ON AMBROSETTI-MALCHIODI-NI CONJECTURE FOR
GENERAL HYPERSURFACES

LIPING WANG, JUNCHENG WEI, AND JUN YANG

ABSTRACT. We consider the nonlinear problem
2Ad — V(@)a +aP =0, @>0, @€ HY(RY),

where p > 1, € is a small parameter and V' is a uniformly positive, smooth
potential. Assume that X C R"™ is a smooth closed, stationary and non-
degenerate hypersurface relative to the functional [,V with ¢ = % — %
We prove the existence of solutions @, at least for some sequence {g;}¢, which
concentrate along smooth surfaces I'c close to . This result confirms the va-
lidity of the conjecture of Ambrosetti, Malchiodi and Ni in [2] for concentration
of Schriédinger equation on general hypersurfaces.

1. Introduction and the main result

1.1. Ambrosetti-Malchiodi-Ni Conjecture. We consider the problem

(1.1) E2Au - V(@)a +aP =0, a>0, @€ HY(R"),

where p > 1,n > 2, € is a small parameter and V is a smooth potential with
1.2 inf V(g) > 0.

(1.2) Anf, @) >

The above nonlinear problem arises from standing waves for a nonlinear Schrédinger
equation in R™. For more details we refer to [2] and [13]. Considerable attention has
been paid in recent years to the problem of construction of standing waves in the so-
called semi-classical limit of (1.1) as € — 0. In the pioneering work [17], Floer and
Weinstein constructed positive solutions to this problem when p = 3 and n = 1 with
concentration taking place near a given point gy with V' (o) = 0, V" (go) # 0, being
exponentially small in £ outside any neighborhood of §y. This result has been sub-
sequently extended to higher dimensions to the construction of solutions exhibiting
high concentration around one or more points of space under various assumptions
on the potential and the nonlinearity by many authors. We refer the reader for
instance to [1, 3, 7, 9, 10, 11, 12, 16] and the reference therein. An important
question is whether solutions exhibiting concentration on higher dimensional set
exists. In [2], Ambrosetti, Malchiodi and Ni considered the case of V' = V(|§|) and
constructed radial solutions u.(|§|) exhibiting concentration on a sphere |§j| = rg in
the form ) .
us(r) ~ Vo= (rg)w(V2(ro)e 1 (r —ro)),
under the assumption that 9 > 0 is a non-degenerate critical point of

(1.3) M(r) =r"'Vo(r),
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where w is the unique (even) solution of

(1.4) w'—w+wP =0, w>0, w'(0)=0, w(*oo)=0,
and
p+1 1
1. _ptl 1
(1.5) A

Based on heuristic arguments, Ambrosetti, Malchiodi and Ni raised the follow-
ing conjecture ([p.465, [2]]): Let K be a non-degenerate k—dimensional stationary
manifold of the following functional

/ V-5 (n—k)
K

Then there exists a solution to (1.1) concentrating near K, at least along a subse-
quence £¢ — 0.

For n = 2,k = 1, del Pino, Kowalczyk and Wei [13] proved the validity of this
conjecture under some gap condition. Namely, they proved that if X in R? is a
non-degenerate, stationary curve for the weighted length functional [, V7, then
given ¢ > 0 there exists g¢ such that for all € < ¢ satisfying the gap condition

|€26% — Xo| > cs, VLEN,

where )¢ is a fixed positive constant in (2.3), problem (1.1) has a positive solution
ue which will concentrate on K. Moreover, for some positive number ¢y independent
of e, u. satisfies globally

ue(§) < exp ( — coe 'dist(g, K)).

Recently, Mahmoudi, Malchiodi and Montenegro [23] established the validity of
the Ambrosetti-Malchiodi-Ni conjecture in the case of n = 3,k = 1. They also
considered the complex solutions of (1.1) carrying momentums.

The main purpose of this paper is to prove the conjecture when n > 3,k =

n—1,i.e., when K is a non-degenerate stationary hypersurface under the functional
p+1_ 1

fie VT

1.2. Geometric Background. To state our main result, we need to introduce the
definition of a hypersurface being stationary and non-degenerate for the weighted
area functional [, V7. We will also introduce the so-called Fermi coordinates which
play important role in the computations.

Notation 1: We shall always use the convention that indices i, j, k,1 € {1,2,--- ;n—
1} and indices a,b,c € {1,2,--- ,n}.

Assume that K is a smooth closed hypersurface in R*. Also let g;; be the
coefficients of the metric, denoted by g, on K induced from the standard metric
of R*. Using some local coordinates 8 = (01,0s,--- ,6, 1) and letting ¢ be the
corresponding immersion of X into R™, then we obtain

o= (92 9¢
9=\ 6, 96; )

Here and in the sequel, by (-,-), we have denoted the standard inner product in
R™. The Laplace-Beltrami operator and gradient operator on K are defined in local
coordinates by

(1.6) Ax = detg giﬂ'aj), Vich = §98;hd;,

1
7
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where h is any smooth function and the coefficients g/ are the entries of the inverse
matrix of §g. The differential of the unit normal v of K is given by

(1.7 dyg[v] = H(O)[v], €€ K,ve THK,

where H(f) : TyK — T,K, identified with the corresponding bilinear form with
coefficients { H}}, is a symmetric operator. The eigenvalues of the matrix (H})(with
respect to the metric g) are called the principal curvatures of K and will be denoted
by k;,i =1,2,--- ;n — 1. In the following, we let

(1.8) H)=k1(0)+ -+ kn—1(0),
denote the mean curvature (scaled by a factor n — 1) of K. We also define
(1.9) Al = [[H|" =} + -+ w2,

to denote the square of the norm of the shape operator Ax defined by (1.7).
In a small §p-neighborhood of K in R, we choose Fermi coordinates (6,t) defined
by

(1.10) §=2°00,t) = p(6) +tv(0) with (6,t) € K x (—do,d0),

where ¢(0) + tv(0) is understood as the sum of vectors in R”. Then we have

0®° op v op i O0p 09° s
5,00 = 5 @)+t )= 520 +HIG) IO, G 6.0) = ().
Then by § denoting the metric on R", we have in Fermi coordinates
~ v _ ([ {5} ©
(111) aat=( %0,
where

s = (G @)+ tHEO o (0). 526+ O 52(0))

= gij +t (Hfgr; + Higa) + " Hf Hlgp.

(1.12)

Note also that the inverse matrix {§®} can be decomposed as

{ab}_({g]} (1))

Moreover, we get

n
(1.13) det (§) = det (g) (1 +2Ht+ G + ZGiti),
i=3
where G,Gs, - - - , G, are smooth functions on K.

Notation 2: In the sequel, by slight abuse of notation we denote V (0,t) to actu-
ally mean V(p(0)+tv(0)) in Fermi coordinate system. The same way is understood
to its derivatives with respect to 6 and t.

Any surface sufficiently close to K can be parameterized by

15(6) = ¢(0) + f(O)v(9),
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where f is a smooth function with small L>°—norm. Call Ky the surface defined
this way. Then letting g7 denote the metric on Ky induced from R", we have in

Fermi coordinates
gl = Ovy Ovy
Y a0;> 86; )’

whence

o= (520)+ SL0wo) + 01 032 0),

Oy of Oy
55 0) + 5 OV0) + [OH;0) 570))

of 0
Gij + f (Hfgr; + Hogis) + fPH Higr + o1 9f .
56; 96

Moreover, we have

det (57) = det (g) (1+2H/ +Gf* +| vk f° + O(*) + O(f| v 1))

Then the weighted area of the surface Ky is given by the functional of f

(1.14) ip=[ ve= /K V (77(6))1/det (),

where o is defined by (1.5).

The surface K is said to be stationary for the weighted area if the first variation
of the functional (1.14) at f = 0 is equal to zero. That is, for any smooth function
h defined on K

0=J (0)[h] = / (V7), hy/detg + / VY H hy/detg,
K K
which is equivalent to the relation
(1.15) oV:(0,0) = =V (0,0)H(#), 6HeK.

We assume the validity of this relation at K. Let us consider the second variation
quadratic form

J”(O)[h,h]z/)c[(V")tt—iSV" (H)2]h2 detg + /KV’GhQ\/m

+ / V7| vk h|*V/detg.
K

We say that K is non-degenerate if so is this quadratic form in the space of all
functions h € H'(K). This is equivalent to the statement that the differential
equation

(1.16)  Axh + % Tk V- vxh + [|A;C|2 Yo 'H? %Vtt]h -0 onk,

has only the trivial solution.
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1.3. Main Theorem. Our main theorem can be stated as the following:

Theorem 1.1. Assume that the smooth closed hypersurface K satisfies the station-

ary and non-degenerate condition relative to the weighted functional |, K V%_% and
n > 3. There exists a sequence of small parameters {e¢}¢ such that problem (1.1)
has a positive solution u., still denoting e by €, concentrating along a hypersurface
. near K. Near K for § given by (1.10), u. takes the form

(1.17) ue(g) = V(6,0)/ Py (g V(a,())) (1+0(1)),

where w denotes the unique positive solution of problem (1.4). Moreover, there
exists some number cy such that u. satisfies globally,

ue(§) < exp| —"dist(,T%) |

and the surfaces T'c will collapse to K as e — 0.

Remark 1: Combining the result in [13] and Theorem 1.1, the validity of the
conjecture raised in [2] is confirmed for hypersurfaces, at least along a sequence

{Eg}g.

