l =1

{6 €H, (2.18)
<Z Zij,»>=0, j=1,2.

We have
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Proposition 2.4. There is an integer kg > 0, such that for each k > ko, 11 < r < 1o,
§ <A <Y, where d is a fized small constant, (2.18) has a unique solution ¢, satisfying

—2

18], < C(se™72) 5+ + C|AJs1+,
where o > 0 is a fized small constant. Moreover, A — ¢(A) is C.

Rewrite (2.18) as

/

—Ap — ¢ — (25 — 1) (Wyp — 5D.)% 2 = N(¢) + I + 223 Xkl ¢jZij,

j=1i=1

<¢€HS’

k
< ZZi,j7¢>: 07 .7: 1727
[ =1

where

2"-1 21

N(¢) = (WT,A - S(Ds + ¢)+ - (Wr,A - S(I)s)+ (2* - 1)(W’I",A -

and

k
= (WECT = O UE) 4 (Wop = s = W2

=1

in €,
(2.19)

s®.)7 29,

In order to use the contraction mapping theorem to prove that (2.19) is uniquely solvable

in the set that ||¢||, is small, we need to estimate N(¢) and Ij.

Lemma 2.5. We have

IN(8)[|n < O[]0 12,

Proof. We have

Clol” 1, N > 6;

IN(9)| < ey
C(WT,A +|¢ ), N =3,4,5.

Firstly, we consider N > 6. We have
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[N (9)| <Cllo

k 2*—1
(3 )
* N-—-2
( 1+\y—:vg|)2”

j=1
k k _4
¥ 1 1 N-2
<Clg|z ( )
; (1+ly— xj|)¥+f ; L+ |y —a5)
k

<Cllgll¥ ‘IZ

where we use the inequahty

1+ |y—$gl)_”

1

1 k 1
Zajb <<Z )p<2b§>q, %+$:1,aj,bjzo,j:1,...,k,

Jj=1 j=1
and
k k
1 C
<C+ —— < (.
)3 e D D e

which follows from Lemma B.1.
For N = 3,4, 5, similarly to the case N > 6, we have

[N (9)]

[

-N
k -2

6=N k 2
§C||¢||f<z e [3) (Z 1+|y_xj|)N52+T)

k
2% _
*
k

k 2*—1
* ].
s0||¢||z( ) Ol
g —xm e D e

+Cll¢

+ly - w;\)N2+2+T

1
<CloEy —
j=1 (1+y )=

Next, we estimate [.
Lemma 2.6. We have

2\ 1li,
”lk”** < C(SE¥)2+ +C|)\‘gl+‘7,

where o > 0 s a fired small constant.

15

(2.20)

(2.21)
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Proof. Recall
!
_ Yy Zj ™
Q== ylvy" ER* xRV 2: —— . —=) > COS — .
From the symmetry, we can assume that y € {2;. Then,

ly— ;| >y —a1|, Vye.
Thus, for y € Q, by Lemma A.1,

c 1 i 1 2*—1
ly| < C
|l (Lt |y —a|)th JZZ (14 |y — z;|)N-2-8 + (Z (1+|y— $j|)N_2_g)

+C eV %+
Z 1+|y—%\4ﬂ( (1+|y—$j|)N*4fﬁ)

2*_1_1_ 20

1
+CW,, ° N=2g3tN-zg g 1O,

¥

Here, we have used the inequality: for any bounded a > 0 and b > 0, « € (0, 1]:

‘(CI, . b)2+*—1 o 61,2*_1‘ S Ca[Z*—l—aba.
Let us estimate the first term of (2.22). Using Lemma B.2, we obtain

1 1
(L+Jy =z )P (L + |y — z )N 24
1 1 1
( + ) 2.23
Nt2 o - Nt2 N+2 e .
Aty —a) T (4 y—ag) T oy — a2 (2.25)
1 1
, j>1
(1+\?/—5101|)N+2+ jzj — x| T
Since 2 — 7 — 26 > 1, we find
1 i 1
I+ |y —2|)*F = (1 + |y — ay] )V 25
1 = N+2 1 1 (2-24)
oy e ) P SOl T
+ |y —x|) 2 + |y —x1]) 2
Here we have used
N+2 -2\ 14,
(ke) Y =0((=")2 "), (2.25)

for some small o > 0.
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In fact, if s > 0 is fixed (as in Theorem 1.4), then k =

SI

(ke) 7 TP = 0( "5 = ().

