MULTIPLE INTERIOR PEAK SOLUTIONS FOR SOME
SINGULARLY PERTURBED NEUMANN PROBLEMS

CHANGFENG GUI AND JUNCHENG WEI

ABSTRACT. We consider the problem

eAu—u+ flu)=0 in Q
u>0inQ =0 on 09,

where Q is a bounded smooth domain in R, ¢ > 0 is a small parameter
and f is a superlinear, subcritical nonlinearity. It is known that this equa-
tion possesses boundary spike solutions that concentrate, as € approaches
zero, at a critical point of the mean curvature function H(P),P € of.
It is also proved that this equation has single interior spike solutions at
a local maximum point of the distance function d(P,0f?), P € Q.

In this paper, we prove the existence of interior K — peak (K > 2)
solutions at the local maximum points of the following function

(p(PhPZ:'“;PK): mi

1
d(P;,00),=|P, — P,
i,k,l:l,..l.r,lK;k;él( (P:, 0 )’2| ke — Bil)

We first use Liapunov-Schmidt reduction method to reduce the prob-
lem to a finite dimensional problem. Then we use a maximizing procedure
to obtain multiple interior spikes. The function (P, ..., Px) appears
naturally in the asymptotic expansion of the energy functional.

1. INTRODUCTION

The aim of this paper is to construct a family of multiple interior peak

solutions to the following singularly perturbed elliptic problem

e?Au—u+uP =0 in Q, (1.1)
u >0 in Qandg—gzo on 0f), '

where A = Zf;l % is the Laplace operator, €2 is a bounded smooth domain
i Ny

in RN, € > 0 is a constant, the exponent p satisfies 1 < p < N—_g for N >3

and 1 < p < oo for N = 2 and v(z) denotes the unit outward normal at
x € 0L
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Equation (1.1) is known as the stationary equation of the Keller-Segal
system in chemotaxis. It can also be seen as the limiting stationary equation
of the so-called Gierer-Meinhardt system in biological pattern formation, see
[40] for more details.

In the pioneering papers of [22], [26] and [27], Lin, Ni and Takagi estab-
lished the existence of least-energy solutions and showed that for ¢ suffi-
ciently small the least-energy solution has only one local maximum point P.
and P. € 0¥2. Moreover, H(P.) — maxpecapq H(P) as € — 0, where H(P) is
the mean curvature of P at 0€2. In [28] , Ni and Takagi constructed bound-
ary spike solutions for axially symmetric domains. The second author in [40]
studied the general domain case and showed that for single boundary spike
solutions, the boundary spike must approach a critical point of the mean cur-
vature; on the other hand, for any nondegenerate critical point of H(P), one
can construct boundary spike solutions with spike approaching that point.
The first author in [14] constructed multiple boundary spike layer solutions
at multiple local maximum poi nts of H(P). Later the second author and
Winter in [43] constructed multiple boundary spike layer solutions at multi-
ple nondegenerate critical points of H(P). Similar results are also obtained
by Y. Y. Li in [24] independently. When p = %, similar results for the
boundary spike layer solutions have been obtained by [2], [3], [4], [15], [25],
[44] etc.

In all the above papers, only boundary spike layer solutions are obtained
and studied. It remains a question whether or not interior spike layer solu-
tions exist for problem (1.1). It was proved in [39] that under very restrictive
geometric conditions, one can construct single interior spike solutions.

In [41], the second author obtained the first result in constructing sin-
gle interior spike solutions by using the distance function, d(P,0f2). More
precisely, it was proved in [41] that for any smooth domain €2, there always
exists a single interior spike solution wh ich concentrates at the most cen-
tered part of the domain, namely, the points which attains the maximum of
the distance function. (We note that the distance function has already ap-
peared in the study of the corresponding Dirichlet problem in [29], [37].) We

also like to point out that formal asymptotic analysis for single interior peak
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solution is done in [45], and some results on multiple interior peak solutions
are obtained in [20] under very complicated conditions.

