ON THE UNIQUENESS OF SOLUTIONS OF A NONLOCAL ELLIPTIC
SYSTEM

KELEI WANG AND JUNCHENG WEI

ABSTRACT. We consider the following elliptic system with fractional Laplacian
—(=A)u=w?, —(=A)*v=ovu®, u,v>0onR",

where s € (0,1) and (—A)*® is the s-Lapalcian. We first prove that all positive solutions
must have polynomial bound. Then we use the Almgren monotonicity formula to perform a
blown-down analysis. Finally we use the method of moving planes to prove the uniqueness
of the one dimensional profile, up to translation and scaling.

1. INTRODUCTION AND MAIN RESULTS

In this paper we prove the uniqueness of positive solutions (u,v), up to scaling and trans-
lations, of the following nonlocal elliptic system

—(=A)u = uv?, —(=A)*v = vu?, u,v >0 in R (1.1)

where (—A)® is the s-Laplacian with 0 < s < 1.

When s = 1, problem (1.1) arises as limiting equation in the study of phase separations
in Bose-Einstein system and also in the Lotka-Volterra competition systems. More precisely,
we consider the classical two-component Lotka-Volterra competition systems

—Au+ Biu? + frPu= \u in Q,

—Av + Bov® + Butv = \v in Q,

u>0, v>0 in (1.2)
u=0, v=0 on 09,

Jout =N, [v* =N,

where (1, F2, 8 > 0 and Q is a bounded smooth domain in R". Solutions of (1.2) can be
regarded as critical points of the energy functional

Es(u,v) = /Q (IVul® + Vo) + %u4 + %04 + gu%z, (1.3)

on the space (u,v) € H} () x Hj(2) with constraints

/ u*dr = Ny, / v?’dr = Ns. (1.4)
Q Q
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Of particular interest is the asymptotic behavior of a family of bounded energy solutions
(ug, vg) in the case of strong competition, i.e., when 3 — 400, which produces spatial segrega-
tion in the limiting profiles. After suitable scaling and blowing up process (see Berestycki-Lin-
Wei-Zhao [2] and Noris-Tavares-Terracini-Verzini [16]), we arrive at the following nonlinear
elliptic system

Au=w?, Av=ovu?*, wu,v>0 in R". (1.5)

Recently there have been intense studies on the elliptic system (1.5). In [2, 3] the rela-
tionship between system (1.5) and the celebrated Allen-Cahn equation is emphasized. A De
Giorgi’s-type and a Gibbons’-type conjecture for the solutions of (1.5) are formulated. Now
we recall the following results for the system (1.5).

(1) When n = 1, it has been proved that the one-dimensional profile must have linear growth,
and it is reflectionally symmetric, i.e., there exists xq such that u(x — xg) = v(xg — x), and is
unique, up to translation and scaling. Furthermore this solution is nondegenerate and stable.
See Berestycki-Terracini-Wang-Wei [3] and Berestycki-Lin-Wei-Zhao [2].

(2) When n > 2, all sublinear growth solutions are trivial (Noris-Tavares-Terracini-Verzini
[16]). Furthermore, Almgren’s and Alt-Caffarelli-Friedman monotonicity formulas are derived
(Noris-Tavares-Terracini-Verzini [16]).

(3) When n = 2, the monotonic solution, i.e. (u,v) satisfies

ou ov
a_xn > 0, oz, <0, (16)

must be one-dimensional (Berestycki-Lin-Wei-Zhao [2]), provided that (u, v) has the following
linear growth

u(z) +o(x) < C(1+ |z|). (1.7)

Same conclusion holds if we consider stable solutions (Berestycki-Terracini-Wang-Wei [3]). It
has also been proved by Farina [11] that the conditions (1.6)-(1.9) can be reduced to

ou

— 1.
o >0 (1.8)
and

u(z) +v(xr) < C(1+ |z|)?, for some positive integer d. (1.9)

The Gibbon’s conjecture has also been solved under the polynomial growth condition (1.9)
(Farina-Soave [12]).

(4) In R2, for each positive integer d there are solutions to (1.5) with polynomial growth of
degree d (Berestycki-Terracini-Wang-Wei [3]). Moreover there are solutions in R? which are
periodic in one direction and have exponential growth in another direction (Soave-Zilio [19]).

(5) In two recent papers of the first author [25, 26|, it is proved that any solution of (1.5)
with linear growth is one dimensional, for any n > 2.

In this paper, we will generalize part of (1) and (2) to the fractional case.
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In [22]-[23], Terracini, Verzini and Zillo initiated the study of competition-diffusion nonlin-
ear systems involving fractional Lapalcian of the form

(—A)°u; = fig(u;) — Pu; Zj;éi aijuf-, i=1..k (1.10)
u; € H°(R") |

where n > 1, a;; = aj;, 3 is positive and large, and the fractional Lapalcian (—A)* is defined

as
(=8 ula) = coov [ TO
Here ¢, s is a constant depending only on n and s.

It is well known that fractional diffusion arises when the Gaussian statistics of the classical
Brownian motion is replaced by a different one, allowing for the Lévy jumps (or flights).
The operator (—A)® can be seen as the infinitesimal generators of Lévy stable diffusion
process (Applebaum [1]). This operator arises in several areas such as physics, biology and
finance. In particular in population dynamics while the standard Laplacian seems well suited
to describe the diffusion of predators in presence of an abundant prey, when the prey is sparse
observations suggest that fractional Laplacians give a more accurate model (Humphries [9]).
Mathematically (1.10) is a more challenging problem because the operator is of the nonlocal
nature.

In [22, 23, 24], Terracini et. al. derived the corresponding Almgren’s and Alt-Caffarelli-
Friedman’s monotonicity formula and proved that the bounded energy solutions have uniform
Holder regularity with small Holder exponent o = (N, s). As in the standard diffusion case,
a key result to prove is to show that there are no entire solutions to the blown-up limit system

—(=AYu=uw?, —(=A)v=vu?, u,v>0inR", (1.11)
with small Holder continuous exponent.

In this paper, we study some basic qualitative behavior of solutions to (1.11), including
(cp. the results (1) and (4) in the classical Laplacian case)

(a) are all one-dimensional solutions unique, up to translation and scaling?
(b) do all solutions have polynomial bounds?

We shall answer both questions affirmatively. To state our results, we consider the Caffarelli-
Silvestre extension of (1.11). Letting a :=1—2s € (—1, 1), as in [7], we introduce the elliptic
operator

L,v = div (y*Vv),

for functions defined on the upper half plane R’}fl. For simplicity of notations, define

The problem (1.11) is equivalent to the following extension problem
{ Lou= L,v =0, in R™™,

1.12)
a 2 a,, 2 n+1 (
8yU—uv , ayv—vu on IR}
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Indeed, solutions of this extension problem, when restricted to 8RT“1, can be seen as solutions
of (1.11) in the viscosity sense.
Note that the problem (1.12) is invariant under the scaling (u(z),v(2)) — (A u(Az), A*v(Az)
and translations in R™ directions. It is also invariant under the involution (u,v) — (v, u).
Our first main result is

Theorem 1.1. When n =1 and s € (1/4,1), the positive solution (u,v) of (1.12) is unique
up to a scaling and translation in the x-direction. In particular, there exists a constant T
such that

u(z,y) =v(2T — x,y), in Ri.

It turns out that many trivial facts in the classical Laplacian case (cp. [2]) become serious
problems in the fractional setting. Hence the proof is quite involved and basically splits into
three steps.

(1) With the help of Almgren monotonicity formula, we perform a blowing down analysis
for solutions of (1.11). Then we classify the blowing down limits. This gives the first
order expansion of (u,v) at infinity.

(2) By establishing some decay estimates, we then use the Fourier mode analysis to get
the next order expansion of (u,v) at infinity. It is in this step we need the technical
assumption s > 1/4.

(3) With the above refined asymptotics of (u,v) at infinity, we can use a refinement of
the moving plane method used in [3] to finish the proof of Theorem 1.1.

In the first step, we also need the following result.

Theorem 1.2. When n > 1,s € (0,1), the positive solution (u,v) of (1.12) must have at
most polynomaial growth: there exists d > 0 such that

u(z,y) +v(z,y) < O+ Jaf +[yl)". (1.13)

Compared to the classical Laplacian case (e.g. solutions with exponential growth as con-
structed in Soave-Zilio [19]), this is quite surprising.

Let us put our results in broader context. The uniqueness for fractional nonlinear ellip-
tic equations is a very challenging problem. The only results known in this direction are
due to Frank-Lenzmann [13] and Frank-Lenzmann-Silvestre [14], in which they proved the
nondegeneracy and uniqueness of radial ground states for the following fractional nonlinear
Schrodinger equation

—(—A)PQ-Q+Q"=0, Q >0, Q€ HR"). (1.14)
Our proof of Theorem 1.1 is completely different from theirs: we make use of the method
of moving planes (as in [3]) to prove uniqueness. To apply the method of moving plane, we
have to know precise asymptotics of the solutions up to high orders. This is achieved by
blown-down analysis and Fourier mode expansions. (The condition that s > }l seems to be
technical only.) In dealing with nonlocal equations some “trivial” facts can become quite
nontrivial. For example, one of “trivial” question is whether or not one dimensional profile
has linear growth. (When s = 1 this is a trivial consequence of Hamiltonian identity. See
[2].) To prove this for the fractional Laplacian case we employ Yau’s gradient estimates. A
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surprising result is that this also gives the polynomial bound for all solutions (Theorem 1.2).
This is in sharp contrast with s = 1 case since there are exponential growth solutions ([19]).

The rest of the paper is organized as follows: In Section 2 we prove Yau’s estimates for
positive s—subharmonic functions from which we prove Theorem 1.2. Sections 3 and 4 contain
the Almgren’s monotonicity formula and the blown-down process to s—harmonic functions.
We prove Theorem 1.1 in Sections 5-8: we first classify the blown-down limit when n = 1
(Section 5). Then we prove the growth bound and decay estimates (Section 6). In order
to apply the method of moving planes we need to obtain refined asymptotics (Section 7).
Finally we apply the method of moving planes to prove the uniqueness result. We list some
basic facts about L,—subharmonic functions in the appendix.

