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Abstract

We consider the following singularly perturbed elliptic problem

o

A+ (i—a(@))(1—4") =0 inQ, o

=0 on 09,

where Q is a bounded domain in R? with smooth boundary, —1 < a(§) < 1, ¢ is a small
parameter, n denotes the outward normal of 9. Assume that I' = {§ € Q : a(§) =0} is
a simple closed and smooth curve contained in  in such a way that I" separates €2 into two
disjoint components Qy = {§ € Q : a(y) > 0} and Q- = {§ € Q : a(§) < 0} and g—,‘j >0
on I') where v is the outer normal to Q2—. We will show the existence of a solution u. with a
transition layer near I" and a downward spike near the maximum points of a() whose profile

looks like
ue > C<1latapoint P., u.—1inQy\ Py, ue—>-1inQ_, ase—0.
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1 Introduction

Let Q be a bounded and smooth domain in R2. In gradient theory of phase transition it is common

to seek for critical points in H'(Q) of an energy of the form

T = / Vil + / W (j,a) (L1)



where W (g, -) is a double-well potential with exactly two strict local minimizers at & = —1 and
@ = +1, which as well correspond to trivial local minimizers of J. in H'(f). For simplicity of
exposition we shall restrict ourselves to a potential of the form
W= [ (- a@) ds, (12)
-1

for a smooth function a(j) with
—1<a(g) <1foralge Q.

Critical points of J. correspond to solutions of the problem

0 _

n 0 on 09, (1.3)

eAi+ (a—a(g))(1-a%) =0 inQ,

where ¢ is a small parameter, n denotes the outward normal of 0f). Function @ represents a
continuous realization of the phase present in a material confined to the region 2 at the point
z which, except for a narrow region, is expected to take values close to +1 or —1. Of interest
are of course non-trivial steady state configurations in which the antiphases coexist. For further
reference, we denote f(§,4) = (@ — a(g) ) (1 — @2).

The case a = 0 corresponds to the standard Allen-Cahn equation [6]

ou

N+ a(l—a*) =0 inQ, —
e’Aa + a(l—a°)=0 in Q, o

=0 on 09, (1.4)

for which extensive literature on transition layer solution is available, see for instance [4, 8, 26, 33,

34, 42, 43, 44, 46, 47, 50, 51, 52, 53, 56], and the references therein for these and related issues.
In this paper, we consider the inhomogeneous Allen-Cahn equation, i.e, problem (1.3). Let us

assume that T' = {§ € Q : a(g) = 0} is a simple, closed and smooth curve in @ which separates

the domain into two disjoint components
Q=0Q_UuUTuy (1.5)
such that

a(j) >0in Qy, a(f) <0in Q_, % >0onT (1.6)

where v is the outer normal to 2_. Observe in particular that for the potential (1.2), we have

W(ga _1) < W(ga 1) in Q+7 W(ﬂa"'l) < W(ga _1) in Q_.

Thus, if one consider a global minimizer u. for J., which exists by standard arguments, it should

be such that its value want to minimize W (§,u), namely, u. should intuitively achieve as ¢ — 0,

e > —1in Qy wue — +1in Q_. (1.7)



A solution u. to problem (1.3) with these properties was constructed, and precisely described, by
Fife and Greenlee[25] via matched asymptotics. Super-subsolutions were later used by Angenent,
Mallet-Paret and Peletier in the one dimensional case (see [7]) for construction and classification of
stable solutions. Radial solutions were found variationally by Alikakos and Simpson in [5]. These
results were extended by del Pino in [14] for general (even non smooth) interfaces in any dimension,
and further constructions have been done recently by Dancer and Yan [13] and Do Nascimento
[18]. In particular, it was proved in [13] that solutions with the asymptotic behavior like (1.7) are

typically minimizer of J.. Related results can be found in [1, 2].

On the other hand, a solution exhibiting a transition layer in the opposite direction, namely
ue—>+1inQy , w.—+-1lonfl. ase—0, (1.8)

has been believed to exist for many years. Hale and Sakamoto [31] established the existence of this
type of solution in the one-dimensional case, while this was done for the radial case in [15], see
also [12]. The layer with the asymptotics in (1.8) in this scalar problem is meaningful in describing
pattern-formation for reaction-diffusion systems such as Gierer-Meinhardt with saturation, see
[15, 24, 49, 54, 55] and the references therein.

Recently this problem has been completely solved by del Pino-Kowalczyk-Wei [17] (in the two
dimensional domain case) and Mahmoudi-Malchiodi-Wei [36] (in the higher dimensional case).
More precisely, in [17], M. del Pino, M. Kowalczyk and J. Wei proved the existence of a transition

layer solution H. in the opposite direction, namely,

H . »>+1inQy, H.— —-1in Q_. (1.9)
In fact, defining
2
1
A= ———— /\/@ , (1.10)
37r2/ H2de LT VO
R

where H(x) is the unique heteroclinic solution of
H' +H-H?*=0 inR, H(0)=0, H(+o0) = =1,
they proved
Theorem 1.1. Given c > 0, there exists €9 > 0 such that for all € < g¢ satisfying the gap condition
|k%e — Au| > cV/E for all k € N, (1.11)
problem (1.3) has a solution H. satisfying
H. > +1inQy, H. — —1in Q_, (1.12)

as € — 0. Moreover, the transition layer locates at T'c which will collapse to the curve I' as € — 0.



O

Since —1 < a(§) < 1in Q, there exists a maximum 0 < b < 1 of the function a(j) attained at

a point P € Q. It is well-known that the following problem has a unique solution U = Uy, which
is nondegenerate,

AU + g(U) = 0,U >0in R?, max U(y) =U(0), U(y) — 0as |y| = oo, (1.13)
yEeR?

where g(U) = U[U — (1 —1b)] (2—U). Here, by nondegeneracy, we mean that the kernel in H!(R?)
of the linearized operator —A — g' (+) is spanned by {g—;, g—;}. Moreover, U is radially symmetric

and there is a constant ¢y > 0 such that
Uz) < e @l ag |z| = . (1.14)

We will use the function U to add a downward interior spike layer, near P, to the transition
layer in (1.9) and show the existence of solutions with both transition layer and spike.