In this paper, we study the existence of multiple interior peak solutions
by using the geometry of the domain. Moreover, we are able to deal with
more general nonlinearities.

More precisely, we consider the problem

e?Au—u+ f(u) =0 in Q,
(1.2)
u>0 inQand 2 =0 in 0.
We will assume that f : Rt — R is of class C'*° and satisfies the following

conditions

(f1) f(u)=0for u <0 and f(u) = 400 as u — oc.
(f2) f(0) =0, f(0) = 0 and

f(u) = O(ju™), f (u) = O(jul"") as |u| — oo

for some 1 < py,pe and there exists 1 < p3 such that

C|g[re if ps > 2
| fulu + @) = fu(u)] < { C(lg] + |¢|ps3—1) if p3 <2

(f3) The following equation

Aw—w+ f(w)=0 in RY
> 0,w(0) =
w > 0,w(0) max w(z) (1.3)
w— 0 atoo
has a unique solution w(y) (by the results of [16], w is radial, i.e.,
w =w(r) and w < 0 for r = |y| # 0) and w is nondegenerate. Namely

the operator
L:=A—-1+f(w) (1.4)

is invertible in the space H2(RY) := {u = u(|y|) € H*(R")}

Some important examples of f are the following.
Example 1 (chemotaxis and pattern formation)

Let f(u) = uf where 1 < p < (RE2); (=0 if N = 2;= T2 if N > 2).

It is easy to see that f satisfies (f1), (f2) and (f3). This problem ar ises
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from the Keller-Segal model in chemotaxis and Gierer-Meinhardt system in
pattern formation (see [26], [27] and the references therein).
Example 2 (population dynamics and chemical reaction theory)
Let g(u) = u(u — a)(1 — u) and f(u) = g(u) — (a + 1)u, where 0 < a < 3.
This is a famous model from population dynamics and chemical reaction
theory (see [5], [10], [35] ). By the result of [17], f satisfies (f1)-(f3).
Other nonlinearities satisfying (f1), (f2) and (f3) can be found in [11].
In what follows, we state precisely our assumption on the domain.
Forany P = (P, ..., Px) € Q¥ = OxQx...xQ, we introduce the following

function

) 1
QO(Pla P27 ey PK) - i,k,lzllr,l..l.I,IK;k#l(d(‘Ri’ aQ)? §‘Pk - -Pl|)
We assume that a subset A of Q¥ satisfies
Py, .., Pg) > P, .., P 1.5
2y PP P) > max (P Pr) (1.5)

We emphasize that such a set A always exists . For example, we can take
A = QK. We also observe that any such A can be modified so that for
P = (Py,..., Px) € A we have

min d(F;,00) > 6 > 0, min [Py —F|>2§>0
I=1,.,K k=1, K3k (1.6)

for some sufficiently small § > 0.

Next we discuss some other examples of A for some special domains.
If d(P,09) has K strict local maximum points P, ..., Px in Q such that
min;x; |P; — Pj| > 2max;—y,x d(P;, 0%2), we can choose A such that (1.5)
holds with maxp, ... pryen (P, ..., Px) achieved at P = (P, ..., Py). When
(1 = Bg(0) and K = 2, one can take P, = (R/2,0,...,0), P, = (—R/2,...,0)
and A = {(X1,X3) : R/2—-6 < |X;| < R/2+6,i=1,2,|X; — X5| > 6} with
¢ small. Then (1.5) holds and max(p, p,yes @(P1, P2) = R/2 is achieved at
P = (P, P).

We now state our main result in this paper.