Throughout this paper, we take the following notations. z = (x,y) denotes a point in R’ffl
where z € R™ and y € R,. In polar coordinates, y = rsin where 6 € [0,7]. When n = 1,
we also use the notation z = x + 4y = (r cos§,7sin ). The half ball B} () = B,(z) "R,
the positive part of its boundary 0% B} (zy) = 0B,(20) N R and the flat part 9°B;(z) =
OB} (z0) \ 0T B;F. Moreover, if the center of ball is the origin 0, it will be omitted. We use
C,c and M to denote various constants, which may be different from lines to lines, and ¢
and 1) to denote functions, which could be different in different sections.

2. GRADIENT ESTIMATE FOR POSITIVE L,-HARMONIC FUNCTIONS AND PROOF OF
THEOREM 1.2

In this section we prove the following Yau’s type gradient estimate for positive L,-harmonic
functions and use it in combination with an observation due to Markovic [15], to give a
polynomial bound for solutions of (1.12). Regarding Yau’s estimates for harmonic functions
on manifolds, we refer to the book by Schoen-Yau [17].

Theorem 2.1. Let u be a positive Ly,-harmonic function in R’ffl. There exists a constant
C(n) such that
Vu(z.y)| _ C(n)

< . in R
u(z,y) Y ’
Proof. Let v := logu, which satisfies
Jv
—Av = |Vu]* +ay™' —. 2.1
o= Vo 4 (2.)
By a direct calculation we have
LAV = V202 — V|2 w-iﬁ\wmi]@ i (2.2)
2 - 2y Oy y2loyl '
For any zy = (70, y0) € R, let R = yo/3. Take a nonnegative function n € C3°(Bar(2))
and let w := |Vo|?n. Since w vanishes on dBag(zp), it attains its maximum at an interior
point, say z;.
At 21,
0= Vw = nV|Vu|* + |Vu|* V7, (2.3)

0 > Aw = nA|Vu|? + 2V |Vu|? - Vi + | Vo[> An.
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Substituting (2.2) and (2.3) into (2.4) leads to
on

0 > 2\V20|27)+2IVU\2V1}~Vn+ay’1]Vv\2ay

a 2
20y (—) 0 — 2Von [Vl + [V An.

dy
By the Cauchy inequality and (2.1),
1
Vo2 > Av)®
VAP 2 (A
1 v a?|0v)2
= Vol 4+ 2ay Vo= + = | —| ).
g (190l 2 S+ ]2
Combining these two inequalities gives
2 4a ov 202 |0v |2
0 > ——|Vul'n+ ———|Vv|fP——n+ ——s |
- n—l—l‘ X (n+1)y| | 8y77 (n+1)y? 10y 1
on ov\?
+2|V|*Vu - Vi + ay | VoP == +2ay 2 [ — | 7
dy dy

—2|Vol'n~! [Vnl* + [Vo]*An.

Now take an ¢ € C§°(Bagr(20)), satisfying 0 < ¢ < 1, ¢ = 1 in Bg(29) and |Vp|? + [Ap| <
100R~2. Choose an m > 3 and substitute n = ©?™ into the above inequality, which results in

[Vu*e*™ < C(n)y Voo™ + C(n)y | Vol ¢*™"
+C(n,m)e>™ Vo’ |Vl + C(n,m)e*™ 'y~ | Vol* |V
+C(n, m)*™?|Vu*|V|* + C(n, m)e*™ | Ag||Vu]?.

Applying the Young inequality to the right hand side, we obtain
Vo't < Vel
+C(n,m) (y~¢™™ + ™ Vel + ™ 2y Vel + 0™ Ag]?) .
By our assumption on ¢, and because y~! < 4R™! in Byg(z), this gives
[Vo(zo)[* < [Vu(a)['o(21)*" < C(n,m)R™,
which clearly implies the bound on u™!|Vul. O

A direct consequence of this gradient estimate is a Harnack inequality for positive L,-
harmonic functions.

Corollary 2.2. Let u be a positive L,-harmonic function in RTFI. There exists a constant
C(n) such that, for any (z,y) € R,

sup u<C(n) inf w.
Bys(x.y) By/2(@.y)
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Iterating this Harnack inequality using chains of balls gives an exponential growth bound
on u. However, we can get a more precise estimate using the hyperbolic geometry (as in [15]).

Now we come to the proof of Theorem 1.2. In fact, we have the following polynomial bound
for positive s-subharmonic function on R".

Theorem 2.3. Let u € C(R"*1) be a solution of the problem
L,u=0, in ]RCLFH,
u >0, on @,
dyu >0, on 6RT1.
There exists a constant C' depending only on the dimension n and a such that,
u(z,y) < Cu(0,1) (1 + |z|* + yz)c on R+,
Proof. Step 1. Estimates in {y > 1/2}

As in [15], for any two different points z; = (7;,y;) € RT™ and a C! curve () =
(v1(t), -+ a1 (t)) C RYTH ¢ € [0, 1] connecting them,
u(22) dv( )
1 = log —=dt
©8 u(z) / v dt

H ot

< /
0
(

Ul
C / dt by Theorem 2.1
0 Ynt1(t) ( )
< CLengthy(7).

IN

Here Lengthy(7y) is the length of v with respect to the hyperbolic metric on R
dx? + dy?
v
In particular, we can take v to be the geodesic between z; and z,. This gives
log u(z)
u(z1)
However, we know the distance function disty has the form
2 — @l + (1 — y2>2>

2y1Y2

ds® =

S CdiStH<Zl, 22).

disty (21, z2) = arccosh (1 +

This then implies that

2y1Y2

o\ C
u(@)g(l |71 — 22” + (1 — y?)) ' (2.5)
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In particular, for any (z,y) € R,

u(x,y) < u(0,1) (1 + |2? +2(§j — 1)2>

Hence, in {y > 1/2},
u(z,y) < C (Jo?+12+1)°. (2.6)

Step 2. Estimates in {0 <y < 1/2}.

The estimates in Step 1 does not give any information near the boundary ORZ“. To get a
growth bound in the part where y is small, we have to use the boundary condition on 8]RT1.
This is possible by using the Poisson representation formula.

For every ¢t € (0,1/2), let P'(z,y) be the Poisson kernel of the elliptic operator A + a(y +
t)719, on R, Note that when ¢ = 0, this is the usual Poisson kernel for the operator L,.
By [7, Section 2.4], modulo a constant,

2s

Y
Po(x7 y) - n+2s
(lz* +y?)
From the uniqueness of the Poisson kernel we deduce the following product rule: for y > t,
Ploy+t)= [ Plo-gnPends (27)

Denote the Fourier transform of P'(z,y) in 2 by P*(C,y). P°(C,y) has the form (modulo
a constant) ®(y|(|), where

7L+25
D(C]) = dys / (14 [2f2) 5 VT4 g,
Here d,, s is a normalization constant.
Since P° satisfies
0? a 0
—[¢PP(C, )+—PO(C y) + 0y P°(¢,y) =0,

® satisfies
" (t) + at @' (t) — ®(t) =0, in (0, +o0).
By definition and the Lebesgue-Riemann lemma, ®(0) = 1 and lim;_, ;o ®(¢) = 0, where the

decay rate is exponential (by the equation for ®). Then by a maximum principle argument,
we know ®(t) > 0 and ®(¢) is decreasing in ¢.

By (2.7),
s PGyt @y + 1))
PO ="y~ e
Hence there exists a constant C' depending only on n and a so that for all ¢ € [0,1/2],
1
PO -0 = [ gishac [ alchac= P00z g 2:8)
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Since P! is a positive solution of
a OP"
y+t oy

the gradient estimate Theorem 2.1 holds for P* with the same constant C'(n). Then similar
to (2.5), we get

AP+

: n+1
0, in RY™,

o \ ¢
Pi(z,1—t) > PY0,1 —1t) (1 + m) . (2.9)

By the Poisson representation,
u(0,1) > / P'(—x,1 — t)u(x, t)dz. (2.10)

In fact, for any R > 0, consider the boundary value u(x,t)X{z|<r}, and let w" be the solution

of
L,w" =0, in B,

w" = u(zx,t)X{z1<ry, on "B},
w" =0, ond"B.

Such w" exists and is unique. By the maximum principle, as r — 400, they are uniformly
bounded and increase to

/ Pl — ¢, y)u(¢, 1)dC.
{l=z|<R}

Here we have used the fact that there is a unique bounded L,-harmonic function in RZ’LI
with boundary value u(x,t)X{jz|<r}-
By the comparison principle, for each r > 0, w” < u. Thus we have

u(0,1) > / P'(—z,1 —t)u(z,t)dz.
{lz|<R}

Then let R — 400 we get (2.10).
Substituting (2.8) and (2.9) into (2.10), we see for any t € (0,1/2),

/Rn %dz < C(n, s)u(0,1).

Integrating ¢ in [0, 1/2] gives

Eal G N
/L (a0 Y = CulO 1) (2.11)

Next we divide the proof into two cases.
Case 1. First assume s < 1/2; hence a > 0 and y* is bounded in {0 < y < 1/2}. For any
xog € R™ with |x¢| > 2, by the co-area formula, we find an r € (1,2) so that

/ y'u < / y u(x,y)dedy
&+ By (x0,0) B (z0,0)\B; (z0,0)
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< C(1+|x0]2)0/ Lwcdxdy (2.12)
(B (20.0\B (20,0))n{o<y<1/2} (1 + [2[?)

+ / u(z,y)dzxdy
(B;(IO,O)\BI" (aco,O))ﬁ{y>1/2}

< Cu(0,1) (1 + |z[)

thanks to (2.6) and (2.11).
Case 2. If s > 1/2, a < 0 and y* is unbounded in {0 < y < 1/2}. Hence the above
argument does not work. Instead, we take two positive constants p, ¢ so that
1 1
, —+-—-=1.
2s—1" p ¢

l<p<
By noting that
L,u? >0, in ]RTFI,
u? >0, on R
Jyu? >0, on 8R7}r+1,

we can still apply the argument leading to (2.11) to deduce that

dmdy < Cu(0,1). (2.13)
T

Then in (2.12), we use the Holder inequality to get

[
8+ B (20,0)

< / y u(z,y)dedy
B3 (20,0\B (20,0)
1 1
< / yPdxdy / u(z,y)ldxdy
(B3 (0,00\Bj (20,0))n{0<y<1/2} (B (20,0)\By (20,0))n{0<y<1/2}
+ / u(z, y)dedy
(BS (@0,00\By (0,0))n{y>1/2}
q
< C(1+ |z / “(“T—y)c wdy (2.14)
(B (@0,0\Bf (20,0))n{o<y<1/2} (1 + |z|?)