To prove Theorem 1.1, not only the same difficulties as that in [13] are encoun-
tered but also more obstruction appears. More precisely, by the rescaling of the
form (z,s) = e71(0,t), the solution to the full problem we take is roughly decom-
posed in the form,

v(z,8) = w(s — f(ez)) + ee(ez)Z(s — f(e2)) + ¢(z,5),

where Z is defined in (2.1), f and e are left as parameters, while ¢(z,s) is L2-
orthogonal for each z both to ws(s— f(e2)) and to Z(s— f(ez)). Solving first in ¢ a
natural projected problem, the resolution of the full problem becomes reduced to a
nonlinear, nonlocal second order system of differential equations in (f, e). Although
the linear operator is solvable, some norm of e becomes big in some sense at the right
hand side of this linear operator when n > 3. This shows that the approximation
we construct doesn’t work well as n becomes large. Hence we must improve our
approximation as in [23], [24]-[26]. The principle is: the better the approximation,
higher the chances of a correct inversion of the full problem to obtain a contraction
mapping formulation of the nonlinear, nonlocal second order differential equations.
To do that, we try the following form as our new approximation, (see [26])

k-1
v(z,8) = w(s— f(ez)) + ee(ez)Z (s — f(ez)) + Zel@(z,s).
=1

The aim of adding the term E;:ll elgy(z,8) is to cancel the error term till order
O(g*) such that our approximation is good enough. After very tedious but nec-
essary computations we find that such ¢ may not exist since we will get some
nonhomogeneous differential equation of ¢;. So we need to improve our approxi-
mation further, namely we take the following form, (see [22])

k—1
V=u(e) + ce(e2)2() + 3 'ilen,a),

=1
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where z = \/V (0,0) (s - 27;02 efy (EZ)) for some positive k. Now we can choose
proper f;,0 <1 < k — 3 such that the corresponding nonhomogeneous differential
equation of ¢; is solvable. To do this we need to analyze the Laplace-Beltrami
operator very carefully and conduct lots of computations. Finally the resolution
of the full problem becomes solving a nonlinear, nonlocal second order differential
equations of (fi_2, e) which turns out to be directly handled due to the assumption
to K.

We believe that the procedure in this paper may be used to solve the full
Ambrosetti-Malchiodi-Ni conjecture for all 1 < k <n —1.

In the rest paper we carry out the program outlined above, which leads to the
complete proof of Theorem 1.1.

2. Preliminaries and setting up of the problem

2.1. Asymptotic behavior of w and its linear problem. It is well known that
the associated linearized eigenvalue problem of (1.4),

(2.1) B —h+pw? 'h=XMhinR, heH(R),

possesses a unique positive eigenvalue Ag with a unique even and positive eigen-
function Z which we normalize so that [, Z? = 1 (this follows for instance from
the analysis in [29]). In fact, we have

(2.2) w(r) = Cp{exp[w]+exp[ﬂ]}ﬁ,

2 2
(2.3) 7 = [/prde]_%w”H, do=-(p-1)(p+3)
It is easy to see that for |z| > 1
(2.4) w(z) = Cpe 2l — %eﬂ’lzl + O(e~ 3 Dlzly,

/ 2
25) W (2)=-Cpel® + p_clpe—p\zl + O(e-Cr-Dlal),

2(p+1)C,

(2.6) Z(z) = C;,e_(’”rl)‘m‘ — : P e=2lel 4 (e ~GrDlzly,
p j—

where

&= [C57)7 6 = [CH) ] e

As a consequence of the above analysis, we have the following inequality: there
exists a constant y > 0 such that whenever [ Yw, = [, ¥Z = 0 with ¢ € H'(R)
we have that

(2.7) /R (6P + [P = puP9?)dz > ( /R (9 + [ Pde).

We also recall the Weyl’s asymptotic formula, referring for example to [6], or
to [21] and [28] for further details. Let p;, w;,i = 1,2,---, denote the eigenvalues
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and eigenfunctions of — Ay (ordered to be non-decreasing in ¢ and counted with the
multiplicity), then we have that

C i2/(n-1)
Vol(K)

where Vol(K) is the volume of (K, g) and C is a constant depending only on the
dimension n — 1.

(2.8) pi — as i — 00,

2.2. Laplace-Beltrami Operator in stretched Fermi Coordinates. Here and
in the following we always apply the notations in the previous section.

To construct the approximation to a solution of (1.1), which concentrates near
K, after rescaling, in R™ we also introduce the stretched Fermi coordinates in the
neighborhood of K. = K/e by

1. _ do 9o
(29) @E(Z,S) - E(P (EZ,ES), (Z,S) - (zla' o 7zn7178) € ICE X (_ ?7 ?)

Obviously, the new coefficients g,;’s of the Riemannian metric of R”, in the stretched
Fermi coordinates, can be written as

9ii(25) = i4(e2) + 25 (HE(e2)gni (2) + H} (e2)ga(2))
+ 252 (e2) H} (e2) i (22),

gi,nzgn,iz(); gnn:17 iajzlaza"'an_l'

Note also that the inverse matrix {g?®} decomposes as
aby _ {gij} 0

We also let gg denote the metric of K. induced from the standard metric of R™ with
corresponding Laplace-Beltrami operator defined as the form
0

detg(ez) g (e2) g) .

1
D= e o
Vdetg(ez) 0z
For further references, this subsection focus on the expansion of the Laplace-
Beltrami operator defined by

1
A, = ——— 0, 9?° \/detgd
(2.10) ! Vdetg (g o b)
‘ 1
= 9" a0y + (8ag™) 0 + 7 Oa(log (detg)) g O

Using (1.12), direct computation gives that
det(g) = det(g) (1 +2eH(e2)s + €2G(ez)s* + Z EiG,’(é‘Z)Si),
=3

where we have used (1.8) and (1.13) for the definitions of H and G,G3,- - ,Gy,.
This gives

log (detg) = log (det(g)) + log [1 +2eH(e2)s + €2G(e2)s” + ZsiGi (Ez)si] .
=3
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Hence, the following formula can be checked by careful calculation

82
Ay = 92 + Ak, + Bo(ez,s) + Bi(ez,s) + Ba(ez,s) + Bs(ez, s),
where
9 2 2 10
By(ez, s)_aHa—E\AK\ Zabl €2)s 35’
n—1n—1 — —
i( clpid
(e2,5) ;lesb €2, 5) (ez,5) ZZ: l@z,@zJ
Bs(ez,8) = " byi1(e2, 8) 9 + E"ij (62,8) =—
) n 3 65 p n 3 a
62
n 1
by
Z €59 5ty
and functions by 1, b}, --- ,bi b9 .. b i j=1,--- n—1 satisfy:
bty By b, 7 o BT < O(1+ Jsf ™).
Moreover, we have that bfj = b{i, ,7=1,2,---,n—=11=1,--- ,n—1

2.3. Local formulation of the problem. If we set u(y) = i(ey), then problem
(1.1) is thus equivalent to

(2.11) Au — Viey)u+u? =0 in R".

We assume that, in the (z,s) coordinates, the location of concentration of the
solution is characterized by the surface

k-2
(2.12) [.:s= Zalfl(az),
=0

Remark 2: Here the k in (2.12) can be any positive integer. In the next section,
we will find an approrimate solution by a recurrence procedure, which will solve
(2.11) up to O(e*). In the last section, to handle the resonance phenomenon we
will choose k > n + 1. The reader can refer to Proposition 8.1.

Remark 3: The smooth functions fo,--- , fx—3 are to be determined in next sec-
tion. While the unknown parameter fr_o is to be chosen by a type of reduction
procedure, which is equivalent to solving a system of differential equations in the
last section. In the sequel, we assume that fy_o satisfies the uniform constraint

(2.13)  |Ife—2lle = [[fr—2llpoe) + || Vic frzllnogoey + || Axc froallrage) < 2.

Here and in the following we always assume ¢ > n and q is fixed.
We consider a further changing of variables with the property that replaces at
main order the potential V by 1. By setting

(2.14)  a(0) = V6,00V 56) = V(6,02 with 6 = (64,...,0,_1),
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define a new function v(z,z) as follows

k—2
(2.15) u(z,s) = alez)v(z,z), == P(ez) <s - Zslfl(sz)), z=z.

=0
We now want to express the problem in the new coordinates. Whence we need the
following formulas

(216) Us = Oéﬁ?)m Uss = algszwa
(2.17) Ou  Oa N ov + 9 (ﬁ(s - Zf:_()? Elfl))
. 90 3 oiv a 9%, Qv 7 ,

2

k—2
Ak u =avm‘ V. (ﬂ(s -3 Elfz))
=0

k—2
+ 207k, ve - vk, (B(s = D€' fi))
=0

k—
(2.18) + &2 Axav + alg, v + av, Ak, (6(3 — Zalfl))
=0

[V

~

+2evk -

k-2
vz VK. <5(8 - Zﬁlfz)) + V}cﬂ] ;
=0

where we have denoted

k—2 k—2 k—2
VK. (ﬂ(s - Zslfl)> = 5[(8 =Y ) vk BB € vk fl]:
k=2 k—2 k-2
Ak, (ﬂ(s - Ze’fl)) =e*(s— Y e'fi) AxB-2" vk B-Y Uk i
1=0 1=0 1=0
k-2
- 62ﬂ Zé‘l A)c fl-
=0
We also have similar expressions for the operators %,i, i =12--- ,n—1,

which are omitted here. It is convenient to expand
k
1
Vez,es) = V(ez,0) + Vi(ez,0)es + §Wt(5z,0)s252 + Z am(ez,0)e™s™
m=3

1 1
+apya(ez,e8)et M,

with the notation ( )
1 0™V (ez,0
am(e2,0) = ml om0

and a smooth function a1 (6,t).
Locally, this gives that u solves (2.11) if and only if v defined in (2.14) solves the
following problem

(2.19) S) = Vg —v + 0P + B2 Ak, v+ B(w) = 0.
In the above we have denoted the linear operator

B(U) = B4('U) + B5(U) + B(j(U).
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The linear operator By comes from (2.18) and can be expressed explicitly by

k—2
By(v) =¢f Hv, — °B7| Akl (% + Ze%) Vg
1=0
n T k—2 m—1
+ 871 Z €M by, (E + Zalfl> vy + e2(af?)™ Ax aw
m=3 1=
wo k-2
+2e8%(af) T vk a- (E VkB—-B vk fz) Vg
1=0

k—2

2B vk B— ) e Vi fi

=0

2

Ua:x

+ 2e(af) Py a- VK.V + g2

+ 2372

=0

k—2 k—2
(%AKﬂ_2Z“:IVIC/B'VICfl_/stlAlel>Uz
1=0
k—2
+ 2672 (% vkB - B e vk fl) “ VK. Vz
=0
I = g2, T w2, ’
— BV Z+ D Efio = SBVu| Z+ Y i v
b =0 2 A 1=0

Lk p k2 m
-5 Z am(ez,0)e™ (E + ZE%) v.
m=3 =0

At the meantime, Bs is the linear operator corresponding operator By + Bs ex-
pressed in the new coordinates (z, )

(2.20) Bs(v) = Bs1 + Bsy,

where we have decomposed Bs; in the form

n—1 n—1 . ) aﬂ k—2 Bf
Bsy ﬁQmZzJZIE b le—v+aa—v+ (%%—ﬂgglafoé)vw

n2n1

+ (@82 Y S embd

m=114,j=1

e ae 60 90,02 " 920z

n2n1

iz 00 (@ 08 of
CCARDIDIE +2,g8;’(§67—ﬂ2’ ’)

m=14,j=1
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and Bss in the form

B n—2 n—1 . . 266,6 6f
Bo= 73 D 2 +1bé(ﬁao 52 ', 8:c6zz

m=14,j=1
n—2 n—1
+ 8 Zl Z m+2bz] (Z%_IBZ l&fl)
m=1¢,j=1
z 9B i
" <§a—a‘5z )amz

n—2 n—1 k—2
2 m2pij | T _0°B B 104
S SO R RS S

m=11i,j=1
k—2

0
—p Z lae gg ]
Moreover, the operator with higher order of € has the form
(2.21) Bs(v) = (af?) " Bs(u) + B 2ap1(e2,e5)eb sk + 1y,
with all derivatives expressed in terms of (2.15), (2.16)-(2.18).