Theorem 1.1. Assume that condition (1.5) is satisfied. Let f satisfy as-
sumptions (f1)-(f3). Then for ¢ sufficiently small problem (1.2) has a solu-

tion u. which possesses exactly K local mazimum points Q5 ..., Q% with Q° =



MULTI-PEAK SOLUTIONS 5

( ia T Q&I-() € A. Moreover QD(Qia Ty Qi{) - ma‘X(Ql,...,QK)EA W(Qla T QK)
as € = 0. Furthermore, we have
bmini—y, k(|7 — QF))

u.(z) < aeap(~
13

) (1.7)

for certain positive constants a, b.

More detailed asymptotic behavior of u. can be found in the proof of
Theorem 1.1.

We have the following interesting corollary.

Corollary 1.2. For any smooth and bounded domain and any fixed posi-
tive integer K € Z, there always exists interior K-peaked solutions which

concentrates at the mazimum point of the function o(Py, ..., Pk).

Remark 1.3. : It can be shown that the mazimum of (P, ..., Px) in Q
is attained at some point (Q1, ..., Qx) with d(Q;, Q) = max p(P, ..., Pk)
for some i. In other words, the distance between each Qs is always larger
than or equal to the smallest d(Q;, 02). If we connect the mazimum point of
©(Py, ..., Px) with the ball packing problem and call the set of the centers of
K equal balls packed in  with the largest radius a K packing center, then
the K interior peaks of the above solution converges to a K packing center.
After the paper was completed, we were told by Professor P. Bates that he
and Fusco [6] had made similar connection between the locations of spikes

and the ball packing problem in their study of Cahn-Hilliard equation.

Theorem 1.1 is the first result in proving the existence of multiple interior
spike solutions for problem (1.2). Note that for the corresponding Dirichlet
problem, multiple interior spike solutions have been constructed in [9], [8],
etc.

To introduce the main idea of the proof of Theorem 1.1, we need to give
some necessary notations and definitions first.

Let w be the unique solution of (1.3). It is known (see [16]) that w is

radially symmetric, decreasing and

lim w(y)e|y||y|¥ =c >0
ly| o0
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Associated with problem (1.2) is the following energy functional

Jo(u) = %/9(62|Vu|2+u2)—/F(u)

Q
where F(u) = [, f(s)ds and u € H'(Q).

For any smooth bounded domain U, we set Pyw to be the unique solution
of

% — 0 on U. (18)

{ Au—u+ f(w)=0in U,
v

For P € ), we set
Q. ={y:eyeQ}, Qp={y:ey+PeQ}

Fix P = (P}, Py, ..., Px) € A, we set

b
Puwi(y) = Pa, pw,w; = w(y — ?), y €

K
u=>Y Py ,w+®.pecH Q)

i=1
aPQs P-w . . 2
Kep =span{——""—,i=1,...,.K,j=1,..,N} C H ()
’ oP;;
BPQE p W 9
Ccp=span {————,i=1,...K,j=1,..,N} C L*(Q.)
’ op;;

We first solve @, p in K, p by using Liapunov-Schmidt reduction method.
We show that @, p is C* in P. After that, we define a new function

M.(P) = J.()_ Pw;+ ®.p) (1.9)

i=1

We maximize M, (P) over A. We show that the resulting solution has the
properties of Theorem 1.1.

The paper is organized as follows. Notation, preliminaries and some use-
ful estimates are explained in Section 2. Section 3 contains the setup of our
problem and we solve (1.2) up to approximate kernel and cokernel, respec-
tively. We set up a maximization problem in Section 4. Finally we show
that the solution to the maximization problem is indeed a solution of (1.2)

and satisfies all properties of Theorem 1.1.
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Throughout this paper, unless otherwise stated, the letter C will always
denote various generic constants which are independent of ¢, for ¢ sufficiently

small. § > 0 is a very small number.

Acknowledgement. The research of the first author is supported by
a NSERC research grant of Canada. The research of the second author is
supported by an Earmarked Grant from RGC of Hong Kong.

2. TECHNICAL ANALYSIS

In this section we introduce a projection and derive some useful estimates.
Let w be the unique solution of (1.3).