+ / u(z, y)dzdy
(BF (20,0)\B; (20,0))N{y>1/2}

< Cu(0,1) (14 |zo)

After extending u evenly to B,.(zo,0), u becomes a positive L,-subharmonic function,
thanks to its boundary condition on °R’*'. With the help of (2.12) or (2.14), Lemma A.2
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implies that

sup  u < C’(n,a)/ y'u < Cu(0,1) (1 + |x0]2)c.
By /5(0,0) 8By (20,0)

Together with (2.6), we get a polynomial bound for u as claimed. U

3. ALMGREN MONOTONICITY FORMULA

In this section we present the Almgren monotonicity formula for solutions of (1.12) and
some of its consequences. In the next section these will be used in the blow down analysis.
Throughout this section, (u,v) denotes a solution of (1.12).

We first state a Pohozaev identity for the application below.

Lemma 3.1. For any x € R™ and r > 0,

(n—1+a)/ y° (|Vu|2—|— |VU!2)
B (z,0)

Ju
=7 y* ([Vul* + [Vo]? —2y“(’—
/a+BT+(x,o) (| PV ) or

—i—r/ u?v?® — n/ u?v?.
Sy (x,0) OB (x,0)

Here S!*(x,0) is the sphere with radius r and center x in R™.

Lo
or

)

Proof. This can be proved by multiplying the equation (1.12) by z - Vu (respectively, z - Vv)
and integrating by parts on B;f, cf. [7, Lemma 6.2] and the Pohozaev identity in [22]. OJ

Let
_ 1 a 2 2 1 2.2
E(r) := v /B+y (|Vul® + Vo) + ey /80Br+u v,

r

1

and N(r) := E(r)/H(r).
We have the following (cf. [22] for the 1/2-Lapalcian case and [23, Proposition 6] for general
s-Laplacian case).

Proposition 3.2 (Almgren monotonicity formula). N(r) is non-decreasing in r > 0.

Proof. Direct calculation using the equation (1.12) shows that

2 ou ov
Hl — a - _
(r) rnta /a+3;*y (ué)r —H](?r)

2 . 4
= /B+y (IVul> +|Vol*) + - /<903+ uv? (3.1)

2F 2
_ (r) i / w2o?.
T T o0 gt
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. 3.2
) + TnJra /BOB;"U v ( )

LNV(r) > f‘%B’T v O%‘? i ‘%|2> - faﬂa’;r Yy (u% +U%)

Using Lemma 3.1, we have

1 ou
El — a ‘_
(r) = —om /z%Bﬁ'y ( 5

Combining these two, we obtain

2+@
or

- > - ~ (3.3)
2 N(r) faJrB:r Yo (u‘g—rJrv%) fa+Bi y? (u? 4 v?)
+1 —a faOBT+ u?v’
N(T) fa+B;r ye (UQ + 02)’
which is nonnegative. U
Note that (3.1) also implies that
d 2N 2 u?v? 2N
~log H(r) = (), faoff > (r) (3.4)
dr r Jore v (u? +v?) r

Combining this with Proposition 3.2 we have

Proposition 3.3. Let (u,v) be a solution of (1.12). If N(R) > d, then forr > R, r—22H(r)
1s mondecreasing in r.

The following result states a doubling property of (u,v).

Proposition 3.4. Let (u,v) be a solution of (1.12) on Bf. If N(R) < d, then for every
0<r <ry < R
H(ry) a4 72

(3.5)

Proof. This is similar to the proof of [3, Proposition 5.2]. Since for all r € (0, R], N(r) < d,
by (3.3) and (3.4) we have

d 2d 2 u?v?
— log H(r) — + faOBr
dr r fa+Bi Y (u? 4 v?)
2d 1
< = N'(r).
- + 1l—a ()
Integrating this from r; to 79, since N(r;) > 0 and N(rs) < d, we get (3.5). O

Proposition 3.5. Let (u,v) be a solution of (1.12) on R, For any d > 0, the following
two conditions are equivalent:
(1) (Polynomial growth) There exists a positive constant C' such that

d
2

u(z,y) +v(z,y) < C(1+ |2]* +y°) (3.6)

(2) (Upper bound on N(R)) For any R >0, N(R) <d.
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Proof. Since the even extension of u and v to R"*! are L,-subharmonic, (2) = (1) is a direct
consequence of Proposition 3.4 and Lemma A.2.

On the other hand, if we have (3.6), but there exists some Ry > 0 such that N(Ry) > d+4,
where 6 > 0. By Proposition 3.3, for all R > Ry,

H(R
sup (u2 + v2) > H(R) > 2(d+22 Rd+%0
o+ Bf, Ry

which clearly contradicts (3.6). In other words, for any R > 0, we must have N(R) <d. O

4. BLOW DOWN ANALYSIS

In this section we perform the blow down analysis for solutions to (1.12). This gives the
asymptotic behavior of these solutions at infinity.

Let (u,v) be a solution of (1.12). By Theorem 2.3 and Proposition 3.5, there exists a
constant d > 0 so that

lim N(R):=d < +o0.
R—+o00

The existence of this limit is guaranteed by the Almgren monotonicity formula ( Proposition

3.2). Note that for any R < +o0, N(R) < d.
For R — 400, define

up(2) == Ly'u(R2), wg(2) = Lz'v(Rz2),

where Ly is chosen so that
/ y* (uf + ) = 1. (4.1)
o+ B

(ug,vr) satisfies

{ LaUR = LGUR = 0, n R:L_Jrl, (4 2)

a _ 2 a _ 2 n+1
J,ur = KRURVR, Oyvr = Krvguxr on IR,

where kg = L3R ™.
By (4.1),

Ly = R_”/ y* (v +07%) .
otBh

By the Liouville theorem [23, Propostion 12] (Note that only a growth bound, not the global
Hoélder bound, is needed to deduce this Liouville theorem), for some « > 0 small, there exists
a constant C, such that
L(R) > C,R". (4.3)
Thus kg — +00 as R — +oc.
With the bound on N(R) in hand, we can use Proposition 3.4 to deduce that, for any
r>1,

e 2 2 2
r”“/ ya(uR+vR)§rd.
otBf
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Since d%up > 0 on OFTR | its even extension to R"*! is L,-subharmonic. Thus by Lemma
A.2 we can get a uniform bound from the above integral bound,

sup (up + vg) < Cr?, Vr > 1.

B

Then by the uniform Holder estimate in [23], for some a € (0,s), (ug,vg) are uniformly

bounded in CZ (R).
Because N (r;ug,vg) = N(Rr;u,v) < d,

/B+ y* (|[Vugl” + [Vugl?) + /aOB+ KRruRVE < dr" ey 5 (4.4)

T

After passing to a subsequence of R, we can assume that (ug,vg) converges to (Uso, Voo)

weakly in H>*(R™!), and uniformly in Cg,(RH).

Then for any r > 1,

ugovgo = lim u%v%
0B+ R—+o0 Jgopit

S lim K}}ld,r,nfl+a+2d =0.
R—+o0c0

Thus Usve = 0 on IR,
Lemma 4.1. (ug,vg) converges strongly to (s, Veo) in HE*(R™). kgubvy converges to 0
in L, (0R%).

For a proof see [23, Lemma 4.5] (and the corresponding results in [22] for the 1/2-Lapalcian
case).
Corollary 4.2. For any r > 0,
o fy " (Va4 [Vouf?)

N(7;Uso, Voo ) := =d.
(T,U () ) faJrB;"' Yo (ugo+vgo)

Proof. For any fixed r > 0, by Lemma 4.1,

/B+ y* (|[Vuso* + |Vso?) = lim X y* ([Vugl® + |Vug|?) +/ KRURUS.

R—+oo Jp OB+

T T

By the uniform convergence of ug and vg, we also have

a 2 2 : a 2 2
us, +v5,) = lim up +vg) .
/aJrBT+ Y ( ) R—+00 Jo+ gt Y ( i R)
Thus
N(r; = lim N(r; = lim N(Rr; =d. U
(T, Ueo, Uoo) R—1>r—|r-loo (T, UR, UR) R—1>r—ir-loo (RT> u, U) d

For any n € C§°(R"™!) nonnegative and even in y, multiplying the equation of ug by 1 and
integrating by parts, we obtain

/ nd,urdzx :/ nKRURVRAT :/ urLam, (4.5)
OR7 ! OR7 ! R+
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which is uniformly bounded as R — +o00. Hence we can assume that (up to a subsequence)
Oyurdr = kRrURVEdT converges to a positive Radon measure p. On the other hand, passing

to the limit in (4.5) gives p = lusedz. Here Ofus > 0 on IR} in the weak sense, that is,
dtusedz is a positive Radon measure on R’

Lemma 4.3. The limit (us, Vo) Satisfies
Lyus = Love =0, in RTPI,
UsoOyllse = Voo Oy Vo = 0 0N 8R7ff1,

(4.6)

Here the second equation in (4.6) is equivalent to the statement that the support of Oy Uoodx
belongs to {u. = 0}.

Proof. The first equation can be directly obtained by passing to the limit in L,ur = L,vg =0
and using the uniform convergence of (ug, vg).

To prove the second one, take an arbitrary point 29 = (20,0) € {us > 0}. Since uq
is continuous, we can find an o > 0 and d§y > 0 such that u,, > 20y in B;B(Zo)- By the
segregated condition, v (29) = 0. Thus by decreasing 7 if necessary, we can assume that

Voo < 0 In m.
Then by the uniform convergence of ur and vg, for all R large,
ur > 0y, Vp < 20y in m.
Thus
Ovg > krdgur on O°B (2).

By applying Lemma A.3, we obtain

sup  vp < C(rg,80)Kp -
BUB;LO/Z(ZU)

Then d5up = krugv} is uniformly bounded in C#(0° B/ (20)) for some 3 > 0.
Let wg = y“ag—yR. It can be directly checked that wg satisfies (see [7, Section 2.3])

div (y’anR) =0.