So, we obtain (2.25).
If N>7 then 7 = %, and

(2—260)(N—4) (2—0)(N—-4)
sW=6)(N=2) < k < g(N-6)(N=2)

But
i N;—Z e Qﬂ 5% %—7—25_ 8%—_24[3
(k) C " e
and

(5757 147 = (o)

Thus, we see that (2.25) is equivalent to

8%720 < O3 26~ (N-2)0

Using (2.26), we find (2.27) holds.

For N =3, k = \i@ Thus,

(ke)3™7=% = (se2)3 7772 < C(se7) 77

So, we obtain (2.25).
Now, we estimate the second term of (2.22).
Using Lemma B.2 again, we find for y € (),

and 7 =

%. As a result,

1 1 1
< - —5=
A+ly =D = At fy—a ) 2 Aty — ) 2"
1 1
S I\/CjZ N—-2 ( —2 , N-2 + -2, N-2 )
o~ TP RE Nty =) TR (L agl) T
C’ 1
oy ] AR (L fy - )
Suppose that N > 5. Then % - B - N—_|_27' > 1 since 7 < 1. Then

y €

17

(2.26)

(2.27)

(2.28) gives for



18 JUNCHENG WEI AND SHUSEN YAN

> i)
— o |\N—2—
N42_ o 1 —2\ 14, 1
<C(ke) » & = C(se™7) " —
(I+ly—m)) T Q+ly—a) ="
If N = 3,4, then (2.28) gives
k 2 -1
(]Z 1+|y—x YN Q*ﬁ)
<C(ke'z ~nm7#)* 1 _ (2.30)
) (1 +]y = al) ¥
— NS -8 1 '
(L [y — @) 25+
If N =4, then
k%+§€¥—’r (2 -1)8 _ g33-3-(2"-1)p < Cel- (2*-1)8 < Cesto.
Hence for N = 4,
k 1 2 -1 k .
(;Z;(Hly—le)?) ; 1+\y—x\) gl
For N = 3, we have
k5€gfrf(2*71)ﬂ 222 -1)B 52r—2(2"-1)8
But
1420
LNite 8
(se2)2™ = e
So, kSe2~7=("~1)8 < (O'(se2)27 is equivalent to
_8-4r—45—-4(2*—1)5)
k S (s~ T+ar+20+4(2-DB) (2.31)

Since k < C’s*%, we see that (2.31) is valid if

8§ —4r S 2T
1+47 = 1-27
Thus, if 7 € (0, ), (2.31) holds. Hence for N = 3, we also have
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k 1 2% -1 k N2 ) lig
(;(1+|y—fﬂjl)2) 2:: 1+\y—$z\)N+2+T

Note that for y € €y,

o
L+ ly — s )N

WT,A(y) S
We claim that

N+2 1 20 N+2
—_— = — = N-2—-1)> 2.32
(N—2 2 N—2)( 7—)— + 7, ( )
if N > 3.
In fact, (2.32) is equivalent to
< 4(N —2)
.
3N +2°
which is true, since 7 = % ifN>4 7< 14—1 if N =3.
Thus, we obtain
s ST < opt et ; s
) + y _ x] P} T
Finally,
2+ TR T 2y,
i 1
<CEY s
j=1 (L+ly—a)) =77
and
i 1 N
> oy
Ve = Ni2
= (L+ [y —z4) p 1+|y—x]|) 74T
ety e oy
= 2
(I+ly—z) =" i (Lt ly—zy) =7
No2 i 1
SC(SST_)%_HTZ N+2 -
j=1 (L+Jy—z)) =7

Combining all the above estimates, we obtain the result.
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Now, we are ready to prove Proposition 2.4.