Let

1 1
I I 2 2y _ p+1
(w)—Q/RN(Ww\ + w?) o RNw
be the energy of w.

Recall that P, ,w is the unique solution of

Av—v+ f(w) =01in Q. p,
2 =0o0n 00 (21)
v on e,P
where Q. p := {yley + P € Q}
Set
x—P
per(a) =w(E=) _ Py (), eyt P =
Then ¢, p(z) satisfies
e2A\v—v=0 in Q
’ 2.2
{% = 2w(="l) on 0. (22
It is immediately seen that on OS2
0 ,|x—P| 1 ,|t=—P|.<z—Pv>
%w( 3 )—gw( € ) |z — P|
1 - a- <zx—Pv>
B __(|JL“—P|_(N_1)/2-<57+N2le_| - (1—|—O(8))> I 3
g e =Pl (93
N-3 _ |z=P| <xz-—Pv>
=—€ 2 € € (1+O(6))—M
2 — P
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To analyze Pg, ,w, we introduce another linear problem. Let Pé)s W be
the unique solution of

e2Av—v+ f(w)=0 inQ,
v=0 on Of).

Set
€0£P =w—= PQDE,Pwa Tﬁgp(x) = —¢clog (ng(x)-

Then 7} satisfies

eAv—|Vu2P+1=0 inQ,
v = —elog(w(@)) on 0S.

Note that for z € 992
z—P
62p(a) = —etog (7]

N -1 - P
=|z— P|+ 5 510g(‘$ |

By the results of Section 4 of [29] and Section 3 in [38], we have

|z—P|
€

)_%6_

1+0()

)+ O()

opP _p
Lemma 2.1. (1) a—Z’P =—(1+ O(e))%’

(2) VPp(a) — to(e) = inf (12 x|+ |2 = Pl)ase 0
uniformly in Q. In particular 1y (P) = 2d(P, 0%).

Let us now compare ¢, p(z) and p”p(x). To this end, we introduce another
function. Let U, be the solution for the following problem
e?AU, — U, =01in 9,
U. =1 on 02
Set
v, = —¢log(Us,)

Then by Theorem 1 of [12], we have

U, (z) = d(z,00) + O(e), % =—-14+0(e)

and
_ d(z,09)

|Ue(z)| < Ce™ ™ = .
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Moreover, for any o¢ > 0 we have
Ue(ey + P)
UE(P )
This leads to the following

< Celltoollyl (2.4)

Lemma 2.2. There exist ny,ag > 0,69 > 0 such that for € < gq, we have

1
€

_1 _
—(14m0e) oL p—Ce™s1TedPINT o < —(1—nye)pLp+Ce 1 Ta)dPIN

Proof: We first assume that €2 is convex with respect to P. Namely, there
is a constant ¢y > 0 such that

(x — Pyvg) > ¢o>0

for all z € 0€), where v, is the unit normal at x € 9€2. Then on 052, we have
opPp o) ( 1 ) OYPp(x)
— = e )

ov € ov
B _l(w)albgD,P(x)
¢ ov
1 <zr-—Pv>
0.,
=-@+0@}%§.
8905D,P

Note that since €2 is convex with respect to P, we have < 0, hence

by comparison principles
—(1+me)elp < pep < —(1 = mog)eLp.
Now for any bounded smooth 2, we can choose a constant R = (1 +

2a)d(P, 0R2) for some o > 0 such that ; := Bg(P) N is strictly convex

with respect to P, i.e.
<x—Pu,>>cy >0, x€ 0.

Then on 0€2; N 02 =1I';, we have

a@s P 8(‘05DP
AL _T&r
5 S (1+0(e)) 5
On 0OQ\I';, we have
a@gp

< Ce—(1+20) La(P,00)

‘31/
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a@sP < Ce —(142a0) Ld(P,0Q) < Ce—(1+a0); dPaQ)%
“ov ov

By comparison principle, we get the inequality.

Lemma 2.2 is thus proved.