3. Local approximate solution

The main objective of this section is to use coordinates (z,z) defined in (2.15)
to construct a suitable local approximation to a solution expressed by the form,

(3.1) V =w(z) + ce(ez)Z +Ze¢lezm

where w and Z are two functions defined by (1.4) and (2.1). In the above expression,
we have denoted ¢;, ] = 1,--- ,k — 1, smooth bounded functions to be determined
in the sequel. As we have mentioned, the unknown parameters fr_» (c.f. (2.12))
and e will be chosen in the last section by solving a system of differential equations.
In all what follows, we shall assume the validity of the following uniform constraints
on the parameter e

1
2,

(3-2) llells = llellz=(x) +€ll Vi ellzaw) + €] Ak ellpage) < €
For simplicity of notations, define
(3.3) F ={ (fr—2,€)|fr—2 and e satisfy (2.13) and (3.2) respectively }.

Now, the key point is to choose suitable correction terms ¢,--- ,¢r_1, and then
prove that the approximate solution V solves problem (2.19) up to order O(e*) for
the given integer k in (2.12).

Formally, we have

(w+0)P = w”(1+g)p = w? 1+pg+m(9)2+

2 w

rcun($) +0( 2]

(3.4)
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Setting © = e(eZ + ¢1) + Ef:_; el ¢; and separating the powers of €, we get

k—1 p
(w +eeZ + Z El(ﬁl)

=1
k i1 47 Jr—1
— P 7 C (eZ + ¢1)]1¢é2 R |
=w E :E E : 5J1, s Jk—1 Wit ie—1
=0 g1, ik—1,00 L=t
O k1
+ w”O(|—| )
w

Whence, using elementary calculation, we collect the powers of € up to order £ in
the last formula, and then get the estimate

k—1
P
By = (w+an+ E elqﬁl)
=1
k VA 1 472 Jle—1
B N A Y St =
: 2J15 " Jk—1 ’U)j1+"'+j’“—1
=0 i, dk—1,20 L=t

(C] 0
< [+ (14 Oy O],
w w
More precisely, using (3.4), we make a decomposition

k ) j Tl —
p i (eZ + ¢1)" ¢35 - - 3"
W’y e > Cijr e dicr
=0

Ji++ik—1
J1y s de—1,00 Li=i v
A 1 2
= wP + pwP'eeZ + Zelpwp_lqﬁl + Eszp(p— l)wp_Q(eZ—k ¢1)
=1

k
+pp—Dw > (eZ+¢1) D _e'di1 +Bs

=3
(3.5)
=B, + B, + Bs,
where we have denoted
k—1
(3.6) B, =wP + pwP leeZ + Zelpwp*%l,
=1

1
B, = 55217(17 - DwP™? (eZ + ¢1)2

3.7) k
+ plp— Vw2 (eZ +¢1) Y eldri.
=3
In the above, we have denoted that
(3.8) B3 = zk:&‘lgl,
1=3
where for every [ = 3,---,k, the component ®; is independent of the terms

d1—1,- ,¢0r—1. The reader can refer Remark 2 for the criterion to arrange the
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error terms with the correction terms ¢, --- , ¢r—1 involved.

Putting V into (2.19) and expanding formally, we derive that

k—1
B(w) + 5(62/8_2 Ak e +)\0€)Z + Zgl [¢l,zz — ¢l + pwP—1¢l]

(3.9) =t
k-1 k—1

+ B(zeZ) + B2 &' A, 1+ D _e'B(¢r) + Bo + B2 + B3 = 0.
=1 =1

13

3.1. Local error. In this subsection, we compute all error terms in (3.9). First,

we calculate the error

Direct calculation gives that
k k
By(w) = Z e'A; + Z etA;+ e AL,
i=1 i=1

with expressions defined by
Ay =B Hez)wy - B7Vi(ez, 00w, Ay = —B7*Vi(e2,0) fow,
Ay = — B Ak fow, — B Ak fows — 2872 Vi B+ Vi fows
=267 a7 vr a- Vi fows = 2877 ik B+ Vi forwes — B Vit forw,

A2 = - ﬂ_2|AK|2$wz + /6_4| VK ﬂ|2m2wwm + | VK f0|2www + ﬂ_3 AIC ﬂxwz
+ 6720 A aw + 201872 Yk a - Vifrws

1 1
- W‘Gﬂgw - §Wtf02w - ﬂ_QWflw-

Note that Al, A2 are odd functions in the variable z, while Al, A, are even func-
tions in the variable z. For I running from 3 to k, we have that the odd parts can

be expressed by
Ay = — BTHAKP fimaws — BT Dk fimaws — 2872 Uk B+ Vi fi—2Ws
—-287'a ' vk a- Vi fiaws — 2877 Vi B Vi io28Was
— B Vit fr—ozw + by (fo, -+ , fi=s)-

On the other hand, the even parts and high order terms have the form
Al = —,6_2%]0[7111)'}'6[(]00,"' Jfl*2)5 123) Jk_]-a
Ay = br(fo, 5 fr—2), Apy1 = b(fo, -+, fr—2)-

In the above, the terms EA)l(f07 T 7fl73)7 El(fOJ o 7fl*2)7 b(f07 T 7fk72)7 are com-

bination of powers of the parameters fo, - - - , fr_2 and their derivatives with smooth
bounded coefficients. Moreover, b;(fo, -, fi—3),l = 3,--- ,k are odd functions in
the variable z, while b;(fo,--- , fi_2),l = 3,--- , k are even functions in the variable
x.

Remark 4: In the above, we do not write Bl(fo,--- , fi—3) and El(fo,--- , fim2)
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in an explicit form. In fact, we will use a recurrence procedure to find the cor-
rection terms ¢1,--- ,0k—1 and parameters fi,--- , fr—s, and then cancel the er-
ror terms with order lower than k. For that purpose, for any chosen parameters
fo, -+, fi_s and correction terms ¢1,--- ,P;_1, by solving the differential equation
(8.55) for fi_o under the non-degeneracy condition (1.16), we choose a suitable pa-
rameter fi_o to make the sum of odd parts of all errors with the same order O(e'),
such as Al, do not lie in the kernel (spanned by the function w,) of the operator
W — 1+ pwP=t(c.f.(3.25)-(3.26)). This is equivalent to the orthogonal condition
like (3.54). On the other hand, since w, is an odd function, and b;(fo,--- , fi_2) is
an even function in the variable x, the term b;(fo,--- , fi—2) automatically satisfies
the orthogonal condition for any chosen parameters fo,--- , fi—o. After that, we
then solve a differential equation (3.52)-(3.58) again and find the correction term
@ to cancel the error terms of order O(e'). In the sequel we will write the error
terms as this form.

By using (2.20), it is also derived that
w)—ﬂ’z’ii ey |2 00 Z’af’— Sa
m=1 i j=1 ﬂ 6:‘/183/] 6?]1 =0 =0 oy
— — Oa [z 0B ofi
(1 2 m+2 z] it b )
o EE e (515

=0
(3.11)
n—1 n—1
—2 m+115 (L op _ 10fi
+h %;E bm(ﬁa~ ﬁz By])
n—2 n—1 n—1n—1 6
F )t ST ey T (o) S S ey 92,
m=114,j=1 9 6 m=2 j=1 ayj
n—2 n—1
m+2bzg .CL' 6/8 lafl>
T 0p 191
(Ba_yfﬂ; ayz> T

There is a similar form for Bg(w) as above. Whence, we write Bs(w) + Bg(w) as
the form

k

Bs(w) + Bg(w ZeBlfo, © fims) + e Bi(fo, -+, fios)
=3
+5k+1Bk+1(f07' o 7fk—2)7

where the terms Bk+1(f07 T 7fk72) and El(fO; o afl73);Bl(f07 T afl73);l = 37 U
are combination of powers of the parameters fo, - -- , fr_2 and their derivatives with

smooth bounded coefficients. Moreover, ]§l(f0, -+, fi—3),1 =3,--+ , k are odd func-
tions in the variable z, while B;(fo,--- , fi—3),! = 3,--- ,k are even functions in
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the variable z. As a conclusion, we get

k k k
Bw)=) e'Ai+> A+ Ap + ) e'B;
i=1 i=1 =3

(3.12) .

+ Z EiBi —+ Ek+1Bk+1.
=3

Second, we compute the error

(3.13) £(c2872 Ak eZ + NoeZ) + B(ee2),
with B(eeZ) = By(ceZ) + Bs(eeZ) + Bg(eeZ). There also holds
k k
By(eeZ) + Bs(ceZ) + Bg(eeZ) = Zeici + Zsici + "1Cry.
i=2 i=2

In the above, we have denoted the following forms

¢, = B 1HeZ, — B 3VsexZ, Cy = —B 2V, foeZ,

Cs = bg(/fo), Cs = jﬁ_2Wf16Z+b7(fo);
Cl = Cl(fO:"'7fl—3ae)7 Cl = Cl(f07"' 7fl—27e)7 l:47"'7k7
Cir1 = Ciy1(fo, -+, fr—2,€)-
Moreover, C;,l = 2,3,---,k are odd functions in the variable z, while C;,l =
2,3,---,k are even functions in the variable z.