/ Yy wp < / Y| Vug|?
By, /2(z0) By, j2(20)

are uniformly bounded. Then by the boundary Hélder estimate ([18]), wg are uniformly
bounded in C*(B} ,(2)). Because wr > 0 on 0° B/ (2) and wrug — 0 in L'(8° By (2)), by
letting R — +o00 and using the uniform Holder continuity of ug and wg, we get

Jyiee =0 on 803;2/2(20).

By (4.4),

In the blow down procedure, we have shown that us, € C2 (R7) for some o > 0. Hence
Uy 1S continuous on 8]1%1“. The above argument also shows that y®d,us is continuous up
t0 {us > 0} NORT™ and 95us = 0 on {u > 0} NORY'. This completes the proof. O
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Integrating by parts using (4.6), we get

ou ov
un = [ Vel [ e = [ ek, @
/8+5ij By /ny| Ueo| 8+Br+yv By Bjyl VUso| (4.7)

for any ball B;.
Let

BEoo(r) := 777 / y* ([Vusol” + [Voul)
B

Heoo(r) i=r™"" / v (U + %)
ot B

and Neo(r) := Euo(r)/Hoo(T).
By (4.7) and calculating as in (3.1), we still have
d 2Noo (1)
—log Hy .
108 Hoo(r) = —

Since N (r) = d, integrating this and by noting the normalization condition (4.1), which
passes to the limit, gives

(4.8)

Hy(r) = r* (4.9)
The following lemma is essentially [23, Propostion 6].

Lemma 4.4. For any r € (0,+00), Hoo(r) > 0 and Ex(r) > 0. Moreover,

L Neo(r) > f8+BT+ a <‘3%o‘ " |6voo > _ faJrBT+ v (Uooauc’o +Uoo6v§f°)
2 Noo(r) — fc’HBir Yyt (uooauoo + Uooavﬁo) fa+Bﬁr ye (u2, +v2)

i the distributional sense.

> 0, (4.10)

Proof. The Pohozaev identity for (ug,vg) reads as

(n=1+a) [ 4 (Vs + Vo)

8uR2
— a (v 2 \V4 2 — 0l ‘
o (Tl ) 20 (|

2)
+7"/ ,%Ru%v?%—n/ KRU2RU%%.
g 005"

By Lemma 4.1, for all but countable r € (0, +00), we can pass to the limit in the above
identity, which gives

(n—1+a)/+y“(|Vuoo|2+|Vvoo|2) (4.11)
B;

- r/a+B+ ¥ ([Vuso* 4+ [Vus]?) — 2¢° (‘auoo) ‘(%OO ) .

The following calculation is similar to the proof of Proposition 3.2. U

Ovr
or




NONLOCAL ELLIPTIC SYSTEM 17
Lemma 4.5. For any A > 0,
Uoo(A2) = Mugo(2), Voo (A2) = Mg (2).
Proof. By Corollary 4.2, Ny (r) = d. Then by the previous lemma, for a.a. r > 0,
om0 (1551 1% 0) e v (s + v e)
fa+BT+ ye (Uoo 845?0 + Voo Bg;o) - faJrB:r yo (uZ, +vk)

By the characterization of the equality case in the Cauchy inequality, there exists a A\(r) > 0,
such that

=0.

o Moo T
5 = A7) oo, o A(r)ve on 0"B.

Integrating this in r, we then get two functions g(r) defined on (0,+o00) and (¢(0),%(0))
defined on 9% Bj", such that

Uoo(1,0) = g(r)p(0),  veo(r,0) = g(r)y(0).
By (4.9), we must have g(r) = r<. O

Remark 4.6. By definition, we always have d > 0. In the standard Laplacian case, we
can show that d must be a positive integer (see [3]). However, we do not know if such a
quantization phenomena holds for this problem. For related studies see [22, 23].

5. CLASSIFICATION OF THE BLOW DOWN LIMIT IN DIMENSION 2

From now on assume n = 1. In the previous section we proved that the blow down limit
Uso (1, 0) = 190(0),  veo(r,0) = réap(6),
where the two functions ¢ and ¢ are defined on [0,7]. In this section we determine the

explicit form of ¢ and .

5.1. Classification. By denoting
Ly = @ag + acot Oy,
the equation for (¢, 1) reads as
Lo +d(d+a)p = Lgyp +d(d+a)p =0, in (0,7),
pdyp = 05w =0, at {0, 7}, (5.1)
©(0)1(0) = p(m)ip(m) = 0.

Here 956(0) = limg_q (sin 0)* p(8), and we have a similar definition at 7.
There are two cases.

Case 1. ¢(0) # 0, p(m) # 0.
By this assumption, we have

9yp(0) = Ogp(m) = 0. (5.2)

Using the equation for ¢, we know ¢ is continuous on [0, 7]. Thus by our assumption ¢ > 0
on [0, 7].
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Multiplying the equation of ¢ by ¢(6)~! (sin#)* and integrating by parts on [0, 7], with the
help of (5.2) we arrive at
¥'(0)”

—d(d+ a) /Oﬂ (sin6)” df = /Oﬂ (sin 8)" 0(0)?

On the other hand, multiplying the equation of ¢ by () (sin#)" and integrating by parts
on [0, 7], we have

g > 0. (5.3)

Jy sin6)* P 0)d8 5

Jo (sin0)" o(0)2d0 —

d(d+a)=

Combining (5.3) and (5.4), we see
d(d+a)=0.

Since d > 0, we must have d = —a = 2s — 1. Note that this is only possible when s > 1/2.
This then implies that ¢ is a constant.

In this case we must have (0) = ¢(7) = 0. We claim that ¢» = 0. In fact, since vy is
homogeneous of degree d = 2s — 1 and L,-harmonic in R%, by [23, Proposition 7], ve = 0 in
R2.

+

We conclude that in this case ¢ is a constant and ¢ = 0. Note that this is possible only if
s> 1

2

In the subsection below, we shall prove that this is impossible.
Case 2. p(0) # 0,(m) =0 or ¥(0) = 0,9 (7) # 0.

By this assumption, dj¢(0) = 0. Hence we can extend ¢ to an even function in [—m, x]. It
satisfies

Lip +d(d+a)p =0, in (—,m),
¢ >0, in (—m,m),

p(—m) = ¢(m) = 0.
In other words, ¢ is the first eigenfunction of L3 in H((—m,w)). Then it can be directly
checked that, up to the multiplication of a positive constant, ¢(f) = (cos £)?. Similarly,
Y(0) = (sin §)?*. Moreover, d = s in this case.
By Corollary 4.2, either limp ;oo N(R) = s or limp oo N(R) = 25 — 1 (when s > 1/2).

5.2. Self-segregation. Here we exclude the possibility that the blow down limit (p,v) =
(1,0) when s > 1/2.
Assume the blow down limit (¢,v) = (1,0). First we claim that

Lemma 5.1. There exists a constant ¢ > 0 such that
u>c oon 8]1%1.

Proof. Assume that we have a sequence R; such that u(R;,0) — 0. Then necessarily R; —
oo. Let (ug,,vg,) be the blow down sequence defined as before. Then (ug,,vg,) converges

to (r2*71,0) (modulo a normalization constant) in Cj,e(R2). However, by our assumption,
because L(R;) — 400 (see (4.3)),

— 0,
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which is a contradiction. O

By the bound on N(R) and Proposition 3.4, there exists a constant C' such that
/ y? (u2 + U2) < Oty e s 1
B

For each r > 1, let

Then ¥ satisfies
~ . Jr
L,v =0, in B,
v = @0 > er'"0, on 0By .

Here we have used the previous lemma which says @ > ¢ on °B;".
Applying Lemma A.3, we obtain

sup 0 < Cr L.

+
B,

Letting 7 — 400, we see v = 0 on IR?.

Now since the growth bound of v is controlled by 25~
get v=101in R2.

The equation for u becomes

1. applying [23, Proposition 7], we

{ Lyu =0, in R?,
Jdyju =10, on 8R2+.

Because the growth bound of u is controlled by 7?7 applying [23, Corollary 2|, u is a

constant. This is a contradiction with the condition on N(R).

5.3. Combining the results in the previous two subsections, we have proved that the blow
down limit must be

6 6
Uso = iy 7°(COS 5)25, Voo = a_1°(sin 5)25, (5.5)

for two suitable positive constants ay and a_.
Here we note that, the blow down limit cannot be

Uso = F47°(sin 2)25, Voo = _1%(cos g)%. (5.6)

In other words, only one of the above two limits is possible and the blow down limit must be
unique (the constant a, and a_ will be shown to be independent of the choice of subsequences
R; — 400 in the next section). For example, if both these two arise as the blow down limit
(from different subsequence of R — +00), then we can find a sequence of R; — +o0 satisfying
u(R;,0) = v(R;,0). Using these R; to define the blow down sequence, we get a blow down
limit (oo, Voo) satisfying us(1,0) = ve(1,0). This is a contradiction with the two forms
given above.

Lemma 5.2. a, = a_.
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This can be proved by the Pohozaev identity for (uw, V), (4.11), where we replace the
ball B;Y by B/ (t,0) and let ¢ vary (cf. [21]). We can also use the stationary condition: for

any X € Cg°(R%,R?) satisfying X? = 0 on R?, we have

/ Y (|Voo* + [Vso|?) divX — 29" DX (Viise, Voo )
RZ

—2y*DX (Vos, V) + ay® " X? ([Vueo|* 4 [Vus|?) = 0.

We have proved that the blow down limit (ue, Vo) satisfies

a, 2 __ a, 2
[,ova-] e
o+ B o+ B

By the analysis in Section 4, for any R; — o0, the blowing down sequences (ug,, vg,) satisfy

lim yau?ﬁ = / yru lim yavlz_zi = / Y2
Ri—+too Jo+ Bt o+Bf Ri—+oo Jo+ B o+Bf

By a compactness argument, we get a constant C' so that for all R > 1,

a,, 2
1 Jorpr Yu
<< (5.7)
¢ fa+B+ Yy

6. GROWTH BOUND
In this section we prove various growth bound and decay estimates for v and v.
Proposition 6.1 (Upper bound). There exists a constant C' so that
w(z) +v(z) <C(1+z2])°.
Proof. Because for any r, N(r) < s. Proposition 3.4 implies that
H(r) < H(1)r*, Vr>1.
Then because the even extension of u to R? is L,-subharmonic, by Lemma A.2 we get

supu < CH(r)Y? < CH(1)Y%. O
BT‘/Q

Because for any R > 0, N(R) < s, the bound on H(r) also gives
Corollary 6.2. For any R > 1,

/ y* (IVul® + [Vv]?) +/ u*v® < CR.
B B

R

Next we give a lower bound for the growth of v and v.