By Lemma 2.2, we have that
Y (P) = —elog (—pe,p(P)) — 2d(P,0N)

since
0ep(P) = (=1 +0(€))@Zp(P) 4 O(e™ 00270,
Let :
Var(y) = ——= - .
,P(y) (PE,P(P) (,O,P(

Then V; p(0) =1 (hence V, p(y) > 0 by Harnack inequality) and we have

ey + P).

Lemma 2.3. For every sequence €, — 0, there is a subsequence ey — 0
such that V., p — V' uniformly on every compact set of RV, where V is a

positive solution of

—u=0inRN
{Au u=01imn R", (2.5)

u >0 in RN and u(0) = 1.

) _
Moreover for any c; > 0, %up e (ta |2|‘ VeweP(2) =V | — 0 as g — 0.
z€lle , P
k&>

Proof: The proof is similar to that of Lemma 4.4 (ii) in [29]. O

Next we state some useful lemmas about the interactions of two w’s.
Lemma 2.4. Let f € C(RY)N L®(RY),g € C(RY) be radially symmetric
and satisfy for some a > 0,8> 0,7 € R

f(z)exp( a|x|)|ac|ﬁ — Y as |zr] = oo

| la@lean( alel) (1 + laf*) < oc
Then

exp(oz\y\)|y|ﬂ/R 9z +y)f(z)dr — 70/ g(x)exp( —axy)dz as |y| — oc.

RN
For the proof, see [7].

We then have the following estimates.
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Lemma 2.5. ﬁ Jpn flwi)ws = v > 0 where

w(
v= [ flw(y)e *dy
RN
The next lemmma, is the key result in this section.

Lemma 2.6. For any P = (P, ..., Px) € A and ¢ sufficiently small

T3 Pui) = VK Iw) = 3+ o(1) (et
o) Y w P
id=1,i#l

where v is defined by (2.6).

Proof:

We shall prove the case when K = 2. The other cases are similar.

11

(2.7)

By (1.6), we have that d(P;,0Q) > § > 0,i =1,2,|P, — P»| > 20 > 0.

Note that by Lemma 2.3 and similar arguments as in the proof of Lemma

5.1 of [29] we have

& [ VPl + [ [Pl = [ R
== s / RIGILTET)
=N(f S pnP) [ SVt ol ()

= ([ fww = gop(P)y +oger(P))
since
y=[ fV=[ flwe™
RN RN
for any solution V of (2.5) (see Lemma 4.7 in [29]).

Similarly we have

| PR =¥ Fw) = gor(P)y + o PD)

RN
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By Lemmas 2.1, 2.2 and 2.5, we have

[ rwpu =+ o(1)yuw( =22

) + £¥o(p. (P2))

[ 5Py =<5 + o1 Gt Z% (P,

Let 0 > 0 be a sufficiently small number. We then have

/QF(P’wl'*'PUh) = /Q1 F(Pwl—i—ng)—l—/

1973

Q3
=L+L+1;
where [;,1 = 1,2, 3 are defined at the last equality and
0, = (o= < =Py = (2Rl < 220 PRy 0 = 0\(@100,)
For I3, we have
|I3] < C/Q (w1 + wy)?H7 = O(e~ PPl
3

To estimate I, we first observe that

|F(Pw; + Pwy) — F(Pw) — f(Pw)Pwy| < C | |Pwy P37 | Puwy|'t
Ql Q1

(for 0 < 0 < min(1, (ps — 1)/2))
< O( (1+0) M)

by Lemma 2.4 since p3 — o > 1+ 0.