In summary, we have that

k k k k
S(V) = ZEzAz + ZElA, + Ek+1Ak+1 + ZEiBi + ZEZB,
i=1 =1 =3 1=3

k k
+ Ek+1Bk+1 + 3872 AxeZ + ehoeZ + Zeiéi + Zeiéi
=2 =2
(3.14) -
+ 101 + Y & [fraa — &1 + PP 1]
=1
k—1 k—1
+ Y B Ak b + D e'B(dn) + Bo + Bz + Bs.
=1 =1
Now, we shall write the error terms involving correction terms ¢1,:-- ,¢r—1 in a
suitable form. In the next subsection, for any given [ = 1,2,--- k — 1, we will

choose ¢; as the form
az (e2)bin (x) + a2 (e2)bi2(2),
for some generic smooth functions a1, a2, b1 (odd) and b2 (even) (c.£.(3.33)). More-

over, the terms a;; and a;2 do not depend on the unknown parameters fi,--- , fr—2-
Whence, we make a decomposition as

k-1 k k
(3.15) DB Ak b=y e+ Y e+ M H

=1 i=3 i=3
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where

(3]‘6) 7:{1 Zﬁl(d)la 7¢i—27f07"' 7fi—3)7
(317) 7:11 Zﬂl(d)la 7¢i—27f07"' 7fi—3)7
(318) Hk:-i—l ZHk+1(¢17"' 7¢k7f07"' 7fk—2)'

Moreover, H; is an odd function in the variable z, while #; is an even functions in
the variable z.

Remark 5: Based on the same reason as we stated in Remark 4, we do not write
H; and H; in an explicit form in the above formulas. In fact, as we stated in
the above, for any i = 3,--- ,k, the term ¢; does not depend on the parameters
fis- 5 fr—2. Whence, for any chosen parameters fo,--- , fi_3 and correction terms
¢1, -+ ,Pi_1, the terms H;: and H; with the form in (8.16)-(3.17) do not depend on
the parameters f;_o,--- , fr—2 and correction terms ¢;,--- ,dr—1. We can solve the
differential equation (3.52)-(3.53) and find the correction term ¢;, which has two

components to cancel the error terms eiH; and £H;. In the sequel we will write
the error terms as this form.

From the definition of the operator B in (2.19), we also write
k
H
3Bl = sQ(Em - e~ g Ly
+Z ( Pi-1,a — ﬁ3$¢z 1- ﬁ; (fi—2gn +f0¢i—1))

+ Z i+ Z '8 + e B,

=3
where, for every ¢ = 3,--- ,k, the components %: and §; do not depend on the
correction terms ¢;_1,- - - , ¢, and the unknown parameters f;_s,--- , fr—2. In other

words, we have
Sz = @z((ﬁl; 7¢i—2;f07"' 7fi—3)7
§i = Si(d1, -+ dizay fo. o, fis)

Moreover, §, is an odd function in the variable z, while §; is an even function in
the variable z. For further references, using (3.7) and (3.8), we decompose B3 into
even parts and odd parts, and then write 8, + B3 as

1
By + By = —ezp@ —DwP 2 (eZ + ¢1)°

(3.19)

pp— DwP=*(eZ + ¢) ZE¢1 1+ Z (D +©Z),
Fori=2,--- ,k, the components i)i and ®; are independent of the terms Gi—1, -, Ok—1,
i. e.

(3.20) D; = Dilr, -, bis), D = Dild1, -, hi_2).
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Moreover, ®; is an odd function in the variable z, while ®; is an even function in
the variable z.

3.2. Further improvement. We will find the unknown parameters fq,--- , fr—3
and the correction layers ¢1,--- , ¢r—1, and then improve the approximation by a
recurrence procedure. It is worth to mention that the term €282 Ax eZ + eXgeZ
lies in the approximate kernel of the linearized problem(c.f.(6.1)). We ignore this
term for the moment and then cancel other components of the error with order

lower than k by choosing suitable correction terms ¢y, -+, ¢r—1. Using (3.14), for
given z € K, we then consider the problems
(321) ¢1,z:1: - ¢1 + pwpil(bl = —Al —Al in R,
(3.22) ¢1(£00) =0, / dprwzdx = 0;
R
~ . 1 .
G200 — G2 + pwP lpy = — Ay — Ay — 5]?(17 —Dw” 2p1¢1 — Go

H Vi Vi .
(3.23) - (E(pl,z - ﬁ—;wﬁ - ﬁ—;foﬁbl) in R,
(3.24) ¢2(F00) =0, / powydz = 0;

R
andforl=3,--- k-1
_ " < _ H
Bloe — Gt +pwP g = — A — A —p(p— Vw211 — G — E@—Lw
Vi Vi .
(3.25) + ﬂ—ﬁxdn—l + ﬁ_;(fl—%f’l + foi-1) inR,
(3.26) ¢i1(£o0) =0, / dwydz = 0.
R
In the above, we have denoted
A . 1

(3.27) G2 = Ga+ Go +p(p — DwP?eZey + Sp(p — w2’ 27,
with the odd part and even part given by
(3.28) Go=Co+ Mo+ 32+ D, Go=Co+Hao+ 2+ D2,

and also G, = G, + G, +p(p— DwP2eZ¢; 1 with
(3.29) G=Bi+C+H+&+9, G=B+C+H+&+D.

To cancel the first order terms EAl, eA; and improve the approximation, we
should choose the correction layer ¢y with suitable form. For this purpose, given
z € K, we consider the problem

(330) _d)l,zz + ¢ —pw”_lqﬁl = Al + Al in R,
(3.31) ¢1(£o0) =0, / drwzdz = 0,

R
as it is well known, which is uniquely solvable provided that

(3.32) /(A1 + A w,dz = 0.
R
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In fact, using the fact that w is an even function in the variable z, we have

/ Ajw,dz =0.
R

Moreover, the assumption that X is stationary in (1.15) and the identity

/wzdx = 2a/widx,
R R

/ Alwmda: =0.
R

Whence, the solution to (3.30)-(3.31) can be expressed as

will lead to

(3.33) ¢1 = ¢11 + P12,

where

(3.34) ¢11(2,7) = an(ex)wi(z), ¢2(2,7) = folez)arz(e2)wa (),
with

(3.35) a1 =B 'H, app=-p2V,=0 'H.

In fact, function wy is the unique odd function satisfying
(3.36) —Wy zg +wy — pwP twy = w, + 0 taw, / wiwzdz = 0,
R
and function ws is the unique even function satisfying
(3.37) —Wa g + W — pwP lwy = w, / wowydr = 0.
R

Moreover, wy has an explicit expression

1 1

For more details of the functions w; and ws, the reader can refer to [13].

In order to cancel the error terms of order O(¢?) and improve the approximation
by solving problem (3.23)-(3.24), we collect all terms of order O(¢?) in S(V), which
has the form €25, with

R . 1 H Vi Vi
So=As+ Ay + 5;0(10 - DwP %p1 1 + <— Lo !

(3.39) . EACN
+p(p—DwP %eZé; + Ep(p —DwP 2’22 + Go + Gs.

f0¢1)

We denote the odd part and even part respectively by €28, and £2S,. As the
arguments in solving (3.30)-(3.31), we need an orthogonal condition like (3.32).
Hence, we compute the projection of So and S, onto the kernel of the operator
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Gze — ¢ + pwP~ ', which is spanned by w,. In fact, we obtain

A 1 1 2
Sy =— BlAIC|2f0'wz -3 Ak fows — 7 Vi B Vifow, + B HeZ,
2 2 Vi
T % Vi @ Vi fows — 7 Vi B Vrforwze — ﬂ—t;foww

+ B Hais fows,e — B *Viars forws — B~ *Viaw fowr — B *ViexZ
+ p(p - l)w”*QanwleZ + p(p - 1)U)p72a11a12f0w1UJ2 + QQ,

Sy == B2V fiw — B2 |AxPow, + B Vi BI*2 W + | Vi fol*Wes
+ ,373 A]C ﬂxwz -+ (a/@fz)*l AIC aw + (aIBS)—l Vi a- V}C/@ZL’U}Z
— (28" Wurw — 26°) WVafow + 7 Hanwi e — B Vianizw,
1
= B Viafows — B*VafoZ + Sp(p - 1)wp—2[(¢11)2 + (¢12)2]
1 .
+ p(p — L)w?™? [a12w2€Z + §e2Z2] + Ga,

where the terms G, and G are defined in (3.28). Since the term S5 is even in the
variable z and w, is odd in the variable z, there holds

(3.40) / Sowgdz = 0.
R

On the other hand, using the relations (3.35) and the identity

/aswwz dz = —U/ w? dz,
R R
we get

/}RS’wadx =— g1 A fO/]R w2 dx — 2872k 8- v;cfo/R(a:wmww + w?)dz
- 227 yka- Vlcfo/Rwi dz — 5_1|Alc|2f0/Rwi dz
- ﬁ_3V§:tfo/wawx dz + ﬂ_lHO’lZfO/RwZ,wwxd-'E
- ﬁ*?’%aufg/R:cwgwwdm — foﬂfzalﬂ/}/Rwlwwdx

+p(p— 1)a11a12f0/ wP 2wy wow,dz + ﬂflﬂe/ Zywydx
R

R

- ﬁ*SVte/ xZw.dzx + p(p — l)alle/ wP 2wy Zw,dz + / Gow,dz
R R R

0
== Gl B fo+ 87 vk BVl + 207 vra- Vichy

+ (JAxc? —ﬁ_ZUVZt)fo]
+ a11a12f0/

x
(w2,www + —wywa + ’U)lww) dz
R ag

+ p(p - 1)(111a12f0/ wP 2w wow,dz + doe,
R
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where §; = / wi dz and dp is a smooth bounded function independent of the

R
unknown parameters fo,--- , fr—2,€ and the correction terms ¢y,--- ,¢r_1. Note
that by differentiating the equation (3.37) and using the equation (3.36), we get

p(p — 1)/ wP 2wy wow,dx = —/ ww,dx +/ (wy + o~ aw)ws 4 dz.
R R R

The last relation leads to

a11a12f0/ (w2,xww + o7 rw,w, +w1wm) +p(p— 1)a11a12f0/wp_2w1w2wz
R R

= all(.erz)alz(.erz)fo(sz)/IR (2w,wa, + 0 Lz (wWws),) da

= —0716*1H2f0/ wi dz,
R

where we have used (3.35) and the following integral identities

2 1
2 d :—(— _)/ 2d7
/ng,www x p—1+2 sz x

1 2
~1 2
o wwedzr = (5 — /wﬁdm.
/R 2 (2 p—l) R

Using the last relation, we add up all components together and get

A 1)
/RSszdIL‘ = —EII:AICfO+%VICV‘VICij|

5
- 51(|A;c|2 tolH? - %Vtt ) fo + doe,

(3.41)

where we have used the relation
_ _ o
Bt vkB+2a Vo= v VeV

Note that there is only one term —e2V;fiw in 625'2, which is relative to the
unknown parameter f;. We choose (c.f.(3.34))

(342) 62¢22 = 62f1(l12UJ2 = 62f10_1H’LU2,

as a further correction layer to cancel the term —e?V; fiw. For the solvent of the
problem (3.23)-(3.24), for any given z € K, we consider the problem

(3.43) —12 g + 2 — pwPrehy = Sy + S5 + Vo friw in R,

(3.44) 9 (F00) = 0, /Rzpzwwdw =0,

as it is well known, which is uniquely solvable provided that
/R(S’Q + 95 + Vifrw)w,dz = 0.