Proof of Proposition 2.4. Let us recall that

Let

By = {u:ue O, llull. < V3" /ZZzgaﬁ—OJ—l?}

Ezl

Then, (2.19) is equivalent to

¢ = A(¢) =: L(N(¢)) + L(x)-
Now we prove that A is a contraction map from Ey to Ey. Using Lemma 2.5, we have
146l < CIN(@) s + Clilell s < Ol ZE =2 + Cllg .
<C(vse T )@ =12 4 Ol (2.33)

<C(Vse + ) 4 Olllglfn-

Thus, by Lemma 2.6, we find that A maps Ey to Ey.
Next, we show that A is a contraction map.

[A(¢1) = A(@2)ll+ = IL(N (1)) = LIN(62))ll+ < ClIN(d1) = N (@)l

, C|t|> 2, N > 6;
IN'(t)] < o
C(W~= z|¢|+\¢| ), N =3,4,5,

Using

@

we can prove that

|A(61) — A(¢2)|lx < C|IN(¢1) = N(62)|lus
. . . . 1
<O(||ga |02 72 4 || P2 =20) |9y — ol < = [ld1 — Bal.-

Thus, A is a contraction map.
It follows from the contraction mapping theorem that there is a unique ¢ € FEy, such
that

¢ = A(9).
Moreover, it follows from (2.33) that

9]l < C(V3e T ) + Ol e

So, the estimate for ||¢||. follows from Lemma 2.6.
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3. PROOF OF THE MAIN RESULTS
Let

F(T‘, A) = I(WT,A + ¢),
where ¢ is the function obtained in Proposition 2.4, and let

1 1 .
I(u) = 5/9 (|Du|2 _ )\EQUQ) _ g/ (u — 3(1)5)3- .

Using the symmetry, we can check that if A is a critical point of F(A), then W, 5 + ¢ is
a solution of (1.3).

Proposition 3.1. We have

We have
Asp(r)se™ s AgkN—2eN-2 N=2 4, _9(1to
F(r,A) = k(A= A2 v TO((se7 T ) o (ke) VRO D), N=34
and
Al)\SQ Az@(T)Sé?# A3]€N728N72
F(r,A) = k(AO T A2 AN-2)/2  N-2pAN—2

N

+ O(\)\|62+” + (™) 7+ (ks)<N—2><1+<f>)), N > 5.

where the constant A; > 0,7 = 0,1,2 are positive constants, which are given in Proposi-
tion A.3.

Proof. There is t € (0,1), such that
F(r,A) = I(Wop) + (I'(Wyn), 8) + 3 D (Woa +6) (6, 6)
=I(W, ) — / Lk +/ (|Dg|?* + e up® — (2* — 1) (W, p — s®. + tqs)i_*‘?gb?)
=I(Wpa) = (27 = 1) / ((Won = 50 +16)7 72 = (Wop = 50T %)% + | N(9)9

Qe

=I(Wra) — (2" — 1)/ ((WT,A — 5P, + t¢)f:72 — (Wyon — SCDE)?:_Q) ¢’

£

~o([ IN@el)

But

(3.1)
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/ N)I4)

k
1
<CIN@). el | Z PREEEDD

631 11(1+|y_552|)2+T

(3.2)

Using Lemma B.2, we find

k
1 1
N2
;(H\y—%\) ’ +T;(de—le) =
1 1

Thus, we obtain

/Q IN@)I6] < CRIN(@)ll-6ll. < CRIGIE < Ch(IN7 + (s2™2%) 7).

Now

. O(lo|* —2), N > 6;
(W A — s, +t¢)2 - (WT,A — sCIJE)2 = { (|¢ ) B

6=N .
" OW. 218l +16/772), N =3,4,5.