The following is the main result of this paper:

Theorem 1.2. There exists eg such that for all e < g¢ satisfying the gap condition (1.11), problem

(1.3) has an interface solution u. satisfying
ue = 1-U0) at P., we—=+1in Qi \ P, ue—>—-1inQ_, ase—0, (1.15)

where P locates near the mazimum point P of the function a(§). Near T', u. takes the form

dist(g,T:)
€

us(y) = H (14 0(1)) .
(=)

Near P., u. takes the form

ue(9) = (1+0(1)) .

)

3

O

Solutions with sharp layers as well as spikes were obtained in some papers, but they are all
different from the case in this paper. There are results on the Allen-Cahn model (1.4) with finite
or infinite Dirichlet boundary values, which asserts the existence of a slution of the form w. + v.
with w. a stable boundary layered solution and v, concentrating at a ”most centered” point of the
domain, see [30], [10], [48], [11] and [23]. In [12], Dancer and Yan constructed solutions of (1.3)
with Dirichlet boundary conditions of the form w. + v., where w, is a stable boundary layered
solution and v. concentrates at an interior point (or at several interior points). These are very

different from the situation here because the spectrum for w, is positive and uniformly away from



0. The related results in [20] and [21] are the same in the nature. For the coexistence of unstable

transition layers and spikes, in [19], Y. Du considered the following problem

e2Ad + (i — a(|z]))(1 — @%) = 0 in By (0), Z—Z =0 on 8B, (0) (1.16)

where By (0) is the unit ball in RV, N > 2, and proved Theorem 1.2 for all N > 2. The advantage of
problem (1.16) is that the layered solution is radially symmetric and its spectrum can be computed
explicitly, see [22]. Here, the domain (2 and a(z) are more general. Hence it is more difficult to get
the spectral gap estimates.

The main difficulties in the proof of Theorem 1.2 come from the highly unstable resonance
phenomena of the layer H, as well as the interaction between the layer and the spike. The spectral
gap between all eigenvalues(close to zero) are very small, which leads to ”near non-invertibility” of
the corresponding linearized operator at H.. To overcome the difficulties, we will prove Theorem
1.2 by the reduction method which consists of two steps in the sequel. (A further extension of this

method to higher dimensional case is underway.)

Step 1: We analyze the following linearized eigenvalue problem
e2A¢ + fu(§,H.)p + A =0in Q, % =0 on 99 (1.17)

where H, is the transition layer solution constructed in Theorem 1.1 of [17]. In section 2, we show
that there exists a spectral gap of the size O(3/2) for all small ¢ satisfying (1.11). (By the same
calculation in [22], we can show that the smallest eigenvalue for H, is —poe +o(¢) for some positive
constant pg, although we do not include the proof in this paper.)
Step 2: We use localized energy method to construct solutions of transition layers with downward
spikes with profile looks like H, +U (%) In fact, in order to decompose the interaction between
the transition layer and the single spike, we also apply the gluing technique ([16]) and then solve
a system of projected problems in sections 3, 4, 5. After that, we locate the spike by the localized
energy method in section 6.

The localized energy method was introduced in [27] in dealing with spikes. The advantage of
such method is that it can be applied to subcritical, critical and supercritical problems as long as

the limiting solutions is well analyzed. See also [28],[29].

Acknowledgment. The first author is supported by an Earmarked Grant from RGC of Hong
Kong.



2 Estimates on the eigenvalues of the linearized eigenvalue
problem at H.

Let H. be the solution constructed in Theorem 1.1. In this section, we study the associated

linearized eigenvalue problem

MG+ fulf, Ho)b+ A = 0 in 9, % — 0 on 89, (2.1)

with f, (7, H:) = 1 — 3H? + 2a() H.. The main result in this section is to show that, for all small
¢ satisfying the gap condition (1.11), we have the spectral gap estimate |Ac| > Ce? , which will be

stated in Proposition 2.9 in subsection 2.3.

2.1 Local coordinate and some notations

Let £ = |I'| denote the total length of I'. We consider natural parametrization y(6) of T’ with
positive orientation, where 6 denotes arclength parameter measured from a fixed point of I'. Let
v(#) denote the outer unit normal to I', pointing to the interior of 4. Points ¢, which are do—close

to I for sufficiently small &y, can be represented in the form
§=00) +tv(6), [t|<d, 6€][0,0), (2:2)

where the map § — (¢,6) is a local diffeomorphism. By slight abuse of notation we denote a(t,8)

to actually mean a(§) for § in (2.2). Any curve I';, sufficiently close to I' can be parameterized as

g =(0) +n(0)v(0),

where 7 is a smooth, /—periodic function with small L>°—norm. For a small positive constant ¢,

define the c-neighborhood T'; of T by
L.={(t0)] —c<t<c, €00}

The function dist(-, -) is the signed distance along the outer normal to T.

In this coordinate, near " the metric can be parameterized as
gr,o = dt* + (14 kt)*d6?,

and the Laplacian operator is

o2 1 o2 k0 Kt @
Beo= o5t Torp? o2 T ot 399
o2 " (1+kt)2 002 " 1+kt 8t (1+ kt)3 06

where k(0) is the curvature of T.



Stretching variable §j = ey, we denote by g the maximum point, P, of a(§) in 2, by T'/e the
curve I', by €. the domain Q and U(y) = H.(ey) after rescaling.

Setting up new coordinate (§, z) near I'/e in Q,

v=" 4 ene), Jel <0/ (200), 2 € [0,/0) (23)

the metric and Laplacian operator can be written as

ge. = d& + (1+¢eke)’d2?,
A — 6_2 + ; 6_2 + i g _ ﬁ g
57 92 T T4 ekfP 822 | 1+eké 06 [l +ckéP 9z

Let x = £ — f(ez), where f(0) is the function to be defined in (2.5). Then we have in the (z, z)

coordinate
9r: = da® + (1+ck(z+ f))’de?,
N SR
oE Ox? [1+ek(z+ f)]? 022 [1+ ek(z+ f)]? 020z
ek d g2 (f)2 92 g2 f" d

+ 1+ek(z+ f) 8z + [1+¢ek(z + f)]? 0z [1+¢ek(z+ f)]? Oz
ek(xz+f) 0 Sk@+f)f 8
[L+cek(@+ f)? 0z [L+ck(z+ )]} 0z

For further reference, we introduce the following lemma, whose complete proofs can be found

in [45] and [34].

Lemma 2.1. Let ¢ € H'(=d/¢e, 6/¢) be functions such that
H,pdx = o(1), ase — 0.
—&/e
Then there exists a constant 6* > 0 such that
d/e

d/e
/ (16 = (1= 3H%)¢? | dz > &* [ ¢*da.