In fact, using (3.40) we have

/(5’2 + Vi fiw)wydz = 0.
R



ON AMBROSETTI-MALCHIODI-NI CONJECTURE FOR GENERAL HYPERSURFACES 21

While (3.41) implies that

/ Sgwmdm =0,
R

is equivalent to the following differential equation

d
(3.45) Arho+ 0 Vx V- Txfo+rfo = - 2e,

where 7, and 2 are some smooth functions defined by

o _ o
W’IZV, 72:(|AIC|2+‘7 le_V%t)'

By using the non-degeneracy condition (1.16), for any given e, we can solve problem
(3.45) and determine the parameter fo(e), which is obviously Lipschitz continuous

with respect to e. Whence, the solution to (3.43)-(3.44) can be expressed as

(3.46) Vo1 (€2, 2) + Ya2(e2,2),

where 121 is an odd function in the variable z and 155 is an even function in the
variable x. The components in ¥s; and 192 are Lipschitz continuous with respect

to unknown parameter e and independent of the parameters fy,--- , fr—2. Finally,
we choose

(3.47) $2(2,7) = P21(e2,T) + Y22(€2, T) + P20

3.3. Recurrence procedure. For | = 3,--- ,k — 1, in order to cancel the error

terms of order O(e!) and improve the approximation by solving problem (3.25)-
(3.26), we collect all terms of order O(g!) in S(V), and denote their sum as £'S;
with

7

o . 1
Si=A1+A + EP(P —Dw? 211 + 3

D10 — %ﬂxﬁlq
- %fl—ﬂbl - %f0¢1—1 +Gi.

Here, the function ¢;_; has the form

(3.48) di—1(2,2) = Pi—11(e2, ) + Yr_1,2(e2,2) + Pr_1,2.

with

(3.49) Gi-12 = fisarpws = fi_o0 *Huws.

The components in 9;_1,1 and ;1 2 are independent of the parameters f;_o,--- , fr_2.

Moreover, ;1,1 is an odd function in the variable z and v;_ 2 is an even function
in the variable z. .

We denote the odd part and even part respectively by €'S; and £!S;. As the
arguments in solving (3.30)-(3.31), we need an orthogonal condition like (3.32).
Hence, we compute the projection of S; and 5’1 onto the kernel of the operator
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¢ze — ¢ + pwP~' ¢, which is spanned by w,. In fact, we obtain

A 1 1 2
Sp = — ElAKil2fl—2wz ~ 3 Ak fi—owy — 7 Vk B - VK fi—2ws
2 2 Vi
Y Vk oV fi—awz — 7 Vk B Vifi—2Zwee — 6—t3tfl—2ww

+ B Haia fi—sway — B3 Viara fi—ozws — B *Viars fimowr — B 2Vifoi—1,1
+ plp— 1)wp72a11a12fl—2w1w2 + pp— 1)wp72011w1¢l—1,2
+ p(p — DwP~2 foarpwathy 11 + B HY 22, — B3 Viath 22 + G,

St == B Vaficrw + plp— DwPaniwiti—11 + p(p — Dw? ™ foarawiti1
+ plp — wP 2 fo fisal,ws — B *Vifiafoarows + B Hy 11,0
— B Vifothi—12 — B *Vifimsarzws — B *Vixhi_a1 + Gr.

Since the term S is even in the variable z and w, is odd in the variable z, there
holds

(3.50) / Sywydz = 0.
R
On the other hand, using the same arguments as in (3.41), we get

S - (51 g
/Rslwzdl’ =~3 [ Ak fi—o + 7 VK V. VICflf2]

1)
(3.51) _ El( |AIC|2 +o 'H2 - %Vtt )fl72
+di—2(fo, -5 fimz e, P1, -, hi—1).

Here d;_» is a smooth bounded function independent of the unknown parameters
fi—2,- -+, fx—2 and the correction terms ¢;,--- ,¢r—1 and is Lipschitz continuous
with respect to its parameters.

Note that there is only one term —e'V; fi_jw in e!'S;, which is relative to the
unknown parameter f; 1. Similarly as in previous subsection, we choose (c.f.(3.34)
and (3.42))

elgy = e fi_rarows = €' fi_107 Huws,

as a further correction layer to cancel the term —&!V; fi_jw. Moreover, for given
z € K, we consider the problem

(3.52) e + P — pwP Y = S+ S + Vifi 1w in R,
(3.53) P(£o0) =0, /Rwlwwdm =0,

as it is well known, which is uniquely solvable provided that
(3.54) /R(gl + 8 + Vifi_iw)wydz = 0.

In fact, using (3.50) we have

/(S’l + Vificrw)wgdz = 0.
R
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While (3.51) implies that

/ S’lwzdw =0,
R

is equivalent to the following differential equation

d;
(3.55) Axfica+n VeV -Vkfi—e +12fi2 = 1512ﬁ,
where 7, and 2 are some smooth functions defined by
(o g
’Y1=v, ’Y2=(|AIC|2+071H2_VVtt)-

By using the non-degeneracy condition (1.16), for any given e, we can solve problem
(3.55) and determine the parameter f;_o(e). Whence, the solution to (3.52)-(3.53)
can be expressed as

(3.56) Y (ez,z) + Y2 (ez, x),

where 1;; is an odd function in the variable z and ;2> is an even function in
the variable . The components in ;1 and ;2 are independent of the parameter
fi—1, -+, fr—2- We choose

(357) ¢l(z7$) = ¢ll (EZJ iL‘) + ¢l2 (52:71') + ¢l2-

3.4. Summary. We conclude that for any given parameter pair (fr_2,€) € F, the
basic local approximate solution is expressed by V in (3.1). Near the surface K¢, if
we set V + ¢ as the solution to (2.19), the problem takes the form as

(3.58) Li(¢) + B(¢) + Ni(¢) + E1 =0,
where the two operators L; and N; defined by

Li(¢) =B Dk, ¢+ dua — ¢ + VP ' 0,

Ni(¢) = (V+¢)P = VP —pVP~1g.
The corresponding error is defined by

E, =5()
=372 AxeZ +eXoeZ + " [Ak +AL+ %P(p - 1)wp_2¢1¢k—1]

(3.59)

e (Gouor = gowbior = g fuadn = 5 Vifobon) + £

+ ghtt [Ak+1 +Bry1 + Cryr + Hpgr + 3k+1] + By,
where Gy, = Gy, + Gy, +p(p — DwP~2eZ¢y_, with
(360) Gr=Br+Cr+Hr+3x+Dr, Gr=Br+Cr+Hi+8k+D.

The components in _C’;k and Gy are independent of the parameter fi_». Here, the
function ¢y_1 has the form

(3.61) Or—1(2,2) = Yr—1,1(62,2) + Yr—_1,2(€2,%) + Pr—1,2,

where

(3.62) dr—1,2 = fr—2012w2 = fr—20" Hw,.
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The reader can refer (3.34) for the definition of a;» and ws. The components in
r—1,1 and 9_1 2 are independent of the parameters f;_». Moreover, ;_1,1 is an
odd function in the variable « and ;12 is an even function in the variable z.

For further references, we decompose the error as two components
(3.63) Ey = E11 + Eno,
where we have denoted
(364) E11 = 63572 A}C eZ + E/\o@Z, E12 = E1 — Ell-
3.5. Size of the error in weighted Sobolev norms. To estimate the size of
error, we have to introduce some suitable weighted Sobolev norms. Here we use the
same norm as those in [14] and [15]: for a function h(z,z) defined on a set E € R",

andfor0<a<ﬁ and n+1 < ¢ < +00, we set
(3.65)

2
[Bllgoie = sup e /[|hl|LaB((za).1)s NPll2sgoim =Y, sup e DIl Lap((z,a).0)-

(z,2)€E =0 (2,z)€EE

Let 6 := K, x (—%Q, %Q) From the uniform bound of e in (3.2), it is easy to see
that

(3.66) |E11]]g.0i < CeY?H5,

Here B((z,),1) denotes the ball of radius 1 centered at (z, z).

All terms in Ey» carry €* in front, we then claim that
(3.67) 1 Braly i < Ce*FET5,

A rather delicate term in Fi5 is the one carrying Ak fr_o since we only assume a
uniform bound on || Ak fr—2||Ls(x)- For example, we have a term K; = 372¢* Ag
fr—2w; in S(w) which has bound like

n

1K 1]lg08 < Ce™F275

g0

Other terms can be estimated in the similar way. Moreover, for the Lipschitz
dependence of the term of error Ej» on the parameters fr_» and e for the norm
defined in (2.13) and (3.2), we have the validity of the estimate

|| Er2(fr-2,€) — B1a(fr-2,8)|l.0.5

(3.68) fp 1o . _
< Ce™ 270 (|| frmz — fr—2lla +[le —€l[s).

4. The gluing procedure

In this section, we use a gluing technique (as in [15]) to reduce problem (2.11)
defined on R™ to a projected problem on the infinite strip &, where:

(4.1) 6=K. xR

Let 6 < 80/100 be a fixed number, where dy is a constant defined in (2.9). We
consider a smooth cut-off function 7s(t) where ¢t € Ry such that ns(t) = 1 for
0 <t<dand n(t) =0for ¢t > 25. Set n5(s) = ns(els|), where s is the normal
coordinate to K.. Let V(z,z) denote the approximate solution constructed near
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K. in the coordinates (z,x), which was introduced in (2.15). We define our global
approximation by

k—2
(4.2) W(y) = n5s(s)az2)V (2 8(s = Y e'f))-
=0

Obviously, W is a function defined in the whole space R™, which is extended as 0
outside the 64 /e-neighborhood of K.
For u = W + ¢ where ¢ is globally defined in R”, denote

Y(u)=Au — Vu + u? in R".
Then u satisfies (2.11) if and only if
(4.3) L($) = —-E - N(¢) inR",
where we have denoted

L(§) =D — Vo +pW? 14,
N(@)= (W + @) W —pW? 14, E=T(W).
We will look for ¢? in the following form
¢ = n55(s)$ + 9,

where, in the coordinates (z,s) in (2.9), we assume that ¢ is defined in a neigh-

borhood of K.. Let £ be also an extension of the operator L defined on the whole
strip &. More specifically we set:

(44)  L(8) =055 | A = Vo + W 6] + (1= 155) (Bt + D6 = V).