Thus, we have

‘ / — 50, +16)" 7 - ((WM - s<1>,3)2*‘2)¢2

<cllgl / (

J

)
N-—-2 )
1 +\y—33]|) 7t

if N > 6. If N = 3,4, 5, noting that N — 2 > Y2 4 7 we obtain
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‘ / ((WT,A I ((WT,A _ s<1>€)2*‘2)¢2

k

6-—N
<o [ wWiFep 40 / 16
Qe Qe o U+ ly—=;

Let 7 > 0 small. Using Lemma B.2, if y € €0, then

“ <ol [ (X )

=2 (L+]y —a4))
k . 1
S ! 2,1
Sy =) (L [y — )
k
1 1 ] )
: ——2+1—Z — < Ce™ B
(L Jy = aa]) 575 455 [y — 2747 Aty o) 0
As a result,
k
1 2* L 1
(Z = ) SC‘S_QTI 19 y € Q.
j=1 (L+ly—z) 7= 77 (14 |y — aq|)N+2727

Thus

/(i 1 N—2+T>2*30k62*77.

Vo Uty —ag0) >

So, we have proved

‘/Q <(WT,A R ((WT,A - S(I)s)Q*_2> ¢?

N2 min(3,2*)

BT < Che T (1N 4 (s )
<Ck( A + (s7) ")

Combining (3.1), (3.2) and (3.3), we find

<Cke 27

F(r,A) = I(W,0) + kO( X4 + (s2757) 7).

23

(3.3)

(3.4)
O

Proof of Theorems 1.4, 1.5 and 1.6. We just need to prove that F'(r, A) has a critical point.
Firstly, we consider the cases N # 6. It follows from (3.4) and Proposition A.3 that



24 JUNCHENG WEI AND SHUSEN YAN

Asp(r)se s AgkN—2eN-2
AN=-2)/2 L N-2AN-2

+O((ke) V2049 4 (57) 7)),

F(r,A) = k(Ao +

Let

Frp) = 222r) A (r, A) € [ry, 0] x [6.571].

A(N-2)/2 N-2AN-2’

Then, F(r,A) has a maximum point at (ro, Ag), where

v ()
T\ Al PR(ry))

and rq is a maximum point of 72 @(r) = r°z @1 (r,0). So, if § > 0 is small, (ry, Ag) is an

interior point of [ry, 7o) x [§,071]. Thus, if k& > 0 is large, F(r,A) attains its maximum in

the interior of [ry,79] X [6,6!]. As a result, F(r, A) has a critical point in [ry, 5] x [6,d 1]
If N =6, then

—)\A182 + AQ@(T)SZ‘IQ A3k464
A2 T
+ O((ke)**+) + (ssZ)H")).

F(r,A) = k(Ao +

Let

— —)\Als_l + AQQZ_J(T) A3

It is easy to see that there is an sy > 0, such that if s > |\|sg, then

(r,A) € [r1,72] X [6,67'].

N—

o(r) =: rie (=AAis™" + Asp(r)), 1€ [r1,7m9)

has a maximum point 79 € (r1.r2) and @(ry) > 0. Then, F(r, A) has a maximum point at

(ro, Ag), where
24; \?
AOZ ( 1~ 3 ) .
ro#(ro)

So, we can prove that F(r, A) has a critical point in [ry, 5] x [6,71].
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APPENDIX A

25

In this section, we will expand I(W, ). We always assume that d(z;,00) > ¢o > 0,

where Z; = ex;. Denote

@(r) = ¢1(r,0).
First, let us recall that W, ¢ is the solution of

—AW =AW =U;, ' in €,
W =0 on O0f),.
Let

wA,f = UA,§ - WA;§
Then,

—A’gbA,g — )\82¢A’§ = —)\SQUA’g in Qs,
QZJA,g = UAyg, on 595.

To calculate I(W,.4), we need to estimate ¢ ¢.
Decompose 1, ¢ as follows

Yae = Vaen + Vg2,
where 15 ¢ 1 is the solution of

_AwA,f,l - )\SQwA,g,l = —)\é‘QUA’g in QE,
wl\,ﬁ = 07 on GQS,

and 1 ¢ 2 is the solution of

{ —Apen — )\521/}1\,5,2 =0, in

Yae = Ung, on O0f..