—8/e —d/e

2.2 The unstable interface solution H,

In [17], M. Del Pino, M. Kowalczyk and J. Wei proved Theorem 1.1 and constructed the transition

layer of the form

H. =, +w., (2.4)



where

+1; Yy € Q+ \F663
3, = H(dist(sy,FE)) + ¢ (dz’st(g,l“s)’g) n IIJ(dist(g,rs)’g)’ y € Ts,
—]., Yy € O_ \F65,

where § < do/100 is a fixed positive constant, the function dist is the signed distance along the
outer normal to T'.

More precisely, we can get the following information from the construction procedure.

e In (¢,6) coordinate, the location of the interface I'. can be described as
v(0) +ef(0)v(6), 6 €[0,0), (2.5)

where f(6) = fo(0) + f1(9) with

k(0)
at(O, 0) ’

fo(0) =co

for some positive constant

3
coz—/Hmzdm,
4Jr

and f; satisfying

| f1]la Fillpe=(o.0) + VE I fillz2 0,0 + € 11 1220,y < € (2.6)

so that
1 fillz=(0,6) <&, [|fill2y < Vs [If1 le20.0 < 1.

By Sobolev emmbedding, it also holds
111l (0,0) < Ve.
e The function ¢;(x,0) can be defined as
¢1(x,0) = €a(0,0)H, (z) + ek(0) Ha(x) (2.7
where H; (z) is the unique odd function satisfying
—Hy 4y — Hi +3H*H, = —z(1 — H?), Hy(+00) = 0,
and H,(z) is the unique even function satisfying

—Hs 4y — Ho + 3H?Hy = H, — ¢o(1 — H?), Hy(£o0) = 0.



e The function ¥ was extended identically zero in the region Q \ I'ss, while, in the local

coordinate (z, z) near I'/e, ¥(z, 2) is a solution to the following problem

Voo + U, + [1-3(H +¢1)? ¥ + 2a(e(x+f),sz) [H+ ¢:]®
+B1(¥) = ~E1 — N(¥) + O(%),
¥(z,0) = \IJ(IIJ,E/S), T.(z,0) = ‘IIZ(:L.;E/‘S): ffooo ¥(z,2)Hy(z)dz = 0,

where By (-) is a differential operator which is a high order perturbation of 83—;2 + 53—;2 in the

differential operator A, ,

Bl = —eay(0,e2) fi (1 — H?) — &2 [k%Hz —f [PHao + ag fo(1 — H?)
— e[ K H, + £ Hy + S+ (1 - B |
—3H(¢1)* + O(%),

N(T) —34:10% — T + a(e(z + f),e2) T2

Moreover, there exist positive constants D, 7, independent of €, such that

=] < Det,
H2Rx(=1,2))
) ) _ (2.8)
‘ (gt )| 4 | (sl )] < Ded ™3,
L (t>6)
¢ Finally, the correction term w, has estimate
st < De*. (2.9)
L>=(Q)

2.3 The spectral gap of the linearized eigenvalue problem

Taking rescaling § = ey and writing U(y) = H.(ey), the eigenvalue problem (2.1) takes the form

Ay + fu(U)Yy + M) =0 in Q., g—:ﬁ =0 on 09k, (2.10)

with f,(U) =1 —3U? + 2a(ey)U.

It is well known that (2.10) has a sequence of eigenvalues A < A5 < --- < Af < --- where
A; =+ o0 as ¢ = oo. For i > 2, the eigenvalue A; corresponds to a finite number of linearly
independent sign-changing eigenfunctions which span a finite dimensional space E;. Note that we
have Ef = span{¢{}. Denote m{ = dim(Ef) and suppose that there exists j such that A5 < 0,
while A5,; > 0, then m® = le m; is called the Morse index of H,. The Morse index gives
the dimension of the unstable manifold of H. as a steady-state solution of the parabolic problem

corresponding to (1.3).



In order to estimate the Morse index and construct solutions of (1.3) which are perturbation
of H. with downward sharp spikes, we need to obtain good estimates to all A{ (called critical
eigenvalues) which are close to zero for all small € satisfying the gap condition (1.11).

It is easy to see that the eigenvalue problem (2.10) is related to the bilinear form < L1, ¢ >
defined by

<Ly, >=/Q (VoY — fu)dt] dy, ¥ ) € HY(S,).

In fact, (), ¢) is an eigenvalue/eigenfunction to (2.10) if and only if » € H'(€).) and

<Ly, ¢ >= AW, ¢), V¢ € H' ().

Here and in the sequel, (-, -) stands for the L?(Q.) inner product. Observe that the principal
eigenvalue of (2.10) is the infimum of < L, ¢ > in H(€).) subject to ||| = 1.

Since away from the curve I'/e, f,(U) is uniformly negative, it is reasonable to believe that the
mass of the eigenfunctions corresponding to all critical eigenvalues concentrates near I'/e. That is,
one needs to study the behavior of L near I'/e where the local coordinate (z, z) is well-defined. In
fact we will only need to estimate the gaps between the critical eigenvalues in further application
to constructing a downward sharp spike. All of these will be clarified in following subsections,
which follows the method in [34].

We make domain decomposition as 2, = Q. U Q1. U Q. U Q3. with

Q. = {all points in Q. with distance to the point g less than d/e },
Q. = {all points in Q. with distance to the curve I'/e less than d/¢ },
Q2. = {all points in Q. with distance to the curve I'/e less than 6§/¢ },
Q3 = O\ Nae.

In (z, 2) coordinate, we locally choose
Vo2, 2) = Hy + €a4(0,e2)Hy » + ck(e2)Hap + Uy,
and define two function spaces F and F* by

F

{¢ve HY(Q.): ¥ =0in Qa., ¥(z,2) = ¢°(z,2)0*(e2) in Q4. }, (2.11)

r {YeHY(N.): v =0inQs., (¥, ) =0, VHEF }. (2.12)

Direct computations give the following lemma,

10



Lemma 2.2. For any function of the form ¥°0©* € F, we have

L,:(4°0%) +  full)y’0”
= ea(1— H?)O* — efok[Hyy + 2coHH,|0* + ¢H, 0%,
—2e2f H,©F + ekH,,0* + 2¢HH,a,fO* — 2a,f, HH,0*
+e2k?’H,0* + 2ayf(1 — H)O* + £ayx(l — H?)O*

—2620,?HH1@* - 252atf0kHH2®* + 0(63).