With this definition ¢ is a solution of (4.3) if the pair (¢,) satisfies the following
coupled system:

(4.5) L(6) = n [~N(nisé + ) — B —pWP1y]

AYp =V + (1= n5)pW? 1 = — (Ans5)d — 2(Vigss) - (Vo) — (1 —15) E
— (1= n5)N (1550 + ),
where ¢ is defined globally on & and % is defined in R™.

The key observation is that, after solving (4.6), the problem can be transformed
to the following nonlinear, nonlocal problem involving ¥ = 1(9)

(4.7) £(9) = 15 [~Nns6 + ) = B = pw? 1yy].

To solve (4.7) we will set up a fixed point argument by first solving (4.6) for a given
¢. We assume that ¢ satisfies the following decay property

(4.8) |Vo(z,5)| + |¢(z,8)| < e /5 if |s| > d/e,

for certain constant 7 > 0. Let us observe that V is uniformly positive and W is
exponentially small for |s| > §/e, where s is the normal coordinate to K. Then
the problem

(4.6)

AYp =V + (1 —n5)pWP 'y =h inR",
has a unique bounded solution ¢ whenever |||/ < +00. Moreover, there holds

[¥]loo < CllR]]oo-
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Since N is power-like with power greater than one, a direct application of contrac-
tion mapping principle yields that (4.6) has a unique (small) solution ¥ = 1(¢)
with

(49 W@llee < Ce(llgllz=qai>are) + V9l (ai>a/e) +€77/%),

where |s| > d/e denotes the complement in R™ of §/e-neighborhood of K. More-
over, the nonlinear operator 1) satisfies Lipschitz condition of the form

[9(1) — (B2)llze < Ce(|l¢1 — ballLo(s|>s/e)
+ V1 — Vo||Lo(|s|>6/2) )-

From the above discussion, the full problem has been reduced to solving (4.7)
for ¢ satisfying the condition (4.8). We make changing of variables as defined in
(2.15), and then define an operator on the whole strip & as the form

L() =doo + B> Di, ¢ — ¢ + pVP™' ¢ + i B(9)
— (1 —ngs)pV* 9.

Rather than solving problem (4.7) directly, we deal with the following projected
problem: given parameter pair (fi_s,¢e) € F, finding function ¢, such that

£(6) = n5(af?) [ - N (n550 +v(@) — B — W7 1y(9)]
+ nscw, + n5dZ in G,

(4.10)

(4.11)

(4.12)

(4.13) /R¢(z,x) wy (z)n5 dz :/}Rq)(z,x) Z(z)nsdz =0, z€K..

In Proposition 6.2, we will prove that this problem has a unique solution ¢ whose
norm is controlled by the ||-||4,,-norm of E» = 1§ E12, the component of (a3%) " 'nE.
Moreover, ¢ will satisfy the constraint (4.8). After this has been done, our task is
to choose suitable parameters fr_o and e, possessing all properties in (2.13) and
(3.2), such that the functions ¢ and d are identically zero. It is equivalent to solving
a nonlocal, nonlinear system of second order differential equations for the unknown
parameters fr_o and e defined on the manifold K.

5. Linear Theory
Recall the definition that

L(P) = oo + B2 Dic, ¢ — ¢ + pVPT0 + ngs B(¢) — (1—155)pV" "' 9.

This section will be devoted to the resolution of the basic linear problem for L.
Given function h, we consider the problem of finding ¢ such that we have

(5.1) L(¢) =h+ cnjw, + dn§Z in &,

(5.2) /R¢(z,a:) wg(x)n5 dz = /R¢(z,:c) Z(x)nsdz =0, z€K..

Our main result in this section is the following.
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Proposition 5.1. There exists a constant C > 0, independent of € and uniform
for the parameters fr—2 and e in (2.18) and (3.2) such that for all small & problem
(5.1)-(5.2) has a solution ¢ = Ty, _, .(h), which defines a linear operator of its
arguments and satisfies the estimate

16lla.c < CllAllg,0-

We remark that we have omitted the dependence of the norm on the domain &.
We will use this convention in the rest of the paper.

For the proof of Proposition 5.1, we need to show existence result for a simpler
problem. Let us define the linear operator

L(§) = ¢ue + B> Dk b — ¢ + puP™9,
and consider the problem: given h, finding functions ¢ and ¢,d to

(5.3) L(¢) = h+ cw, + dZ inG,

(5.4) / d(z, ) wy(z)dz = / d(z,z) Z(z)de =0, z€K..
R R
Certainly, if ¢ satisfies (5.3)-(5.4), the functions ¢ and d are given by
(5.5) o(y) = _fR hz, T)wydx _th(z,x)Z(x)dm-
Jrwi k2

Lemma 5.2. Problem (5.8)-(5.4) possesses a unique solution, denoted by ¢ =
To(h). Moreover, we have

1D%llg.0 + 1D¢lloo,0 + [1llcc.s < CllAllgc-

Proof. To this end let ¢ be a solution of (5.3)-(5.4). We observe that for the
purpose of the a priori estimate we can assume that ¢ = d = 0 in (5.3). We follow
the proof of Proposition 4.1 in [15]. Since the arugment is similar, we just give a
sketch.

We first claim that there exists a constant C' > 0 such that for all small ¢
and every solution ¢ to Problem (5.3) with ||}||co,, < 400 and right hand side h
satisfying ||h||q,s < 400 we have

(5.6) 1D?6l2,,0 + 1D lloo,0 + [|dllco,e < Cllg

By local elliptic estimates and Sobolev embedding (since ¢ > n+ 1), it is enough
to show that

(5.7) 1lloe,o < Clgllo-

Let us assume by contradiction that (5.7) does not hold. Then we have sequences
e =c¢ — 0, hy with ||hk||q7,, — 0, ¢, with ||¢k||oo,g = 1 such that

Ovatk + B *Axc . — ¢ +pw” "¢ = hy in K. xR,
/¢k(z,x) w'(t)dz = 0 VzeK.
R

, dy) =

lg,.0-

By blowing up argument similar to [15], we arrive at a non-zero and bounded
function ¢(z,z) that satisfies

Qzacz + AR"—1§Z~5+ -1 +pw”’1gz~5 =0in R"
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and
0= /R 3z, 7) w, = /R ¥(z2) Z(2).

We obtain a conclusion that ¢ = 0 by following the same proof as in Lemma 4.1
of of [15] and using the inequality (2.7).

Thus we obtain a contradiction. This proves the a priori estimates. The existence
follows exactly the same as in Proposition 1.1 of [15], replacing the orthogonality
condition [, pw, = [, $Z = 0.

O

Proof of Proposition 5.1. We will reduce Problem (5.1)-(5.2) to a small
perturbation of a problem of the form (5.3)-(5.4), in which Lemma, 5.2 is applicable.
The key point is that the operator

Bs(¢) =ngs B(¢) — (1 —ngs)pV? " ¢+ p(V?~" —wP™")¢

is small in the sense that

1Bs(9)lla.0 < C6l|¢llg,0-

Hence, the results can be derived by the invertibility conclusion of Lemma, 5.2 if we
choose ¢ sufficiently small. d

6. Solving the Nonlinear Problem

In this section, we will solve (4.12)-(4.13) in &. Note that we have locally
(af®)~'E = E;. A first elementary, but crucial observation is the following: the
term

(6.1) Ei =£3872 AxeZ +eoeZ,

in the decomposition of Ej, has precisely the form dZ and can be absorbed in that
term n5dZ. Then, the equivalent equation of (4.12) is

La(¢) = —n5Er2 — n5N2(9) + ensws + dn5Z,
where we have denoted
N>(9) = (@) | N (1550 + (6) + oW '9(9) |
Let T be the bounded operator defined by Proposition 5.1. Then the problem
(4.12)-(4.13) is equivalent to the following fixed point problem
(6.2) 6 =T (=15 Fr2 = 5 Na(9) ) = A(9).

We collect some useful facts to find the domain of the operator A such that A
becomes a contraction mapping. Firstly, the big difference between E;; and Ei is
their sizes. From (3.66) and (3.67)

(6.3) | Brally,e < cu eFt273,

while F; is only of size O(e'/?). Secondly, the operator T has a useful property:

assume h has a support contained in |z| < 20§/e, then ¢ = T'(h) satisfies the
estimate

(6.4) (¢(z,2)| + |Do(z,2)| < ||gl|~ e 2/ for |z| > 405 /e.
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For more details readers can refer to [13]. Thirdly, recall that the operator ¢ (¢)
satisfies, as seen directly from its definition

(6.5) 9(@lor < Ce (1181 + D8 | parsansse + ).

and Lipschitz condition of the form

(6.6) [|[Y(d1) — (#2)|loo,0 < CS(H |1 — po| + [D(d1 — ¢2)| ||L°°(|z|>206/€) )

Whence, the facts above will allow us to construct a region where contraction
mapping principle applies and then solve the problem (4.12)-(4.13).
Consider the following closed, bounded subset

n

1n
1 ¢llz,g,0 < Te¥+277,

“L e+ 100 < 11l e

Le°(|z|>404/¢)

Lemma 6.1. If the constant T is sufficiently large, then the map A defined in (6.2)
is a contraction from D into itself such that problem (6.2) is solvable.

6.7) )

Proof. Let us analyze the analytic character of the nonlinear operator involved
in A with respect to functions in D

15 N2(6) = n5NL(d +¢(9) + nspWP 4(¢)

Na(¢) + nspWP~ (¢).