Proposition 6.3 (Lower bound). There exists a constant ¢ such that
/ yiu? > cr?, / y vt >er?, Vo> 1 (6.1)

We first present two lemmas needed in the proof of this proposition.
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Lemma 6.4. For any K > 0, there ezists an R(K) such that {Kz >y > 0} N By C {u >
v} and {—Kz >y > 0} N B ) C {u <wv}.
Proof. This is because, there exists a §(K) > 0 so that for any R > R(K),
9 2s 9 2s
sup ‘uR —ar’ (cos 5) ‘ + ‘UR —ar’ (Sin 5) ‘ < §(K),
Bf

and
. 0 2s . . 0 2s —
ar® | cos > ar sin 5 +d(K), in {Kx>y>0}ﬂ<B \B1/2>

These two imply that u® > v% in B+ \ B1/2 By noting that this holds for any R > R(K),
we complete the proof. O

Lemma 6.5. As ¢ — +o00, u(x,0) — 400 and v(z,0) — 0. As z — —o0, v(z,0) — 400
and u(z,0) — 0.

Proof. For any A > 0 large, let
uMz,y) = A u(dx, Ny), oM, y) = A (A, My).
By the previous lemma and Proposition 6.1,
u’\ZU)‘, V<O onm.
v satisfies
L,v* =0, in Bf/g(l,()),
{8; A= (0 ) v >\ (v’\)g, on 8B ,(1,0).
Then (v* — A~ % )T satisfies
Lo(v* =A™ %)t >0, in By ,(1,0),
Op(v* = ATE)F = AT (0 = ATF)F, on 8°By,(1,0).
By Lemma A.3 we get

sup M < sup (VP — AT+ AT

8°BY,,(1,0) 8°BY,,(1,0)

Rescaling back we get v(\,0) < CA™%/3 for all \ large.

Next assume that there exists \; — +o0o, u(A;,0) < M for some M > 0. Then by defining
the blow down sequence (u*i,v?) as before, following the proof of Lemma 5.1 we can get a
contradiction. Indeed, the blow down analysis gives u*(1,0) — « for some constant a > 0,
while our assumption and (4.3) implies that

ui(1,0) < CMA* — 0.
This is a contradiction. U

Now we can prove Proposition 6.3.
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Proof of Proposition 6.3. By the previous lemma, there exists a constant M* such that w; :=
(u— M*); and wy := (v — M*) 4 have disjoint supports on 9R? . Both of these two functions
are nonnegative, continuous and L,-subharmonic. By assuming M* > max{u(0,0),v(0,0)},
w1(0,0) = wy(0,0) = 0. Moreover, they satisfy

{ w; L,w; = 0, in Ri,
a 2
8ywi >0 on JRY.

This then implies that for any nonnegative ¢ € C5°(R?),
/ y“Vwi -V (’LUZ¢) = —/ wﬁgwlqﬁ S 0. (62)
R

OR2.
Then by [23, Proposition 4] (note that here the dimension n = 1 and hence in that proposition
the exponent v4¢F = ),

2 2
J(’/’) — 7”_45 (/ ya|vwclb| ) (/ ya‘ij| )
Bt 7] Bt 7]

is non-decreasing in r > 0. This then implies the existence of a constant ¢ so that

2 2
/ ya‘vwl‘ / ya‘va‘ > C’I“4s, Y r> R (63)
st 2 st 2l

Here we choose R* large so that w; and wy are not constant in Bj., which implies

2 2

[y .
no Lzl no Lzl

B}, B},

where ¢ > 0 is a constant depending on the solution (u,v) and R*.
Take an n € C§°(Bs) such that n = 1 in B;. For any r > 1, let n"(z) = n(r~'z).
Substituting ¢ = (7")?|z|~* into (6.2) and integrating by parts gives (cf. the derivation of

[23, Eq. (4)]) )
/ y“|vwi| < C’r_2_“/ y w3 (6.4)
Bf 2] Bf\B}

Substituting this into (6.3) leads to

/ Y (u2 + 122) > / y? (w% + w%) > cp2tat2s,
B, B,

2r

2
+

Because u? and v? are L,-subharmonic, by the mean value inequality, this can be trans-
formed to

/ Yy’ (u2 + v2) > cr?, Vr > 2.
otB;t
Then by noticing (5.7), we finish the proof. O

Remark 6.6. With Proposition 6.1 and Proposition 6.3 in hand, in the blow down analysis
we can choose

uf(2) == R*u(Rz), vf(z) := R™*v(Rz).



NONLOCAL ELLIPTIC SYSTEM 23

By the blow down analysis, for any R; — 400, there exists a subsequence of R; (still denoted

by R;) such that
0 2s 0 2s
ufti = bt (cos §> . ot e (sin 5) ,

in C(Bif) N HY*(B}"), for some constant b > 0.
We claim that b is independent of the sequence R;, thus the blow down limit is unique. By
(6.4) and Proposition 6.1,

lim J(R) < +00, (6.5)

R—+o00

where the limit exists because J(R) is non-decreasing.
For each R, let wl' = (ug — M*R™%), = R*w;(Rz) and wl = (vg — M*R™®), =
R%ws(Rz). Then a rescaling gives

Vw2 Vwli|?
J(Rz) _ / ya| 1 / ya| 2 )
Bf 2] Bf 2]

For any § > 0 small, by (6.4),

2
lim ya||z—|a < C lim (sup wfi> = 0(6%),

i—400 B;‘

because wfi converges uniformly to br? (cos 5)28. Using this estimate and the strong conver-

gence of wi' in H-*(B}), we obtain

\V4 i |2 \V4 i|2 \V4 i|2
hm a| wl | — hm a| wl | + hm / a| wl |
imtoo Jpif || i=too Jpi\B} || i—too Jpt |z

Vrs (cos ¢ 252
— 62/ ya| ( a2) | _'_0(523)'
BI\By 2]

After applying (6.4) to br* (cos 5)28 and letting & — 0, this gives

= C(s)b?,

zllmoo a
oo /Bt ||

where C(s) is a constant depending only on s.
Substituting this into (6.5) we get

C(s)** = lim J(R).

R—+o00

Thus b does not depend on the choice of subsequence R;.
After a scaling (u(z),v(z)) — (AMu(Az), A¥v(Az) with a suitable X, which leaves the equation
(1.12) invariant, we can assume b = 1. That is, as R — 400,

0 2s 0 2s
R*u(Rz) — r® (cos 5) , R7°v(Rz) —r? (sin 5) :
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By (6.1) and Proposition 6.1, there exist two constants ¢, ¢y > 0, such that
{u>car’}NoTBf Nn{y > x|} # 0.

Since wu is positive L,-harmonic in ]Ri, by applying the Harnack inequality to a chain of balls
(with the number of balls depending only on ¢), for any € > 0, there exists a constant c(¢)
such that

u(z) = c(e)|z’, v(z) =z c(e)lz]® in{y = elzf}. (6.6)
Lemma 6.7. For any €, > 0, there exists a constant R(e, ) such that
0(2) < 8laF, in{(z.y) 0 > R(e,0),0 <y < e(w — R, 8)}. (6.7)

Proof. By Proposition 6.1 and Proposition 6.3, in the definition of blow down sequence we
can take

ur(z) = R°u(Rz), wgr(z) = R °v(Rz).
As R — +00, (up,vg) converges to (r*(cos 9)%,r*(sin 2)%*) uniformly in Bf". Thus we can
choose an & depending only on § so that for all R large, vg <din Bf N{0 <y <ezx*}. O

Lemma 6.8. For any € > 0, there ezists a constant c(e) such that
u(z) > cle)|z®, in{y>ex_}. (6.8

Proof. In view of (6.6) we only need to give a lower bound in the domain C := {(x,y) : © >
Ry, 0 <y <e(x — Ry)}, where Ry is large but fixed.
u— v is L,-harmonic in C, satisfying the following boundary conditions (thanks to Lemma

6.4)
u—v>c(e)|z|®, on {y =e(x — Ry)} NC,
Oy(u—v) = uv® —vu® <0, on {y =0}NaC.

We claim that u — v > ¢(e, Ry)r® in C.
First, let ¢(6) be the solution of

— Lgyp =d(d+a)y, in {—e <0 <e},
>0, in {—e <0 <e},
U(=e) = 9(e) = 0.

~—

Here d is determined by
J2 ' (0)|sin|"do
J7 w(0)?|sin6|"do’

in the class of functions satisfying ¢(—¢) = ¥(g) = 0.
This minima can be bounded from below by

el e
neCe((—e2) [°_|x|on(x)2dx

d(d+ a) = min

1 a
L et (@) e
n€CEe((-1,1)) f_ll |z|on(z)?dx €

| o

S
¢ = 22

l\.’)

In particular, if € is small enough, d > s. Note that ¢ := r%)(6) is a positive L,-harmonic
function in the cone {|f]| < 2¢}. Moreover, since v is even in 6 (by the uniqueness of the first
eigenfunction), ¢ is even in y.
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For ¢ sufficiently small, we have got a positive L,-harmonic function ¢ in the cone {|y| <
2ex}, satisfying ¢ > |2[** in C. Apparently, 95|2|°* = dj¢ = 0 on {y = 0}. Then we can apply
the maximum principle to

u—v—c(e)z]
¢ )

to deduce that it is nonnegative in C. ]

Proposition 6.9 (Decay estimate). For all z > 0, v(x,0) < C(1+z)™3. For all x <0,
u(z,0) < C(1+ |z])~%.

Proof. For any A > 0 large, let
uMz,y) = A u(dx, Ny), oM, y) = A (A, My).
By the previous lemma and Proposition 6.1,
w*>e¢, v*<C in B;L/Q(I,O).
The equation for v* is
Lov* =0, in Bf,(1,0),
{8; A=\t (u’\)2 v > A0t on 8Bfr/2(1, 0).
By Lemma A.3,
vM(1,0) < CA™*%.