We omit the proof of this lemma. O

2.3.1 The bilinear form restricted on the space F

In this subsection we study the restriction of < L, ¢ > on the space F. In fact we study the
following eigenvalue problem: finding (A, ¢) with ¢ € F and

<Ly, p >= A4, ¢), Vo€ F. (2.13)

Define for 1, 13 € F

B(1, 2) = (=Dt — o), ¢2)

L2(92s,)

The following is a corollary of Lemma 2.2.

Lemma 2.3. For every ¢ = ¢¥°0*, 1y = ¢°0** € F, we have

4

£ 4 4
B(1, 1s) - 5/0 a:(0,0)0*0** df — an/o 05,0 db + 5/0 P(6)0*0** df

¢
+0E) [ [10°F + 10 + [0z + 0] ds,
0
ao [ ¢
(61, V) o,y = 2 [ 070708 + 0 [ ka(6)fo(6)0%0" 8
0 0
¢
+051/ at(O,H)G)*@** dg,
0
where P(0) is a bounded function of the variable 8 in (0,£) and
ap =/H§ dz, o =/Hw H, . dz.
R R

O

Let F,_1,n=1,2,---, denote the collection of all n— 1 dimensional subspaces of F. We define

Un = max min M
SEFn—_1 peSL ||¢||L2(st)

11



From lemma, 2.3, there exist positive constants Cy, Cy and Cy such that

J(©, 0) + 0052”@“%[1(0,1)

pn < Cire max min

S€Fn_1 peSt [Cvarl ’

J(©, ©) — Coe?(|®][%1(g

n > (e max i ’

pn 2 Cze max i ICNGAIE
where
4t ¢ ¢
J(©,0) = —5/ at(0,0)®2d9—6a0/ @99@d0+6/ P(8)©? do,
0 0 0
4
v4(0) = gat(O,G)/ao>0.

Hence, to characterize the number u,, close to zero, we should consider the following associated

geometric eigenvalue problem

-0 —74(0)® = A (d)© in (0,0), (2.14)

0(0) = ©(4), ©'(0) = ©'(0). (2.15)
It’s well known that (2.14)-(2.15) has sequence of different eigenvalues Ay < As < --- with corre-
sponding eigenfunctions ©1, 0, --. It is obvious that A; < 0 because of the positivity of v4 and
O, can be chosen positive. Moreover, all critical eigenvalues of the geometric eigenvalue problem

have good estimates.

Lemma 2.4. For all small € satisfies the gap condition (1.11), we have the following spectrum
gap estimates of the geometric problem (2.14)-(2.15): there exist positive constants C independent
of € and N € N, N° — 00 as € = 0, such that

IN

—Cvfe, forallm=1,2,---,N°,

n

Ay

v

Cve, forallm=N°+1,N°+2,---.
Proof. By the following Liouville transformation
¢ 0
7r
to= / Va@ds, t= %/ V(@) b, t € 0,7),
0 0

e% El!
2T 74()

T(O) =7n@®)"% e(t)=060)/T, qt)=

Bl

A satisfies the following eigenvalue problem

2

—e —q(t)e= :TOE(1+A)€ in (0,7), e(0) = e(x), € (0) =€ (x).

Now consider the following auxiliary eigenvalue problem

—y —qt)y =&y, 0<t<m, y(0) = y(r), y (0) =y ().

12



The result in [35] shows that, as n — oo

Ve =20+ 0(y).

Hence, if ¢ is small then we have, as n — oo,

dn’n2e €
An = T -1+ O(E)
472 5
The last formula together with the gap condition (1.11) implies the estimates in the lemma.

O

Corollary 2.5. For all small ¢ satisfying the gap condition (1.11), there exists a constant C such
that for all special functions ¢ = 9°0, € F,

4 14
B¥) < ~CvE[ [0aPd0 + 0 [ [10aF + [0,.1] 06, n< N7,
0 0

B(y, )

v

£ £
c\/E/ 10,2 d6 + 0(52)/ [104P + 10n:P]d8, n>N° 1
0 0

The main result of this subsection is the gap estimates of u, which are close to zero.

Lemma 2.6. For all small ¢ satisfying the gap condition (1.11), there exists a positive constant

C independent of € such that
bn < —Ce3?, foralln =1,2,---  N°¢,
P > Ce®?, forallm=N®+1,N°+2,---.

Proof. Tt follows from Corollary 2.5 and the definition of u,,. O

2.3.2 The bilinear form restricted on the space F @ F+

Lemma 2.7. There exists a constant vg > 0, independent on € such that

B(y*, vt) > VO/ lpt|?, Vot e rt.

1e

Proof. Assume that for each positive integer n there exists ;- € F with ||i;-||2 = 1 such that

By, ¢y) < —. (2.16)

S|+

We then have for each function © = 0(z)

Y PO dy = 0,

Qac

13



which leads to
&/e

+H,dxz = O(¢) almost everywhere in (0, £).
—d/e

Similarly, we get

d/e d/e
/ |¢,f |2 < o0, / |zpf;z |2 < oo almost everywhere in (0, £).
—d/e —d/e
Hence, using Lemma 2.1, we then have a conclusion that there exists a constant §* > 0 independent
of € and n such that

/6/5 [loal* = =380t [*] do > 5*/

—d/e -4/

d/e 9
Y| de,
e

which will imply that

L /e 5 5 L pd/e 9
[ ol = a-smeif?] = o [ o
0 J—éb/e 0 J—d/e
5*
= = 9 122(.) + OQ). (2.17)
On the other hand,
{ pé/e 5 5
B uh 2 [ [ [Pl - a-sE)uil] +oq. (218)
0 J—é§/e
Therefore, combining (2.16)-(2.18) we obtain
sy
n
which will lead a contradiction if we let n — oo. O

Let O1,--- ,One be the eigenfunctions of (2.14)-(2.15) and define N° dimensional subspace
S = span {¢°0;, i =1,2,--- ,N°}.

Lemma 2.8. For any functions v € F N S+, ¢+ € FL, for any small € satisfying the gap
condition (1.11) and for any small constant o € (0,1/2), the following estimates hold

B, 0| < etB,w) + 0 [ i [ [eiwete P lete],

2e

B +¢*, v+9¢5) > B, ¥)[1+0EYH] + 0 [6llia0a) + 5 164l (@

Proof. The results can be easily derived from previous Lemma 2.6 and Lemma 2.7.