Since

Ure < Ce2 on 09,

it is easy to see that

|hp g2l < CeN 2

Let 1/_1,\,&,5 be the solution of

—AY—de*p=Upe in Q.
Y =0, on O0f),,

Then, we can check that

(A.1)

(A.5)

(A.6)
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; Clu™(2+ |y =€)
Frec0)| € e

where m = 1 if N = 4, otherwise, m = 0. Thus, we have

Lemma A.1. We have

(A7)

Uag = —Aee + 0",
where Py is the solution of (A.6). Moreover,

where m =1 if N = 4, otherwise, m = 0.
Proof. We only need to show

|WA,5| S C| In 8|mUA,§,

which follows from (A.7) and € < ﬁ

Proposition A.2. We have

Ayp _
I(WA,zj)=Ao+%+0((se%2)”“), N =34,
and
ANe? Ayp(r)se 2 2o N-2\1tg
I(Waa,) = Ao = = T O(AM - (577) ), N 25
where

and o is some positive constant.

Proof. Write

where
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By Lemma A.1, we have

~ . ]_ 2% _1 ]- 2%
I(WA,zj) — 5 /S;E UA,J:]- WA,;L‘J' - ? /QE WA,zj
1 *_ *—1l—0o o
—dg+ 5 / U S, + O / T (A.8)
Qe Qe
1 _ - o
=Ay+ 2/ U o ng; + O\ 4 eV=204)),

On the other hand,

/ (WA,.T]‘ — S(I)E)i* —/ (WA,wj)Q*

* 2% —1 . N2\ 140
:—Q/RNU sszAj 2g0(r)+0((552)+>.
For N = 3,4, by Lemma A.1 and (A.7),

/E U5 Ynay = O™ 2 +¢%) = O (s2™°)*°). (A.10)

Here, we have used ¢ = 3—2 = ;sy/e = (sy/e)'*? if N = 3. So, the result for N = 3,4
follows from (A.8)— (A.l(]) B
Suppose that N > 5. Let 1) ¢ be the solution of

_A‘l/) = UA,& in RN,
{ ¥(lyl) =0,  as|yl - +oo. (A.11)
Then,
C
< 7
(I ly=-ghh
and

o Ce’In™(2 + |y — £])
- € < 3

where m = 1 if N = 6, otherwise, m = 0. Thus,

/ Ux. _1¢ij = —)\62/ Uy _lwAw] +O(e" %+ |Ale*| Ine|)
. RN

(A.12)
= )\52/ U? 4+ OV + [Ae*| Inel).
RN

So we obtain the result for N > 5.
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Proposition A.3. We have

- N-2 N—2_N-2
I(Wr,A) _ k(AO N A2g0(7°]255 Ask™N e

AT © pAN-2

+O((ke)N-D0H) 4 (52°7)1H0)), N =34,

and

AN Ayp(r)se s AgkN-2eN-2
A2 AN=2)/2 L N-2AN-2

+0<(l€5)<N—2)(1+“)+\)\|52+°'+ Ca )”")), N> 5.

I(W,,) = k(AO .

Proof. By using the symmetry, we have

/\DWTAF )\e/ A_ZZ/ Ur o Wi,
7j=1 ¢=1
k

. . 1
_k / Al‘l / iw11¢A$1 + Z/ iwllUA’wi + O(Z |z — x1|N2+0))
i=2 7"
(A.13)
:k(/ U” +/ U2 " app g, + Z Bo
RN Q. Az PA T pa AN_2|CUi _ .',El‘N_Q

k
1
+ O(ZZ |37z _ .’131‘N2+U))’

where By > 0 is a constant.

Let
Yy T
Q={y=(y") e :(F, L) >cos >}
Then,
ly—mil >y -,  Vyeq,

We have
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2% 2%
5/ (WT,A - 5@5)_1_ = ? o (WT,A - S@E)+

k 2+ . 2:_1
:;(/ﬂl (VVA,QE1 — S(I)E)+ + 2 /Ql Z(WA’wl — S(I)E)+ WA,wi

1=2
k
+ O( Wf%jm:2 (Z WA,M)Z))
M i=2
- k
k o * 21 2*142@(7")35¥ * 2* 1
e 1 =2

k k
+ O (/Q Uijw_lQS(I)g Z UA’M + [2 UK;Z(Z UA,JW)2 (35 2 )1+0 + |)\|52+0>>
1 =2 7

k o ax or 1 2* Ayp(r)se s 2*By
:g(/RNU -2 /EUA,zlwA,xl_ N2 +ZAN 2‘$—$1|N_2

+ O((ke) (N-2)(140) | (5757 )40 4 \/\|52+“)).