This then gives the estimate for v(\,0). O

Before proving a similar decay estimate for % and 2¥. we first give an upper bound for the

oz
gradient of v and v.

Proposition 6.10. There exists a constant C such that,

ou ov
- s < 5—1.
2w 9)| + o) < OO+ Ja] + )
ou ov
a_ a_ < —S‘
y ay(l‘,y)‘ + |y ay(w,y)( < C(1+ [=| + [y])

Proof. For all X large, consider (u*,v?) introduced in the proof of the previous proposition.
It satisfies

Lou* = Lo =0, in By,
(6.9)

8; A=\ (v)‘)2 , 8;;2]’\ = Mt (uA)2 , on 8OBfr.

By Proposition 6.1, u* and v* are uniformly bounded in B;". Then by the gradient estimate
Theorem 2.1,
sup (V| + |Vot| < C.
{y=lzl/23N(BI\B] )
Rescaling back this gives the claimed estimates in the part {y > |z|/2}. (Note that here y*
is comparable to (|z| + y)*.)
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Next we consider the part D := {0 <y < z} N (B \ B1/z) Here by differentiating (6.9)
we obtain

( out ot .
Logy =lagy =0 D,

a@u ds 2 Oul is,, 8 A 0
Oy —— o =\ ( ) e + 2A e on 0D
aav 4s 2 O 45,0y, /\a u 0
8y pe =A ( ) e +2A B on 9°D

By Corollary 6.2,
o

ox

/ y° (‘a_m 2 2) <C,
D ox
for a constant C' independent of A.

By Proposition 6.9, v» < OA ™ on 0°D. Thus the coefficient 2A**u*v* is uniformly
bounded on 9°D. Although \** (u’\)2 is not uniformly bounded, it has a favorable sign.

Then standard Moser iteration (see for example [20, Theorem 1.2]) gives
ou o

e <
ox + ox =G

sup
{0<y<w/2}ﬂ(35/4\32/3

for a constant C' independent of A.
Finally, similar to the proof of Lemma 4.3, we have

( ou* o
Lo (v S8) =, (o2 ) =0, in D,
(y 8y) (y 5‘y> .
A
{ y“aﬁ% = Nt (v/\)2 € (0,C), on 3D
A
y“ai = \sp? (u)‘)2 € (0,0), on "D
\ 81/
Moreover, by Corollary 6.2,
ou* |2 ol )
—a aZ 7 | 4 < C
/Dy (’y dy oy

for a constant C' independent of A.
Then by applying the Moser iteration to ( o Ou’ —C)4 and (y* S 8“ + C)_, we see

Y By
L oul
sup au + |y ai) <,
{0<y<z/2}N(B3,\By5) ) Y
for a constant C' independent of A. O

Written in polar coordinates, this reads as

Corollary 6.11. There exists a constant C' such that,
ou

" (7‘6"+‘6 7“9‘<C(1+r)
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(sin6)* du (sin6)* dv s—1
- < .
r 00 (r, 9)‘ ‘ r 00 (r,0)| < C(1+r)
Proof. We have
ou Ju . l-a / . o Ou
3= cos 0% + (sin @)~ (sin ) _8y’
(sin )" Ou Ou

(r,0) = — (sinf)" ™ % + cos @ (sin 6)* 0

r 00 Y

Since 14+a > 0 and 1 —a > 0, (sinf)' " and (sin @)™ are bounded. Then this corollary

follows from the previous proposition. O

Finally we give a further decay estimate for % and %.

%(w,O)‘ <

Proposition 6.12. For all z > 0, |24(2,0)| < C(1+ )™, For all z < 0,

C(1+ Jal) .

Proof. We use notations introduced in the proof of Proposition 6.9.
By differentiating the equation for v*, we obtain

o )
L, (%)+ >0, in BT/Z(L 0),
o 2 [(Ov* ou| [ O
a > )\4s A _ 4s, A, A 0 p+ ]
9, (_3x >+ > A% (uh) (_8x )+ 22\ B ‘ (_8x )+, on 0"By,(1,0)

By Proposition 6.9, v* < CA™* on GOBT/Q(L 0). By the previous proposition %\ <Cin
(1,0). Lemma 6.8 also implies that u* > ¢ in B;“/2(1, 0). Hence on 603;2(1, 0),

By,
A A

o (al) > (eA* = C) (ai> .

ox L or "

Applying Lemma A.3, we get

o

X

(1,0) < CX™*.

The same estimate holds for the negative part. This then implies the bound for |%()\, 0) ‘ U

7. REFINED ASYMPTOTICS AT INFINITY

In this section we prove a refined asymptotic expansion of the solution (u,v). See Propo-
sition 7.4 below. Here we need s > }L. The refined asymptotic is needed for the method of
moving planes in the next section.
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7.1. Let
v =ccosf, y=c'sing, teR, ec|0n]

and

(t,0) = e *u(e’ cos, e’ sinf), v(t,0) = e *v(c' cos, e’ sinb).

IS}

—~

The equation (1.12) can be transformed to the one for (u,v),

(U + 1+ s(1—s)u+ Liu =0, in (—oo, +00) X (0,7),
Uy + 0+ $(1 — s)v + Lygo = 0, in (—oo, +00) x (0,7),

lim  05u = +e*'uv®, on (—o0,+00) x {0, 7},
60—0 or

. lgm 050 = +e*'vu’, on (—oo, +00) x {0, 7},
\ 0—0 or =

where we take the positive sign + at {0} and the negative one — at {7}.
By Proposition 6.1,

0<u, v<C, in [l,400) x [0,7].
By Proposition 6.9,
u < Ce™ on[l,4+00) x {7},
{2_) < Ce™' on [1,+00) x {0}.
Combining Proposition 6.1 and Proposition 6.9, we also have
0 < 95u < Ce ™' on [1,+00) x {0}
{0 > 050 > —Ce ™ *' on [1,+00) x {7}.

What we have shown in Remark 6.6 is equivalent to the following statement.

(7.1)

(7.4)

Lemma 7.1. As t — +oo0, u(t,0) — (cos $)* and v(t,0) — (sin )** uniformly in [0, 7).

2
The next task is to get an exact convergence rate.
Proposition 7.2. There exists a constant C' so that
s 0 2s S( s 0 2s s—min{1,4s}
|u(r,8) — r*(cos 5) |+ |v(r,0) — r®(sin 5) | <C(1+7) ath
In the following we denote
o = min{1,4s}.
Proof. Let ¢(t,0) := u(t,0) — (cos £)*. There exists a constant M such that

O+ o +s(1—s)p+ Lgp =0, in [1,4+00) x (0,7),
0<(t,m) < Me™*t,
0 < 95¢(t,0) < Me™*,

Moreover, |¢| < M in [1,+00) x [0, 7] and it converges to 0 uniformly as ¢t — +o0.
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Let 9(t,0) := (¢(t,0) — Me~*")_ . Tt satisfies
1/}tt + ¢t + 8(1 - S>1/} + ng 2 _06_4St7 n [17 +OO> X (07 7T)7

1?(@ 7T) =0, (76)
8;%(25, 0) > 0.

We still have 0 < ¢ < M in [1,+00) x [0, 7], and ¥ converges to 0 uniformly as t — +oo.
Define

£(t) = /0 "t 0) (cos g>2 (sin )" df > 0.

Multiplying (7.6) by (cos g)zs and integrating on (0, 7) with respect to the measure (sin ) d6,
we obtain

Fr@) + /() = f'(t) + f'(t) = 9ab(t, 0) = —Ce™™". (7.7)
This implies that
!/
t /t (1748)7& > 0
(4 o get ) =
Consequently,
C
t pl (1748)t > / 1—4s > > )
ef(t)+—1_4se _6f<1)—|——1_486 >—-C, Vt>1
In other words,
C
'ty > —Ce™" — ﬁe_‘“t > —Ce ™ on [1,+c0).
—4s
This then implies that
C
t . —ot
f) - e
is nondecreasing in ¢t. Because
C
1 t)——e 7" =0
Jim [f( ) - e ] :

we obtain
f(t) < Ce ™ Vtell,+o0).

A similar estimate holds for ¢_.
Now we have got, for all t > 1,
0

T 2s 2s
/ u(t,0) — (COS Q) ) (cos —) (sinf)*df < Ce".
; 2 2

Then by standard estimates we get, for any A > 0,

2s
sup |u(t,0) — (COS g) | < ge_”t.

0€(0,m—h) h
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Next we extend this bound to (m — h, 7). Let

. (¢ _ max{%e—at’Me—ﬁlst}) , on [l,400) X [r — h, 7.
_l’_

It satisfies

{ i+ o +8(1—8)p+ Lip > —Ce ™ in (1, +00) X (7 — h, ), (7.8)

o(t,m) = p(t,m—h) =0.
Let
o(t) = / o(t, 0)2 (sin 0)" db.

—h
We claim that the following Poincare inequality holds.
Claim. There exists a constant ¢, which is independent of h, so that

Jon (%ﬁ(@@f (sin6)* df o
[T, e(t,0)2(sind)"do  ~ h?’

™

This is because the left hand side can be bounded from below by
h / 2 1 / 2
@ d @ d
c min —fohx () d > % min —IOIJU () x.
neCE(On) [t aon(z)2de — P neCEOD) [ xon(x)2de
Multiplying (7.8) by ¢ (sin#) and integrating on (7 — h, ) leads to

91 +9(0) =2 15— (1= 5)] glt) = —Ce™g(t)} = —Ce™ — 5(1 = s5)g(1).

Thus
90+ 50~ |35 - 3501 - 9)| gl0) = e
Now we fix an h small so that
% —3s(1 — 8) > 40?

Because ¢(t) — 0 as t — 400, by the comparison principle,

1+\/1+4(h%—2s(1—s)> >
5 t

g(t) <C (e_%t +e” < Ce 2,

Then standard elliptic estimates imply that
0 2s
u(t,0) — (cos 5)

Coming back to u this gives the claimed estimate. O

max{%e"t, Me ™} 4 Ce™!