Let ), _, denote the collection of n — 1 dimensional subspace of L*(£2;.). We define

*

. B, ¥)
l; = max min

S€Y, oy west [T 72,y

and then our main result in this subsection can be stated as follows.
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Proposition 2.9. For all small € satisfying the gap condition (1.11), there exists a positive con-

stant C independent of € such that

—063/2, foralln =1,2,--- N,

=
s
A

Ce®/?, foralln=N*+1 N°+2,--.

=
3 *
(A4

Proof. For ¥ € L?(Q;.), we extend it as zero outside 5. and make decomposition ¥ = 1) + ¢+,
where ¢ € F, ¢~ € F L.
If¥eS", then

0=/ mlpO@z:/ (¢+¢L)¢0@z=/ ¢'¢0®i7 Vi=1,27"'7N67
Qoe Qae Qoc

=1
that is, the component ¢ € S~ . Hence, from Lemma 2.8, we obtain

/J/}k\[s_'_]_ 2 min B(\I’, \I’)
weSt, ||w|l=1
2 min {B(¢> P)- (1+0@EYY) - [ ¢ + ”_0/ |¢L|2}
wes™, ||g]|+||gt]=t Q. 2 Ja.
> %2

On the other hand, to show the validity of the first inequality by contradiction argument, we

assume that

pae > —Ce%2,

where the positive constant C is given in Corollary 2.5. So for all small § > 0, there exists a

subspace S of N¢ — 1 dimension such that

min  B(¥, ¥) > —C (*/2 - 4).
vest, || u||=1

Suppose that S = span { 9°¢; + ¢f‘, i=1,2,---,N° —1} (some of the components &Is may be
zeros). It follows that there exists a vector zﬁ = '¢r°§~ € St such that

|[4|| =1 and / O - %€ =0 fori=1,2,--- ,N° — 1.
925
Thus 9 € (Sp_1)" for some S,_; = span {9%;, & # 0}, n < N° — 1 and we can assume that
B(¢,4)

min B(¥, 0).
vest, [|w]|=1

min B(1,
YE(Sn-1)*+,|[¥]|=1 . ¥)

v

Finally, we get, from Corollary 2.5

—C (2 =9) < m

in B(1, < —Ce¥?2 4 0.
o ¢€(Sn—1)L1H¢'H=1 (w ¢) o ( )
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It leads to a contradiction. Therefore,

ll/}‘\[s S _C 63/2.

3 The gluing procedure

The next few sections will be devoted to the construction of a solution of the form H. + v. where
v. € H'(Q) concentrates near the maximum point P of the function a(§) on Q. By scaling
(91, 92) = €(y1,y2), problem (1.3) becomes

Ayu+ (u—aley))(1—v?) =0 in Q,, g—z =0 on 09:.. (3.1)

As stated in subsection 2.1, we denoted by £ the maximum point P and U(y) = H.(ey) after
rescaling.

We will use a gluing technique (as in [16]), plus localized energy method([27]), to decompose
the interaction of the downward spike and the interface layer and hence reduce the full problem
(3.1) in €. to a simple system of PDEs.

Fix 7o € (0,1/2), denote

P
€ = = g . 1 — Yo—1
ZE = {a (01,02) € Q. : dist(o, 5)<e5 },
and for all o € Z¢, define a spike at o by

Us(y) = Uy — o), (32)

where U is defined in (1.13). Let 6 < do/100 be a fixed number, where dy is a constant defined in
(2.2). We consider a smooth cut-off function 7s(t) where ¢t € Ry such that n5(t) =1for 0 <t < 4§
and n(t) = 0 for t > 24. Set x;5(r) = ns(er) and n5(s) = ns(e|s|), where r is the distance to the

point g and s is the normal coordinate to I'/e. We define our global approximation to be simply

W(y) =U(y) — x35(r)Us(y) fory € Qe. (3.3)

In the coordinate (y1,y2) introduced in (3.1), W is a function defined on ). which is extended
globally as U beyond the 64 /e-neighborhood of g.
Foru=W + qg where é globally defined in 2., denote
S(u) = Ayu + (u—aley)) (1 —u?) in Q..
Then u satisfies (3.1) if and only if
. . 99

L(¢)=—E+N($) inQ, 5, =0 ondQ, (3.4)
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where

~ A ~

L() = Dyd + [1=3W? + 2a(ey)W ] 4,
N(¢) = (8)° + 3W($)* — aley)(9)?, E=SW).

For further application, it is of importance to carry out the evaluation of the accuracy of the

error. Namely,

B o= smw)
= E(8yX5s)Us + 26(VyXss) - (VyUs) + X35Us [UZ — (X36)°U2 + 2x55UU, — 2U, |

+X55Us (1= U) + X55U5[2(1 = b) = 2(U — a(ey))U + x55(U — aley))Us — (1 = b)U, |.
In particular, we have the form of errors near I'/e and g as

Ey, = nSE=0,
EQ = Xg E
= 3xUs(L=U%) + 3x5UZ [ x5l — 1]
+2x5Us [a(ey)d —b] + x5Us [b— X5sa(ey) |
Note that the errors B can be defined on the whole plane R? and E, on the region Q. by trivial

extension. Moreover,
(L=x5 —m)E = (8yx5)Us + 26(Vyxss) - (VyUs) + (1= x5)x56Us (1 = U?)
+ (1= x5)x55Us [ U7 — (x36)°U7 + 2x55UsU — 2U, |
+ (1 - Xg)xgéUo [ngUa(u - a(sy)) - (1 - b)Ua]

+ (1= X5)x56Us [ 2(1 = b) = 2U — aley)U ].

It is easy to derive the following decay estimates

||E2||L2(R2) S C62, (35)
B < e/* for dist(y,g) > 6/, (3.6)
11 = x5 — ) Bllze < e (3.7)

Moreover, all above errors are continuous functions of the parameter o € Z°.