Note that Ni(p) = p[(W + tp)P~! — WP~1]p for some ¢t € (0,1). thus
IN1(9)] < Clop|™n(P2),

Denoting S5 = & N {|z| < 10§/e}, we have that for ¢ € D

LIl + 1) s, |, P <2

(6.8)

N2 (6)lar <
ClI8lBe0 + @By ois, | P22

We may assume now p < 2 if we take the following form

IN2(0)llg.0 < ClINSlI5p.0 + 1(D)Ip,5, +11012g,0 + [1V(D3p,0;5, ]-

Using Sobolev’s embedding, we derive that

161150 + [18]3,0 < C18115 4,0 + 113,00 )-

Using estimates (4.9), the facts that ¢ € D, (6.4), the area of Ss is of order O(d/¢)
and Sobolev’s embedding, we get

G By + 1B 3gis, < e[ 1+ 9]
Hence, from the properties of W and ¢(¢) we obtain
(6.9) 175 N2(8) lap.o < C(e*HE3P7P 4 2H175072),

As for Lipschitz condition, we find after a similar calculations
[[N1(¢1) = N1(2)llg,0
< C[lkorllggs + ligrlbae + lloallgss + l@allage]
x ([le1 = @2llgp.o + llor = @2ll2q,0)-

o 110100 |-
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Hence, there holds

[[N2(¢1) — Na(62)llg.0
< [IN1(f1 + (1)) — Ni(¢2 + 9(h1))llg,0:55
+ |[N1(p2 + (1)) — Ni(2 +1(#2))llg,0:5

< Ov(llgr = Gallapiss + 161 = Bollapaisi )
+ Co(|[0(91) = (62l g + 10(81) = ¥(2)|aaoiss )

where v = v; + vy with

-1 -1
v = 19llip,0is; +119(@[gp,0:5, + 101120085 + [ (B0)ll20,0:55

Arguing as above and using the Lipschitz dependence of ¥ on ¢, it can be derived
115 N2(81) = 15 N2 (@2) g, < C[FHE7HETDrp71 4 43507
X ||p1 — #2|

Now, we can find the solution of (6.2) in the sequel. Let ¢ € ® and v = A(9),
then from (6.3) and (6.9)

/|20 < IToll- [ ee™ 375 4 Crrelia=ior 4 or2g2hi=% |,

(6.10)

2,q,0-

Choosing any number 7 > C.||T'||, we get that for small e

1V]]2,q,0 < TEMFETT.

From (6.4)
=25 =3
41Dy S Wllee € < g €%
Therefore, v € D. A is clearly a contraction thanks to (6.10) and we can conclude
that (6.2) has a unique solution in D. O

The error Ej5 and the operator T itself carry the functions f;_o and e as pa-
rameters. For future reference, we should consider their Lipschitz dependence on
these parameters. (3.68) is just the formula about the Lipschitz dependence of error
E,5 on these two parameters. The other task can be realized by careful and direct
computations of all terms involved in the differential operator which will show this
dependence is indeed Lipschitz with respect to the || - ||2,4,,-norm (for all €).

Within the operator, consider for instance the following term involving A fr—2
as the form

Qs (9) =¥ Ak fr—26s.

Then we have

Qs ()7 S6qk+1_"/’C|A/cf|q(sup/le(z,x)de).
Let p(2) = [; |92(2,2)|?dz. Then there holds

1
supp(z) < 5 [ 1gultda+C [ 16,170 i dolda

C

1
< isupu(z)+ n—l/ | Vi ¢z|"dz,
z € S
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which implies that
p(z) < Ce""lgll3

,q,0°
Therefore,

3n

1_3n—-2
Qs @Dlg.e < CE*F2777 || frslla < Cellfi—2lla,

provided that k > n.
Similar estimates can be applied to other terms in the operator involving e* Ax

fr—2-

For the linear operator 7', we have the following Lipschitz dependence

1T (fr-2) = T(fr=2)ll2,0.0 < Ce™ || fr—2 = Fr=2lla-

Moreover, the operator N, also has Lipschitz dependence on (fi_2,e). It is easily
checked that for ¢ € ® we have, with obvious notation

1_=n rs ~
[N uce. ) 8) = 15N iy @) < ORIl = Fialla + lle =l |
Hence, from the fixed point characterization we get that

|(fr—2,€) — B(fu—2,€) .00

n

< CeftiTh [ || fr—2 = faz|, + |l —¢], ]

(6.11)

The conclusion of this section reads

Proposition 6.2. There is a number 7 > 0 such that for all € small enough and
all parameters (fr—=2,€) in F, problem (4.12)-(4.13) has a unique solution of the
form

(¢a (& d) = (d)(fk—Za 6), c(fk—Za 6), d(fk—% 6)),
which satisfies

1 _=n
1¢l]2,q.0 < 767275,

5/5‘

| 1¢1+1Dg || < 18ll2g0e”

Loo(|z|>406 /¢

Moreover, the function ¢(fr_2,€) depends Lipschitz-continuously on the unknown
parameters fr_o and e in the sense of the estimate (6.11). O

Next we carry out the second part of the program which is to set up equations for
fr—2 and e which are equivalent to making ¢, d identically zero. These equations are
obtained by simply integrating the equation (4.12)(only in z) against respectively
w, and Z. Tt is therefore of crucial importance to carry out computations of the
terms fR Eiw,dz and fR E1Zdz. We do that in the next section.

7. The Nonlinear System

Clearly Proposition 6.2 and the gluing procedure in Section 4 yield a solution to
our original problem (1.1) if we can find f;_2 and e such that

(7.1) (fr—2,€) = d(fr—2,€) = 0.
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As we will see this leads to a system of nonlinear partial differential equations. It
is easy to see that the identities (7.1) is equivalent to the following equations

[ @8 5 [¥ a0+ 010) + B+ s ()] wado

(7.2)
+ /]Rﬁ(gé)wm dz = 0,

[ @875 [ g6 + 0(8) + B + W2~ 5(6)| 2do
(7.3) R
+ /£(¢)de - 0.

R
Since the cut-off function 75 appears in (7.2) and (7.3), and the facts that w, and

Z have exponential decay, we have that (a3?) 175 E = E, with the error term E;
defined in (3.59). Whence, it is crucial to estimate the terms

/Elwmdx and /Elde.
R R

The same arguments can be applied to other terms in (7.2) and (7.3). Now, we
divide the estimates for the components in (7.2) and (7.3) into three parts.

7.1. Part I. First, multiplying (3.59) by w, and integrating over the variable z,
using the decomposition of F; in (3.64) and the fact that w, is an odd function in

z, we obtain
/Elwz dr = /Elzwz dz.
R R

More precisely, there holds

/ E12w$dm
R
o 1 _ H Vi Vi
= Ek/m [Ak + §p(p - DwP % ¢1 1 + E¢k—1,z - ﬁ—gx@c—l - ﬁ—;fk—2¢1]wwdx
V. .
- / [_;f0¢k—1 - gk]wxdm +efp(p - 1)/ wP e Z 1w, dz + / Bow,dz
r LB R R

+ €k+1/ [Ak+1 +Bit1 + Crp1 + Hir + 3k+1]wzdil?-
R
Using the same arguments as (3.51), we derive that
)
/ Epw,dz = — 6’“? [ Ax fe—2+mn VeV - Vifr—2+ 72fk—2]
R

+y3efe + et Ae+ e Axce
+ 5k+1b2s AIC fk*Z + 5k+1b357

where 3,74 are two constants,
(o

o
(7.5) m= 3 Y2 = (|AIC|2+U_1H2_VVtt)-

Here and below we denote by b, = 1,2, 3, generic, uniformly bounded continuous
functions of the form

(7.4)

bie = bie(fr—2,€, Vfr—2,Ve),
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where additionally b is uniformly Lipschitz in its arguments.

7.2. Part II. We will estimate other terms that involve ¢ in (7.2),

10) [ (@) 0 [R(ris0 + 0(0) +2W7 ()] weda + [ L@, da.

Using the orthogonality condition (4.13) and the definition of £ in (4.11), the main
components of the last term in (7.6) are

/B(q&)wwdx and /p(V”_l—w”_l)dnuwdx.
R R

Here we recalled the definitions of the operator B in (2.19) and the local approxi-
mation V in (3.1).

Let Ti(ez) = [, B(¢)w,dz. We make the following observation: all terms in
B(¢) carry e and involve powers of z times derivatives of 0,1 or two orders of ¢.
The conclusion is that since w, has exponential decay then

/K I04(6)[dj < Cem |1, -

Hence there holds )
1
11l paqxy < Ce*tata.

In B(¢) we single out two less regular terms. The one whose coefficient depends
on Ag fr—o explicitly has the form

k—2 —2
5kAIka—2/ oA (1 + Hsﬂ(m - Zﬁlfl)>
R 1=0
k-2 .
N / ¢{Z(1 + Hef(z — Zslfl)) } )
R 1=0

T

Tl*

Since ¢ has Lipschitz dependence on (fj_2,€) in the form (6.11), we see that
11 (fr—2,€) — T1a(fr—2, &)l La()
1l _n s ~
< Cettay (I1fk—2 — fe—2lla + lle — €lls)-

The other arising from second derivative in z for ¢ is

k—2 .
1-— (1 + Hef(z — ;glﬁ)) ]da:.

(7.7)

Tya, = / Ax.dZ
R

We readily see that
[ 1w (fr—25€) = Viwa(Frm25 )| La(i)
< CeM T a (|| frmz — fizlla + lle — &lls).

The remainder T; — Y1, — Y. actually defines for fixed € a compact operator of the
pair (fr_2,€) into L4(K). This is a consequence of the fact that weak convergence
in W24(K) implies local strong convergence in W4(K). If f,_ ; and e; are weakly
convergent sequences in W24(K) then clearly the functions ¢(fr—_2,;,€;) constitute
a bounded sequence in W14(K). In the above remainder one can integrate by parts
if necessary once in z. Averaging against w, which decays exponentially localizes
the situation and the desired fact follows.

(7.8)
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Let us consider now the term
Ya(ez) = /p(V”_1 —wP™ ) pw,dz.
R

Since the term ee(ez)Z(x) + Z;:ll e'¢y(ez,x) can be estimated as
k—1
ele(ez)Z(z)| + Z ety (e2, )| < Ce(l + |z[*)e 1=,
I=1
we easily see that for some 7 > 0 the uniform bound holds

VP~ —wP Y- w,| < Cee 712l
From here we readily find that
ntl 1,1
[T2llzay < Ce™v [|gllzg,e < Ce¥tata.

We observe also that other terms in (7.6) such as

Ty(ez) = /R N (ns + $(6)wada,

can be estimated similarly. In fact, using the definition of N (n§5¢ + w(¢)) and the

exponential decay of w, we obtain

_2n
1TsllLa(x) < ClIBlI3.4.0 < CEFHIT

These terms define compact operators similarly as before.

7.3. Part ITI. We observe that exactly the same estimates can be carried out in the
terms obtained from integration against Z. So the remaining thing is to compute

the term [, Fy Zdz.