(A.14)
Since
xj— 21| = 2|x1|sin@, j=2,...,k,
we can prove
: 1

Z:; o By(ek)" 2 + O (ke) 1+¥-2). (A.15)

Thus, the result follows from (A.13), (A.14) and (A.15).
U

APPENDIX B
Firstly, we gives a few lemmas, whose proof can be found in [35, 33].

Lemma B.1. For any o > 0,

k

1
> e (”Zm)

=1

where C >0 1is a constant, independent of k.
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For each fixed ¢ and j, ¢ # j, consider the following function

1 1
L+ Iy = 2> L+ |y — @:])?
where o > 1 and 8 > 1 are two constants. Then, we have

9i5(y) = (B.1)

Lemma B.2. For any constant 0 < o < min(cw, ), there is a constant C > 0, such that
() < C ( 1 n 1 )
g.- y ~ .
N i — ;7 N(L+ |y — @i)* =7 (1 + |y — @)oo
Lemma B.3. For any constant 0 < 0 < N — 2, there is a constant C' > 0, such that

/ 1 1 gy < C

z )
gy [y —2[N72 (14 [2)2 = (1 +Jy[)°
Let us recall that

For the constant 7 € (0, 1) defined is (2.4),

Z o x1|T <CEETY i <Ce"k < C,

Jj=2 J
and for any 6 > 0,

k

1
S =o(l).
= ‘.”Ej _ $1|T+0

Lemma B.4. Suppose that N > 4. There is a small 8 > 0, such that
k
1
— ——dz
/RN ly — 2| 2 ; +|z—xj|)”22+f
<3,

where W, 5 is defined in (1.7).
Proof. Recall that

R

Q={y=(.y") €. <‘ ik |j|>zcos%}.

For z € O, we have |z — x| > |2 — 2;]. Using Lemma B.2, we obtain
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k k
<

1
)2 = 1+|z—x]\)z(N 2-h)

< z < e
(1 +|z—:L'1 yN-2-6-7 \x]—x1|T (1+ |z — @y |)N-2-68-7
Thus,
4 C
W7 (2) < EECER
1+ 1z — xl\)

As a result, for z € 0y, using Lemma B.2 again, we find that for # > 0 small,

k
N
A

J:1

T
< C
CERER ) e =

Since0=:2—7—%>0ifN24andﬁ>0issmall,weobtain

1 . 1
[T ae) —-—
1

j=1 (L4 |z —z) = 77

= N— <> - )
1971 |y_Z|N 2 (1+ ‘Z—x1|)2+T2+T+‘9 (1—|— ‘y_xIDsz 7+0

which gives

1 . k 1
/QWWA (Z)Z =2

The above proof does not work for N = 3 because

31
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41
2—7— ——<0 B.2
TTN 2 (B.2)

if N =3 and 7 = }. The choice of 7 € (0,1) should ensure

7j=2
The above relation shows that 7 can be chosen smaller if ¢ becomes smaller, which in turn
will make 2 — 7 — ]\;112 > 0. Noting that ¢ = Z—z, we find that if s — 0+, then ¢ = o(k%).
We have

Lemma B.5. Suppose that N = 3, the parameter s > 0 and the integer k satisfy

s < Ck ot
for some T € (0,2). Then, there is a small 6 > 0, such that

5
1 k 1
Wia(z dz
/1;3 \y—z| ,A( )Z( ‘|)%+T

k
1
<C .
2 (T a7
Proof. The proof of this lemma is similar to that of Lemma B.4. We only need to use that
for 7 < 2

57

2—57 >0,
and

ETk — 827k1—27' < C
Thus, we omit the details.
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