We further separate qg in the following form

¢ = x5 ()2 + nis(s)ps + ¥

17



where we assume that ¢s is defined in Qs. and ¢, is defined in the whole plane R2. Obviously,

problem (3.4) is equivalent to the following system

X35 [Ay¢2 + (1-3W2%+ 2a(sy)W)¢2]

= X5 | N (xistn +misds +v) — B = 3(1— Wy + 2aW9], (3.8)
ns| Auds + (1-3W2 + 2a(cy)W ) s |
= 05 [N (X562 + s +9) — B = 301 - W2y ], (3.9)

Dyt = 2[1= (1= x5)aW |4 + 3(1—n5 - x5 ) (1L - W)y
= _52(Ayn§5)¢3 - 25(vyn§5)(vy¢3) - Ez(Ay X55)P2 — ZE(Vy X;&)(vy(ﬁz) (3.10)
+ (1 =x§ =15 )N (o2 + 15585 +4) — (1—x§ —5) E,
where 9 is defined in 2. and satisfies the homogeneous Neumann boundary condition.

The key observation is that, after solving (3.10), the problem can be transformed to the following

nonlinear problem involving the parameter v

D)

(¢2) = x5[N(xssoo+1ists +v) = B = 30 =W + 2aW9],  (3.11)

L(gs) = nf[N(xiste +nisds +0) — B - 30— W ). (3.12)

Notice that the operators L and T in Q. may be taken as any compatible extension outside the
66 /e-neighborhood of g and I'/e respectively.

Firstly, we solve, given a small ¢2 and ¢3, problem (3.10) for ¢. Assume now that ¢, and ¢3
satisfy the following decay property

Voa(0)] + [62(0)| < e iF dist(y, =) > e, (3.13)
[Vés()] + |ds(u)| < e V% it dist(y,T/e) > o/e, (3.4

for certain constant v > 0. The solvability can be done in the following way. Let us observe that

(1 —x§ —n5)(1 — W?) is exponentially small and

min 2[1— (1 - x§)a(ey)W] > 0.
yefde

Then the problem

Y

% =0 on 695,

Ay —2(1= (1= x5)aW ) +3(1 = x§ —n5) 1 - W)y =h in 0,
has a unique bounded solution 1) whenever ||h|| < 4+00. Moreover,

1lloe < C1lA]|oo-
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Since N is power-like with power greater than one, a direct application of contraction mapping

principle yields that (3.10) has a unique (small) solution 9 = ¢ (¢, ¢3) with
1992 o)l < C8[||¢2||Lm(r>5/5)+||V¢2||L°"(r>6/s) (3.15)
+ ||¢3||L°°(|S‘>5/s) + ||V¢3||L°o(|s‘>5/s) + 676/5 ]’

where r > §/e denotes the complement in Q. of d/e-neighborhood of P and |s| > §/e denotes the
complement in 2. of d/e-neighborhood of I'/e. Moreover, the nonlinear operator ¢ satisfies a

Lipschitz condition of the form
[ ($2, ¢3) — P(d2, 83| < CE[||¢2 — Gollzee(r>5/e) + V2 — Vol Lo (r>6/e) (3.16)
+11¢3 — @sllo(s>676) + Vs — VLo (1s55/¢) ]

Therefore, from the above discussion, the full problem has been reduced to solving the following

(nonlocal) problem (for given 1 = ¥ (g2, ¢3))
Lagn) = X[ N(cgste +mists +9) — B = 30—W2p + 2aW],  (3.17)
Lade) = u5|N(xisde+misda+v) — B — 30-W2s], (3.18)

for ¢ € H?(IR?) satisfying condition (3.13) and ¢3 € H2(Qy.) satisfying condition (3.14). Here the
operators 22 and £, in may be taken as any compatible extension outside the 6/¢c-neighborhood
of £ and I'/e respectively.

The definitions of these operators can be showed as follows. 22 is an operator by

La($2) = Dy + [ (6 —20)U, —3U2 +2(b—1) ¢ + x(r)Ba(¢s), y€ R, (3.19)

where x(r) with r = dist(y, £) is a smooth cut-off function which equals 1 for 0 < r < 106 and
vanishes identically for » > 206 and B, is the operator defined by

By(¢2) = (1 —3W? +2a(ey)W )ps — [(6 —2b)U, —3UZ + 2(b— 1) ]2,
while the operator £5 can be defined as the following
La(ds) = Dygs + (1=3U> + 2a(ey)Ud ) d3, y € Dae. (3.20)

Rather than solving problem (3.17)-(3.18) directly, we deal with the following system: given
o € Z¢, finding functions ¢, € H2(R?), ¢3 € H?(Q2.) and constants c(c), d(o) such that

Lo(¢2) = No(do,d3) — By + ¢(0) X5Usy, + d(0)X5Usy, in R, (3.21)
¢2(y) = 0 as |y| = oo, / d2(Y)Uyy; (y)dy =0, i = 1,2, (3.22)
Zz(¢3) = N2(¢2,¢3) —E; inQ, ¢3=0 ond (), (3.23)
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where

Ez = X(E;E, EQ = UEE =0,
Na (2, 63) = 15| N (st + nisds + (62, 63)) — 3(1 = W)(en, 6s) ],
Na(2,6) = X5 | N (a2 +nisds + ¥(62,65)) — 3(1 = W2)h(62, 63) + 2aWeh(62, 65) |-

For simplicity of notations, we write ¢, ¢3 instead of stating the dependence on the parameter o
in above formulas and in the sequel.

In Proposition 5.1, we will prove that (3.21)-(3.23) problem has a unique solution (@2, ¢3) whose
norm is controlled by the L2-norm of E. Moreover, ¢ and ¢3 will satisfy (3.13)-(3.14). After this
has been done, our task is to solve an algebra equation to choose suitable ¢ € Z¢ such that the

constants ¢(o) and d(o) are zero, whence we finish the proof of Theorem 1.2.

4 The invertibility of operators £ and L,

For the purpose of the resolution of the projected problem (3.21)-(3.23), we consider the invertibility

of the linear operators Ly and 22 in this section. Denote
L($) = Dy + [(6—20)U, —3U2 +2(b—1)]¢
and then we consider the following problem

L(¢) =h+ C(U) XgUa,yl + d(U) X§U<7'7y2 in Rza (4'1)

6) >0 aslyl oo, [ G0)Vnl)dy=0, =12 (42)

Lemma 4.1. There exist constants c(c), d(o) with respect to h such that the problem (4.1)-(4.2)

has a unique solution ¢ = ﬂ(h). Moreover,
19|l m2 (=2 < C[R]|12®?),
where the constant C' does not depend on h and €.