IN

sup
[r—h,n]

< Ce .
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7.2. Now consider @;. By differentiation in ¢, u; still satisfies the first equation in (7.1).
Moreover, we have the following boundary conditions. At # = 7, by Proposition 6.9 and
Proposition 6.12,

ﬁt(t,ﬂ') — _SG_Stu(et, ﬂ_) + €(l_s)tur(€t, 71') _ 0(6_4St).

Note that @.(t,0) is bounded in ¢ € [1,400), which can be deduced from Proposition 6.9
and Proposition 6.10. At 6 = 0, because |v(,0)| + |v,(¢,0)| < Ce™**,
g, = 4dse*uv® + ™0, + 2 uvy,
= O(e™™).
Then as in the proof of the previous subsection, we have
Lemma 7.3. Ast — +o00,

sup |u(t,0)] + |0:(t,0)] < (e~ min{las}t, (7.9)
0€[0,7]

Proof. For any h > 0, in {h < 6 < m — h}, by Proposition 7.2, (7.9) follows by applying
the interior gradient estimates to @(t,#) — (cos#/2)* and o(t,0) — (sinf/2)*. In the part
{0 <8 < h}or{r—h<0 <}, if we have chosen h sufficiently small, the proof is exactly
the same as in the last part of the proof of Proposition 7.2. U

7.3. Now we assume s > 1/4. This implies o = 1. Here we improve Proposition 7.2 to

Proposition 7.4. There exist two constants o and (3 so that we have the expansion

0 2s 9 2s
u(r,0) =r° (cos 5) + ars! (cos 5) +o(r*7h),

9 2s 9 2s
v(r,0) =r® (sin 5) + Gret (Sin 5) +o(rs7h).

0 2s
a(t,0) := e’ [ﬂ(t,@) — (cos 5) ] :
and ¥ be defined similarly.

By Proposition 7.2, @ is bounded on [1,+00) x [0, 7]. Moreover,

Uy(t,0) = e [u(t,e) — (COS%)QS

is also uniformly bounded, thanks to the estimate in Lemma 7.3.
u satisfies

Proof. Let

+ e'uy(t,0),

Uy — U+ s(1—s)a+ Lyu=0, in [1,400) x (0,7),
|05a(t,0)] < MeUs=1E, (7.10)
a(t, m)| < Me~Us=1t,
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Thus for any t; — 400, we can assume that a(t; + ¢,6) converges to a limit function 4,
weakly in L? (R x [0, 7]). Here a™ satisfies
ay —u” + s(1 —s)a™ + Lga™ =0, in R x (0,7),
@(1,6)] < C,
u>(t,m) =0,
9ea>(t,0) = 0.
Consider the eigenvalue problem
— Lgvj = Ay, in (0, 7),
¥;(m) =0,
95;(0) = 0.

This problem has a sequence of eigenvalues A\; < Ay < --- < A\, — 400, and the corresponding

eigenfunctions are denoted by 1);, which is normalized in L*((0,7), (sin #)*df). Here the first
eigenvalue \; = s(1 — s) and the corresponding eigenfunction ¢ (#) = (cos £)* (modulo a
constant) is positive in (0, ).

Consider the decomposition

(7.11)

o0

@(t,0) = Y ci(t)5(6).

=1
Then ¢;(t) satisfies
=i+ [s(1—s)—N]¢ =0.
Note that |¢;(t)| < C for all t. Combined with the above equation, we see ¢; = 0 for all j > 2,

and ¢ (t) is a constant.
Now we show that this constant does not depend on the sequence t; — +o00. Let

() = /O "l ) <Cosg)25 (sin 0)° do).

By the bound on @ and @, f(t) and
™ 2s
() = / w(t, 0) (cos g) (sinf)* df
0

are bounded on [1,400). Multiplying the equation in (7.10) by (cos g)% (sin@)” and inte-
grating by parts leads to

fI(t) — f'(t) = —0ga(t,0) — 2%su(t, 7) = O(e” D).

In particular, f”(t) is also bounded on [1, 400)
For any ¢; — +00, we can assume that f(¢;+t) converges to a limit f..(¢) in C._ (R), which
satisfies
foo(t) = £ () = 0.
Because f,, is bounded on R, it must be a constant. Thus f/, = 0. This implies that f'(¢) — 0
as t — +o00.
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Now we also have
(€_tf/(t))/ _ O(e—4st)

Integrating this on [¢, +00), we obtain
[f(O] = 0™,
Hence there exists a constant « such that
|f(t) - a} = O(e_(45_1)t).

Together with the previous analysis, we see for any ¢t — +o0,

0 2s
u(t,d) — « <COS 5) :

weakly in L%([0,n]). To improve this to a uniform convergence, we use the method in the
proof of Proposition 7.2 (or standard De Giorgi-Moser iteration). This gives the expansion
of u. B

Remark 7.5. This expansion is in consistence with the s = 1 case,
v =uw?, " =wvu?, onR.
For this problem, we have the expansion (after a translation and a rescaling)
u(z) =x4 +0(1), v(z)=2_+0(1).
Remark 7.6. We can also estimate the convergence rate of i, which is of order O(e™°).
Hence in the expansion of u, o(r*~') can be replaced by O(r*=179).
8. SYMMETRY BETWEEN u AND v

In this section, we prove the following theorem and use it to prove the symmetry between
u and v, as claimed in Theorem 1.1.

Theorem 8.1. Let (u;,v;), i = 1,2 be two solutions of (1.12). Suppose that they satisfy

‘9 2s 9 2s
ui(r,0) = r° (cos §> + ! <COS 5) +o(r™h), i=1,2, (8.1)

o\ 28 O\ 2¢
vi(r,0) =r° (Sin 5) + Bt (sin 5) +o(r' ), i=1,2, (8.2)
for four constants «;, B;,1 = 1,2. If aq + B1 = ag + (o, then
ur(z +to,y) = uz(z,y), vi(x+to,y) = va(z,y),
where ty = %(062 —ap) = %(51 — B2).

Note that (8.1) and (8.2) imply that

2s 2s
‘ui(r, ) —r <COS g) | + ‘vi(r, ) — 7 <Sin g) ‘ <M (1 +7~)5—1’ i=1,2, (8.3)

for some constant M > 0.
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For any t € R, let
u'(z,y) =z +ty), vi(z,y) =uvr+ty),

which is still a solution of (1.12).
In the following, it will be helpful to keep the following fact in mind. Because

[uf —uo| < M (L Ja 4yl ML+ |zt )

+‘< x2+y2+x>s (w/(x+t)2+y2+x+t>s’
2

2

)

|u' — us| — 0 as |2| — co. Thus any positive maximum (or negative minima) of u’ — uy is
attained at some point.
The first step is to show that we can start the moving plane from the infinity.

Lemma 8.2. Ift is large enough,
ut(z,y) > ug(z,y),  vi(z,y) <wvalx,y), on R (8.4)

Proof. 1f t is sufficiently large, for z > 0,

ut(z,0) > (x4+1)° =Mz +1t)°"
2 ZES+M$S_1
> u2(x70)'

Similarly,
v'(2,0) < vo(x,0), on (—oo,—C(M)],
where C'(M) is a constant depending only on M.
It can be checked directly that for ¢ large,

u'(z,0) > up(z,0), on [-C(M),0].

In fact, for x € [-C(M), 0], lim;_, o u*(z,0) = 400 uniformly (see Lemma 6.5), while us(z, 0)
has an upper bound here.
Then by noting that

L, (ut — Ug) =0, in Ri,
|[u'(2) —ua(z)| — 0, as |2| € R, 2z — oo,
u'(z,0) — uz(z,0) >0, on [-C (M), +0)
0% (u'(x,0) — ug(x,0)) < va(x,0)? (u'(z,0) — uz(x,0)) on (—oo, —C(M)),
we can apply the maximum principle to deduce that
u' > ug, in ]RT?F

In fact, if inf(u' — up) < 0, this minima is attained at some point. Because u' — ugy is L,-
harmonic, the strong maximum principle implies that this point is on the boundary, say
(20,0). Clearly g < —C(M). Then

0 <85 (u* — ug) (w0,0) < va(x,0)* (u'(z,0) — uz(,0)) < 0.
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This is a contradiction.
The same reasoning using
L, (vt — Ug) =0, in Ri,
[v'(z) — va(2)| = 0, as z € RY, z — o0,
0% (v'(x,0) — va(x,0)) > u'(x, 0)* (v'(z,0) — v2(z,0)) on IR,
gives L
v" < vy, on R2. O
Now we can define ty to be
min{t : Vs > t,u’(z,y) > us(z,y), v°(z,y) <wva(z,y), on R} (8.5)

By continuity, u'® > uy, v* < v,.

We want to prove that ty = i(ag — o). Indeed, if this is true, we have u'® > uy and
v < vy. Then we can slide from the left, by the same reasoning this procedure must stop at
to. Thus we also have u® < uy and v’ > v,. Consequently u!® = uy and v’ = v,.

Now assume t; > %(CYQ — ay). We will get a contradiction from this assumption. Let
dp = sto — (ag —aq) > 0. By (8.1) and (8.2),

u'(z,0) = 2° + (ay + sto) 2° ' +o(x*7!), asx — +oo.
v"(2,0) = |z|* + (by — sto) |z|*" +o(|z|*7), asz — —o0.

Comparing with us and vy respectively, we get a constant Tj such that

u'(x,0) > uy(z,0) + %xs_l, if x > Ty, (8.6)
and 5
v’ (x,0) < vy(,0) — ?O|x|s_1, if 2 < —T,. (8.7)

By (8.1), perhaps after choosing a larger Tj, for all ¢ satisfying |t| < 2|to| we have
)
lu'(2,0) — 2% — (a1 + st) 2* '] < §0x5—17 if x > Tp.

Thus there exists an ; > 0 such that, for all ¢t € [ty — &1, ],

4
u'(z,0) > u'(z,0) — Zoxs_l, if © > Tp.

Combining this with (8.6), we see for these t,
u'(z,0) > uy(z,0), if x> Ty, (8.8)
and similarly
v'(z,0) < vo(x,0), ifz < —Ty, (8.9)
By the strong maximum principle, u’® > uy and v' < vy strictly. In fact, if there exists a
point zyp € R% such that u'(zp) = us(20), then the strong maximum principle implies that
u' = uy, which contradicts (8.6).
Next, by continuity we can find an 5 > 0 so that for all ¢ € [ty — &9, o],

u'(2,0) > uy(z,0), o' (x,0) <wvy(w,0), for z € [Ty, Tp).