Multiplying (3.59) by Z and integrating over the variable z and using the de-

composition of E; in (3.63), we get

/Elde:/Ende—i-/Engda:,
R R R
where

/EHde = g(e?8 72 A;Ce+)\ge)/ Z%dz = 2872 Ak e+ e)ge.
R R

On the other hand, we have

/ E12Zd1’
R

= gk/R [Ak + %p(p— Dw” ?prdr_1 + £¢k71,z - %l’%q - %fkfﬂﬁl]z‘im

B

—/ [%foqﬁk,l —C;k]de'—i—Ekp(p—l)/ wP—Qezm,IdeJr/SBOde
R R

® LB2
+ €k+1/ [Ak+1 +Bri1 + Cryr + Hp1 + 3k+1] Zdz.
R

The components in Gy, are even functions in the variable z and independent of the

parameters fr_o. Here, the function ¢_; has the form

(7.9) Pr—1(2,%) = Yr_1,1(€2,%) + Yr—1,2(2,%) + Pr—1,2,
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where
(7.10) k12 = fr 2012wz = fr20 "Huws.

The reader can refer (3.34) for the definition of a;» and ws. The components in
Yr—1, and 912 are independent of the parameters f;_». Moreover, y_; 1 is
an odd function in the variable z and 1y_1 2 is an even function in the variable z.
Therefore, adding up all terms together, we conclude that

/ EipZdx =0 A e+ 02 Ak froo
R
+ "o (fr—2, €,V fr—2, V€)-

As a consequence, we give the following proposition.

Proposition 7.1. The condition (7.1) is equivalent to the following system of
differential equations

1)
Ekﬁl [ Ax fr—2+m VeV - Vrfr—2 + Y2 fr

(7.11)
= y3efe + 7462 Ax e + e My (fr_a,€),
(7.12) e3B7?% Ax e +edge +eMy(fr_o,e) = 0.
with the estimates
(7.13) 1M1 (fr-2,0)|| ey < Ce3Fa, | Ma(fi2,€)| pagey < C*

Moreover, the functions My and My are Lipschitz functions of their arguments
HM1(fk—2,€) - Ml(fk—z,é)HLq(K) < Cets (||fk—2 — frea, + e - é“b)’

|Mi2 ) = iz, @) < O (e = sl + e = 2ll,)-
O

Finally, we make a conclusion that (7.2)-(7.3) is equivalent to the following non-
linear, nonlocal system of differential equations for the parameters (fi_2,e) in the
variable 6 = ez

L (fe—2) = A fr2 + M1V V - Vi fr—2 +72fr—2

(7.14) 5
=ye+e” Axe+ M. onK,

(7.15) Li(e) = —e® Axe—Xf%e = My, on K,

the functions v and 72 are defined in (7.5). The operators M;. and Ms. can be
decomposed in the following form

M (fr—2,€) = Aie(fr—2,€) + Kie(fr—2,€), 1=1,2,

where Kj. is uniformly bounded in L(K) for (fr—2,€) in F and is also compact.
The operator A;. is Lipschitz in this region, see (7.7)-(7.8),

[ Aie (fr—2,€) — Ate(fr—2,8)l|Lagc)

(7.16) L ; )
< Ce?¥a[||fr2 — fo-zlla +|le—é€lls].
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8. Location of concentration set

For the resolution of the system (7.14)-(7.15), we shall consider the invertibility
of the operators £; and L£3. on K. The first observation is that, by using of
non-degeneracy condition (1.16), if hy € L9(K) then there is a unique solution
fr—2 € W24(K) of £} (fr—2) = h1 with the property

| fe—2llee ) + || Vi fr—2llzee () + || Dk fr—2llza(x) < CllP1||La(x)-
We now deal with the invertibility theory of £3_, which is stated as

Proposition 8.1. If hy € LI(K) then there exists a sequence (£¢); such that the
problem

(8.1) L5 ,(e) =ha onk,
has a unique solution e € W2(K) with the property
(82)  lellneq) +&ell V €llex) + €2l Ak ellnagey < Cep ™ hallLagioy-

Using Proposition 8.1, the proof of Theorem 1.1 is almost the same as that of
Theorem 1.1 in [13]. For completeness we sketch the proof.
Proof of Theorem 1.1: Let us observe now that the linear operator

L(fk72 ) e) = (‘CI(fk72) — Y3€ — 62746”7 ‘C;s (e))a
is invertible with bounds for £L(f_2,€) = (g,d) given by
I1£1la + llelle < Cllgllzegey + & ldllLagicy-

It then follows from contraction mapping principle that the problem

[L+ (Aic,e42.)] (fr—2,€) = (g,d)
is uniquely solvable for fj_»,e satisfying (2.13) and (3.2) provided that

lgllzay <2, dllLagk) < €37,
for some p > 0. The desired result for the full problem (7.14)-(7.15) then follows
directly from Schauder’s fixed point theorem. In fact, refining the fixed point region,

we can actually get ||e]ls + ||f]la = O(317) for the solution. The location of the
concentration set is settled down, which completes the proof of Theorem 1.1. [

It remains to prove Proposition 8.1. We follow the method introduced in [15],
which relies only on elementary considerations on the variational characterization
of the eigenvalues of the operator £3_ and the Weyl’s asymptotic formula in (2.8).
We remark this approach is a slightly different from [24]-[25] where Kato’s theorems
were the main tools.

First, we consider the following eigenvalue problem

(8.3) L3.(v) = —e? D v—Aof%v = A0 on K,
where the weighted function 32 is defined in (2.14) with explicit form
B(6) = V(6,0)/? for any 0 € K.

Since K is a compact Riemannian manifold, by using the assumption (1.2), we can
choose certain positive numbers vy, and vy_ such that

y- < B%*(@)Ao < 74 for any 0 € K.
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We denote its eigenvalues A, ; in non-decreasing order and counting them with
multiplicity. Here )\ is the unique positive eigenvalue to the eigenvalue problem
(2.1), which implies the spectrum of £3_ contains negative or zero eigenvalues. From
the Courant-Fisher characterization we can write A, ; in two different ways:

~ ) f,( U£;5U
(8.4) Aej = Egg];)—l LJ-IE%#OW ,
. [ vLlsv
o A.; = inf su T |
(8.5) 7T ges; LGEB#O Je B0

Here Z; (resp.Z;_1) represents the family of j dimensional (resp. j—1 dimensional)
subspaces of H2(K), and the symbol L denotes orthogonality with respect to the
L? scalar product. There holds the following result for the estimates of gap between
two successive eigenvalues.

Lemma 8.2. There ezits a number g > 0 such that for all 0 < e < g2 < g9 and
all j > 1 the following estimate holds.

G €1
(86) AEl,j = _1A52,j - AO( - —2)
€3 €3
In particular, the functions € € (0,e0) — Acj are continuous and increasing.

Proof. Let us consider small numbers 0 < £; < £5. We observe that for any v
with [, 4%v? =1, we have

- - - - : 2 )
522/ 1)53521)—612/ L5 v = (12 _622))\0//cﬂ%2 =Xo(e1 " —&57)-
K K

Then the result follows. O

Proof of Proposition 8.1: For £ € N, choose oy = 27¢. In order to find a
sequence of values £, € (0¢41,0¢) such that the spectrums of the operators £3_,,
for large /¢, stay away from 0, we define

Fi={e € (0e41,00) : kerls. # @},  Fi= (001,00 \ Fy-

It is crucial to estimate the cardinality of F}. If € € F then for some j we have
that A.; = 0. The monotonicity of the function £ € (0,e0) — A.; implies that
Agyyq,5 < 0. Hence,

(8.7) card(F}) < Ngyypss

where N, is the number of negative eigenvalues of the operator £3,.

We now give an asymptotic estimate on the number N, of negative eigenvalues
of the differential operator £3.. By (p;); we will denote the set of eigenvalues of
the eigenvalue problem

— Axw=pBfiw onKk.

From the Weyl asymptotic formula as in (2.8) and the formula in (8.5), one derives

N. > Cx(1+0(1))e~ "1,
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where Cx is a fixed constant depending on the volume of the manifold K and its
dimension. To prove a similar upper bound, we choose i to be the first index such
that €2p; — Ao > 0. Then from the Weyl formula we find that

i=Cx(1+o(1))e~ (D).

Define Z;_1 = span{w;: [ =1,2,---,j — 1}. For an arbitrary function v € H?(K)
and v L E;_1, we can write
v = Z Kepye-

I>j
Plugging this v into (8.4) and using the Weyl formula, we also have
N, < C;c(l + 0(1))5*("*1).
Hence we get that
N, ~ Cxe~ "1 ase = 0.
The last inequality and (8.7) imply that card(F ;) < C’a[("fl), and hence there
exists an interval (as, by) such that
meas(F?)
card(F})

for a universal positive constant Cy, independent of £. By setting €, = (ag + b;)/2
for all large £ € N, we conclude that £3_, is invertible and there exists a number
C > 0, independent of ¢, such that for all j € N there holds

(8.9) A, ;| > Cep~.
Assume the opposite, namely that for some j we have

A, j] < de

(8.8) (ag,b)) C F, |be—agl > > 2Cyoy,

with § arbitrarily small. Since ¢ € F7, then |A,, ;| > 0. Let us assume that
(8.10) 0<A.,; <édeft.

Then from Lemma, 8.2, we have

2 _ g2
(8.11) Aoy =Aeypj— e 62—4) (Ae,j + Ao)-
£

The inequalities in (8.8) and (8.10) imply that
Aaz,j < 66?_1 - COU?_IW(AEAJ + )‘0) <0,
¢
if 6 is chosen a priori sufficiently small. Tt follows from the continuity of the func-
tion € € (0,&9) — A, ; that A, ; must vanish at some € € (as,¢eg), and we get a
contradiction with the choice of the interval (ag,b). The case

50" < A,,; <0
can be handled similarly. In fact, we have the inequality

b2 _ 62
Apj=Aepj+ %(Asm + o) > 0.
¢
Hence, the proof of (8.9) for the spectral gap between critical eigenvalues was

complete.
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As a consequence, the solution to (8.1) exists and satisfies
(8.12) lellz=ge) < Cep ™™ lIhall -
From (8.12) by a standard elliptic argument one can show

e || Ak ellnage) + & | Vi ellpee iy + llellzegey < Cey ™™ (lhallLago)-

The reader can refer to [15] for proof of further estimate in (8.2). O
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