Proof. Setting

(o) = — fR2 X5 h(y) Us,y: (y) dy (o) = — fR2 X5 h (y) Us.ys (y) dy
fR2 X5 Uz, (y) dy fR2 X5U2,,(y) dy

)

and applying Fredholm’s alternative, we can find the existence and uniqueness of the solution ¢.
O
Let Ly be the operator defined in H2(R?) by (3.19). In this section, we study the following

linear problem: given o € 2%, for h € L?(R?), finding function ¢ and constants c(c), d(o) such
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that
L2(9) = h + ¢(0) X5Usy + d(0) X5Us,ys in B, (4.3)
$(y) =0 as |y[ = oo, /Rz () Usy: (y)dy =0, i =1,2. (4.4)
Proposition 4.2. If § in the definition of 22 is chosen small enough and h € L?(R?), then there
exists a constant C > 0, independent of €, such that for all small €, the problem (4.83)-(4.4) has a
unique solution ¢ = Ty (h) which satisfies
18l[m2(e) < Cllhl|L2(e)- (4.5)
Moreover, if h has compact supports contained in |z| < 208 /e, then
(2, 0)| + |V(z,0)| < e /|||l for || > 405/e. (4.6)
Proof. We write the problem as the form
L(¢) = —x(r)Ba2(¢) + h + c(0) XUoy, + d(0) X5Usy, in R,
o) 0 aslylvoo, [ B0Vl dy=0,i=1,2

Let
p=T (h - XBZ(¢))
where T} is the bounded operator defined by Lemma 4.1. We can use contraction mapping theorem

to solve the problem. The key point is that the operator
xB2(¢) = x (1 —3W? +2a(ey)W )¢ — x [(6 — 2b)U, — 3U2 +2(b—1) ],

is small in the sense that
[B2(9)|[2(r2) < CO|[8]|m2(r2)-
Hence, the results can be derived by the invertibility conclusion of Lemma 4.1 if we choose §
sufficiently small.
O

Finally, consider the following problem
Lo(¢) = Dyd + (1=3U> +2a(ey))p = h inQs, ¢=0 on0Ns.. (4.7)

Proposition 4.3. If ¢ satisfies the gap condition (1.11), then there exists a unique solution ¢ =
Ts(h) to (4.7) which satisfies the following estimate

_3
18] £r2(02.) < C e 2 ||R]|22(0a0)-
Furthermore, if h has compact support in the region { dist(y,I'/e) < d/e}, then

IVo(y)| + |(y)| < e for dist(y,T/e) > &/e.
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Proof. The existence and priori estimate is an easy corollary of Proposition 2.9. Since A is sup-

ported on { dist(y,I'/e) < d/e}, then ¢ satisfies a problem of the form
ANyp—(1+0(1))p=0 ondist(y,['/e) > d/e,

with zero boundary condition. Hence, the validity of decay can be showed easily.

5 Solving the nonlinear projected problem

In this section, we will solve the nonlinear system (3.21)-(3.23). Let T, T» be the bounded
operators defined by Proposition 4.2 and Proposition 4.3 respectively. Then the projected problem
(3.21)-(3.23) is equivalent to the following fixed point problem

¢2 = To(Na(¢n,¢3) — Br ) = A(¢2, ¢3), (5.1)
¢3 = To(Nao(2,43) — B2 ) = A(¢, ¢3). (5.2)

We collect some useful facts to find the domain of the operator (.Z, A) such that it becomes a

contraction mapping. Since B = XSE, from the estimates (3.5)-(3.7)

IA

1Ea || 22 (me2) s 32, (5.3)

|E2(01) — Es(09)|[p2@ey < Ce¥?|oy — o). (5.4)

A

Moreover, Ey = ngﬁ‘ = 0. The operators Th, T have useful properties: assume that h has a
support contained in {dist(y, £) < §/¢} and h has a support contained in {dist(y,T'/e) < §/e },
then ¢ = fz(iz) satisfies the estimate

62| + |Vo| < |l e/ fOfdiSt(yag) > d/e, (5.5)
and also ¢3 = T2 (h) satisfies the estimate
(93| + | V3| < ||¢sllL~ e/ fordist(y,T/e) > 6/e. (5.6)
Recall that the operator 1)(¢2 ¢3) satisfies, as seen directly from its definition
[[(d2, P3)l|L < C€[||¢2||L°°(r>6/s) +[|Vd2llLoo(r>o/e) (5.7)
+11¢slloes1>872) + IV @sllLoo(s/>5/¢) + 676/5],
and a Lipschitz condition of the form
9 (p2, ¢3) — (P2, §3)|[Lee < C€[||¢2 — Gallzee(r>5/e) + V2 — Vol Lo (r56/e) (5.8)
+1163 = allne=(1s]>8/e) + IV b3 = Vs||now(js]>6/2) ]
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Now, the facts above will allow us to construct a region where contraction mapping principle

applies and then solve the problem (3.21)-(3.23). Consider the following closed, bounded subset

¢2 € H*(R?) g2l 2 me) < 7€%2, |3l r2(an.) < T€%/2,

¢3 € HZ(Qa2e) ¢2 and ¢3 satisfy properties (5.5) and (5.6)respectively.

D= (5.9
We claim that if the constant 7 is sufficiently large, then the map (ﬁ, Z) defined in (5.1)-(5.2) is
a contraction mapping from ® into itself. Let us analyze the Lipschitz character of the nonlinear
operators (involved in A, A) defined on the domain ®. Arguing as in [16] and using the Lipschitz

dependence of ¥ on ¢, ¢3, it can be derived

V22, ¢3) — Na(é1, $3)||L2(R2) (5.10)
< 0(537—2 + E%T) [||¢2 — (ZIHH?(R?) + ||¢3 — $3||H2(92£) ] .
A similar Lipschitz property for the operator N5 holds.

Now, we can find the solution to (5.1)-(5.2) in the sequel. Let (¢, ¢3) € D and v, = A(¢s, ¢3),
vs = A(¢s, ¢3), then from (5.3)

|1l m2m2) < |1 T5| [ cie?? + Cr3e%? + Or2e® ],

sl < Tl [ 076" + C7%" |.
Choosing any number 7 > max( c.||T3||, €2 |[T||), we get that for small ¢
||V1||H2(R2) < 7'53/2, ||V3||H2(Qgs) < re3/?,
From (5.5) and (5.6)

—25 -5 . P
[lal +190l]| . < allos €3 < llnllin ¥ fordist(y, 2) > o/e,
—25 -5 .
H|V3| + |V1/3|HLOO < |lvslloe €5 < |lvs|lH2(0s.) € fordist(y,L'/e) > d/e.
Therefore, (v1,v3) € D. (A4, A) is clearly a contraction thanks to (5.10) and we can conclude that
(5.1)-(5.2) has a unique solution in D.