36 K. WANG AND J. WEI

Combined with (8.8) and (8.9), by choosing ¢ := min{ey, 2}, we see for all ¢ € [ty — ¢, to],
u'(2,0) — uz(z,0) >0, in [Ty, +00),
v (x,0) — vo(x,0) <0, in (—o0,Ty).

Then arguing as in the proof of Lemma 8.2, we know for all ¢ € [ty — ¢, to],
ut > uy, v <wy, in @

However, this contradicts the definition of ¢;. Thus the assumption ¢, > %(aQ — ay) cannot
be true.

Proof of Theorem 1.1: symmetry between u and v. We first prove the symmetry between u
and v. Given a solution (u,v) of (1.12), let (ui(z,y),vi(z,y)) = (u(z,y),v(z,y)) and

(uz(z, ), va2(, ) = (v(=2,9), u(=2,y)).
By Proposition 7.4, after a scaling, we have the expansion

6

uy(r,0) = u(r,0) = r°(cos 5)25 + ar®!(cos g)QS +o(rs7h),

; ; (8.10)
v1(r,0) = v(r,0) = r’(sin 5)25 + Bri!(sin 5)25 +o(rs7h).
Hence 9 5
ug(r, ) = r°(cos 5)25 + Bro~!(cos 5)2‘9 +o(r* 1),
0 0
vo(r,0) = r®(sin 5)25 + ar®!(sin 5)25 + o(r*7h).
Thus we can apply Theorem 8.1 to get a constant 7" such that
'Ll/(flf + 2T7 y) = U<_‘T7 y)7 U(Q? + 2T7 y) = U‘(_'TJ y)
That is, u and v are symmetric with respect to the line {z = T'}. O

Corollary 8.3. For any solution (u,v) of (1.12), % >0 and g—; <0 on @

Proof. Let
ul(z,y) = u(z +1),  v'(z,y) = vl +ty).
As in the above argument, we know for any ¢ > 0,
utzu, vtgv, on@.

Thusg—zannd%go.
Next, by noting that

(. Ou v
Lo— = Ly=— =0, in R%,
Ox Ox B
LO0u L 0u ov 9
8y%:v %—FQUU%, on JRZ,
L0V , OV ou 9
\83/%:11 a—x—i—ZuU%, on 8R+,

we can use the strong maximum principle to conclude the proof. O
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9. UNIQUENESS

In this section, we prove the uniqueness of solutions to (1.12), thus complete the proof of
Theorem 1.1. We follow the main ideas of [3].
Before going into the proof, we present a technical lemma on a barrier function.

Lemma 9.1. There exists a function g(z) > 1 on R, satisfying

(A 9@ e
g(x) Z ’ | Y Y
M >—-C, asx — +oo.
glz) =

Proof. Let f be the solution to the Allen-Cahn equation

Lof =0, inR2,
{%ﬁz(ﬁ—”?,on%ﬁ. 6-1)
By the main result in [7], we can take f to satisfy
Tim f(x,0) = F1, g—i <0. (9.2)
Moreover, by [7, Theorem 2.7], we have the decay estimate
clz|™* <1 — f(2,0) < Clz|™%, asz — —oo.
Then g = f + 2 satisfies all of the required properties. O

Let (u;,v;), i = 1,2, be two solutions of (1.12). By what we have proved in the previous
section, the following expansion holds:

0 0
wi(r, 0) = r°(cos =) 4+ ar* " (cos =) + o(r* 1),
) ; (9.3)

0u(r,8) = r*(sin )%+ ar*(sim )% + 0(r" ),

Here oy, © = 1,2 are two constants.
If a1 = as, Lemma 8.1 implies that u; = us, v1 = v9 and we are done. Hence we assume,
without loss of generality, that oy > as. Denote

1
ty := —(Ozl —O{Q) > 0.
S

Define (u',v") as in the previous section. As before, we can show that for all ¢ > ¢,
ut > uy, vl <wy, onRZ.
Since (u',v") has the expansion
u'(r,0) = 2%+ (aq + st) 25" +o(x® ), asx — +oo,
{ o' (2,0) = |z|* + (a1 — st) [z]° + o(|z]*7), asz — —oo,

for any t < to, if —x is large enough, v*(z,0) > vy(z,0).
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Lemma 9.2. For any t < ty, infgs(u" —u) <O0.
+

Proof. Assume by the contrary, for some ¢ < o, u* > u on @ Then as in the proof of Lemma
8.2 we can apply the maximum principle to deduce that v* < v,. This is a contradiction. [

For t < tg, let

W=t —uy,  Wh = vy — 0

They satisfy
L0} = Lywh =0, in R%,
oy = (vt)Q W} — ug (v2 + v) Wy, on ORZ,

a,~t __ 2 ~t t t\ ,+t 2
0y Wy = UzlWy — v (us +u') @}, on IRZ.

Then define
t . W t._ Wy
wl — _, w2 o
g g

They satisfy
( V v
Low! + 2y“79Vw§ = Lowh + 2ya7ng§ =0, inR2,
9wt — 359 t\ 2 t AN OR2
put = [~ 4 )]t~ e+ o)t om 0L, 0

a
Qwh = {_%g + u%} wh — o' (up +u') wi, on IR
\

Previous discussion has shown that, for any ¢ < tg,

inf w} < 0 and infwh < 0.

By the strong maximum principle using the first equation in (9.5), these two infimum are
attained at two points of the form (z;,,0), i = 1,2.
Because u'® > uy and v < vy on JR?, we must have

lim |2;;| =00, i=1,2. (9.6)

t—to
Lemma 9.3. Ast — ty, ©1; — —00.

Proof. Since oy + sty > s, by the expansion (9.4), there exist two constants Ry > 0 large
and ¢, small, so that for any t € [ty — &, to],

u'(z,0) > uy(z,0), for z € [Ry, +00).

Next by continuity, for any R > 0, there exists an e(R) > 0 so that, if t € [ty — e(R), to],
then

u'(z,0) > uy(z,0), for z € [—R, Ryl.
Thus if ¢t > ¢ty — min{e,,e(R)}, 71 < —R. O
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Because djwi(r1,) > 0, we have

Uz(l'l,t: 0) (vg(xu, 0) + ?}t(xl,ta 0)) wt (214,0). (9.7)
_%<xl,t70) +'Ut($l,ta0)2 7

Uji ($1,t7 0)

Vv

Similarly,
¢ 0 0 ¢ ,0
b, 0) > S (o2 D P DD 1) (09
— == (2,4, 0) + uz(w2y, 0)?
By definition, w!(z2y,0) > wi(214,0) and wh(z1,,0) > wh(xgs,0). Combining this fact with
(9.7) and (9.8), and noting that w!(x14,0) < 0, we must have

us(14,0) (va(@14,0) + v (214, 0)) o V! (22,4, 0) (uz(224,0) + u' (294, 0))

8(19 9 aag 9 > ]. (99)
—%(%,t, 0) + v(x14,0) _%(ZEQ,% 0) + uz(z2,,0)
By Proposition 6.1 and Proposition 6.9,
Us(1,4,0) (Uz(iﬂl,mo) + v (@1, )) < Clay ™, (9.10)
v'(294,0) (u2(x27t, 0) + u'(zay, )) < Olwy |7 .
Since z1; — —o0, by Lemma 6.8 and Lemma 9.1,
80,
- ;,g (214,0) + ' (214,0)% > v'(214,0)* > clzy4]* (9.11)
Hence,
(214, 0) (va(@14,0) +v(214,0)) — 0, ast—tp. (9.12)

—%(Z’Lt, O) -+ /Ut(.TLh O)Z

Next, if 94 — —o0, by Lemma 9.1,

0% 0%
Z (w24, 0) + ug(way, 0)* > ; (wg4,0) > C‘xz,trzs

Together with (9.10), this implies the existence of a constant C' such that, as t — to,
v (22,,0) (ua(2y,0) + u'(22,,0))

575 <C. (9.13)
—%(1'2,7&, 0) + uz(w2,4,0)?
If 294 — 400, by Lemma 6.8 and Lemma 9.1,
0%g
- ; (2., 0) + up(w24,0)* > —C + un(w24,0)* > clag,]* (9.14)
Hence,
V' (@24, 0) ({24, 0) + w224, 0)) — 0, ast—tp. (9.15)

_%(-xlt; 0) + ua(x24,0)?

Combining (9.12) and (9.13) (or (9.15)), we get a contradiction with (9.9).
In conclusion, the assumption a; # as cannot be true. By using Theorem 8.1, we complete
the proof of Theorem 1.1.
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APPENDIX A. BASiCc FACTS ABOUT L,-SUBHARMONIC FUNCTIONS

In this appendix we present several basic facts about L,-subharmonic functions, which are
used in this paper.
The first is a mean value inequality for L,-subharmonic function.

Lemma A.1. Let u be a L,-subharmonic function in B, C R™! (centered at the origin),
then

u(0) < C’(n,a)r"la/ yu.

™

Here C(n,a) is a constant depending only on n and a.

Proof. Direct calculation gives

i 7,,na\/ ay _ Tna/ a@
dT 8Bry - BBTy 87“

= T_"_a/ div (y*Vu)
> 0. T

e . . . . . . —n—1—
Thus " o, y“y 1s.non—decreasmg in r. Integrating this in r shows that r="~'=¢ [, y%u
is also non-decreasing in r.

By standard Moser’s iteration we also have the following super bound

Lemma A.2. Let u be a L,-subharmonic function in B, C R™™! (centered at the origin),

then )
2
supu < C(n,a) (7’"1“/ y“u2> :
Br/2 By

Here C(n,a) is a constant depending only on n and a.

Lemma A.3. Let M > 0 be fizred. Any v e H'(B) N C(Bf) nonnegative solution to
L.,v >0, in B,
{8;‘11 > Mv on 3°By,
satisfies

C(n) / a
sup v < ——= y'v.
B, M Jpy
Proof. This is essentially [23, Lemma 3.5]. We only need to note that, since
d9v >0 on 0B,
the even extension of v to By is L,-subharmonic (cf. [7, Lemma 4.1]). Then by Lemma A.2,

supv < C(n)/ Y. O
B

+
By)s
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