The error E’z and the operator fz itself carry o as parameter. For future reference, we should
consider their Lipschitz dependence on the parameter. (5.4) is just the formula about the Lipschitz
dependence of error B, on the parameter. The other task can be realized by careful and direct
computations of all terms involved in the differential operator which will show this dependence is
indeed Lipschitz with respect to the H2-norm (for all €).

For the linear operator fg, we have the following Lipschitz dependence
1T>(01) = Ta(0)]| < Celor = o).
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Moreover, the operator 1\72 also has Lipschitz dependence on o. It is easily checked that for

(¢2, #3) € D we have, with obvious notation
N2,y ($2,$3) = No,oy (h2, $3)||12r2) < CE®/2 |01 — 0.
Hence, from the fixed point characterization we get that

|lg2(01) — p2(02) |2 (r2) < C%/? |0y — 0, (5.11)

l¢3(01) — ¢3(02)lr2(20.) < C*/* o1 — 02 (5.12)

Proposition 5.1. There is a number 7 > 0 such that for all € small enough satisfying the gap

condition (1.11) and any given parameter ¢ € Z°, problem (3.21)-(3.23) has a unique solution
(P2, #3) = (¢2(0) p3(0)) which satisfies

9ol ey < %2, 165l 2y < 7%,
P
(2] + [V < ligallze /% fordistly, ) > 6/e,

93] + |Vs| < ||gallze e7/% fordist(y,T/e) > b/e.

Moreover, the functions ¢o and ¢3 depend Lipschitz-continuously on the parameter o in the sense

of the estimate (5.11)-(5.12).

6 Localized energy method and the proof of Theorem 1.2

In this section, we will show the existence of 0. € Z° such that ¢(o.) = d(o:) = 0 and prove the
validity of Theorem 1.2 by localized energy method. Rewrite the equation (3.21) as the following
form for v = x5,Us + ¢2

22(1)) + B3(1}) + 50 + P(¢37¢7”) + Q(¢37¢) = C(U) XgUa',y1 + d(O’) XgUtT,yw (61)
where

Bs(v) = Xx5[-3UZ+6WU, —2aU, |v + x5[3U, — 3W +a]v® — v°,
& = X5Us(us —(1-0))(2-U,) — x(r)(1 = 3W? + 2aW)U,

+2x5(ald = b)U, + x5(b— a)U2 = 3x5WU? + x5aU2 + x5U2.
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The operators P and Q are high order. Now, we introduce the following energy functional corre-

sponding to (6.1)

K@) = %/R2|Vv|2dy - %/W[(e—%)a, _3U2 1 2(b - 1)] (1= x(r)v? dy

1 v
- 5/ x(r) (1 —3W? + 2aW)v* dy + / / Bs(s)dsdy
R2 R2 Jo

+ RZgOUdy + /]R2/OUP(¢3,¢,s)dsdy + /R/O Q(¢3,9)vdy,

and define the function

M(o) = K(X35Us + ¢2(0)), Vo € Z°. (6.2)

From the results in previous sections, we know that M (o) is a C! continuous function in the

variable o € Z¢. Moreover, direct computation gives that

M(o) = c¢1 + ca(b—alo)) + O(e) (6.3)
where
1 = b—l/ U?dy + ( §—5b) U3dy—14—7R2U4dy,
cy = Uddy — R2U2dy.

3 /g

Lemma 6.1. There exists a critical pint . in the interior of Z¢ of the function M (o).
Proof. Since 0 < U < 2, it is easy to see that ¢z < 0. Now we consider
max{M(o): o € Z°}. (6.4)

Let 0. € Z¢ be the maximum point of the problem (6.4) and o* € Z¢ be the point such that
a(o*) = b. Then we have

M(oe) 2 M(0™) = c1 + o(e). (6.5)

On the other hand, if ¢ > 0 is suitably small, then |a(c) — b| is small for any |c — o*| < p. Thus,

we have

M(o:) < e+ (c2 4+ 71p) (b—a(oe)) + ofe), (6.6)

where 7, > 0 and 7, — 0 as ¢ — 0. Hence, we obtain from (6.5) and (6.6),
05(1) S (CZ + Tg) (b - a(JE)) S 07
where 0.(1) = 0 as £ — 0, which implies that

b—a(o:) >0 ase—0.
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Therefore, o, is an interior point of Z°.
O
As a result of previous lemma, by standard argument as Proposition 6.2, we can easily deduce
that ¢(o.) = d(o:) = 0 and we really solve the problem (3.1). Other results in Theorem 1.2 can
be derived from the construction of the solutions.

We include the following proposition only for completeness, although it is well-known.

Proposition 6.2. For any e > 0, if 0. € Z° is a interior critical point of M (o) , then
¢(oe) = d(o:) = 0.

Proof. Denote I' = K (x5;Us + ¢2(0)) the derivative of K at x5;Us + ¢2(0), then it suffices to
show that (I', v)g2 =0 for v = U, ,, and U,,,,. Since o, is an interior critical point of M (o), we
have

Dy, M(0.) = (I', XisUsoi + Doi2(02) ) |, = 0.

Therefore

c(oe) + (I',Dal¢2(as)) =0, d(o.)+ (I',D,2¢2(as))L2 - 0.

L2
To analyze above formulas, make the following decomposition,

2
Dm‘d)?(gs) = AZ + Z c;:jUO',G'ja
j=1
where the component A; of D,,¢2(0o.) perpendicular to the space spanned by {Us s, Uy, } and
then we get

(14 c5;)cloe) + cjod(o:) =0, & clo:) + (1+¢5,)d(o:) =0. (6.7)

Hence it is of crucial to estimate the coefficients c;;’s.

We differentiate (¢2(0%),Us,e; ) - = 0 for i = 1,2 and obtain

cf’j = (Dajqﬁz(as),Ug,gi )L2 = —((ﬁg(as),Ug,gNj )L2 fori,j=1,2.
Since Uy 4, -; has exponential decay, we can easily check that
|(92(02),Us,is; ) 12| < Clidollz= - ||Uzzl| < Ce™7%,
due to our estimate for ¢». Hence,
5, =0(e %) fori,j=1,2,

which lead to that the constants ¢(o.) = d(o.) = 0 is the only solution to (6.7).
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