Therefore, we have

L = / (F(Pw:) + f(Pwy)Pw,) + O(e~(1Fo)z1P=P2l)
1971
:/ F(Pw,) + flw)wy + 0(67(1+g)§‘p1,P2|)
Q o

:5N[ F(w) — YPe,P, (Pr) + f(wi)ws + O(e” (+a)z 1P P2|)
RN o

+o(e Y ¢en(P)
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Similarly,
I, =] F(w) = vpe,p, (P2) + f(w2)w,
RN Qz
2
+O(€_(1+U)E‘P1_P2|) + O(Z Pe,P; (P
i=1
Hence

2
1
e NI ZPwZ = / 5 O _(IVPwil? + (Pw;)*)) + VPw,V Pw; + Pw; Py
S =1

- [ @ (Pu+ Pu)

€

= [ GOS(VPuP + (Pu+ [ () Py

i=1 Qe

- / F(Pw; + Pw,)

€

:QI(w)——’y+ Zgogp / f(wy) Pwy

- [ sy [ f(w2>w1+o(w<“31;—2‘>)
=2I(w) — = 'y +o0 Zcpgp 0(1))w(\P1;7P2|)
[l = -+ o)),
[ s = -+ o)u(BE,
and
[l = -+ o

3. LIAPUNOV-SCHMIDT REDUCTION

In this section, we solve problem (1.2) in approriate kernel and cokernel.

We first introduce some notations.
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Let H%(S2.) be the Hilbert space defined by

H%(Q,) = {u € H*(Q.) Ou =0 on 895} .

ov,

Define
Se(u) = Au—u+ f(u)

for u € H%(Q.). Then solving equation (1.2) is equivalent to
S.(u) = 0,u € Hy ().

Fix P = (Py,...,Px) € A. To study (1.2) we first consider the linearized

operator
K
L. u(z) = Au(z) —u(z) + f' (Z PQE,Piw> u(z),
i=1

H3(Q:) — L ().
It is easy to see (integration by parts) that the cokernel of L. coincides

with its kernel. Choose approximate cokernel and kernel as

CE,P = }CE,P

8PQS,PZ' w
= Span W

Let 7 p,,...,p, denote the projection in L*(2) onto Clp,  p, . Our goal in

izl,...,K,jzl,...,N}.

this section is to show that the equation
K

TrE:P © SE(Z PQE,Piw + (DE,Pl,...,PK) = 0
i=1

has a unique solution ®,p € ICEL,P if € is small enough. Moreover ®, p is Ct
in P=(P,..., Pg).
As a preparation in the following two propositions we show invertibility of

the corresponding linearized operator.

Proposition 3.1. Let L.p = 7. p 0 L.. There exist positive constants €, \
such that for all e € (0,8) and P = (P, ...,Px) € A

| Le p®@|| 22,y = M| @] 20, (3.1)
for all® € Klp.
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Proposition 3.2. For alle € (0,€) and P = (P, ..., Px) € A the map
LP—WEPOL ICSP_>CS,_P

18 surjective.

Proof of Proposition 8.1: We will follow the method used in [13], [30], [31],
and [42]. Suppose that (3.1) is false. Then there exist sequences {e}, {PF},
and {®} (i = 1,2,...,K, k = 1,2,...) with P* = (PF,.., PE) € A,
o, € ICjk,Pk such that

||Lsk,Pchk||L2 — 0, (32)
1Belz =1,  k=1,2,.... (3.3)

We omit the argument €2, where this can be done without causing confusion.
As before, we set

Pwiy(y) = P ,w(y—Pfle), yeQ,

k
Ek’Pi

For j=1,2,..., N, we denote

0 0
€ijk = 8P’“ ——Pw; i/ 8Pk ——Pw;
L2
Note that
< €irjiks Cino ke >= Oirin0jyjy + O(Ex)  as k — o0
since ?91;:’; — a%.}‘i’f]_ is exponentially small, where d;,;, is the Kronecker symbol.

Furthermore because of (3.2),

2
||Lgkpkq>k||Lz—zz(/ q,) S0 a4

i=1 j=1
as k — oo.

We introduce new sequences {¢; ;} by

eir(y) = x(ey — P O(y), y €, (3.5)

where x(z) is a cut-off function such that x(z) =1 for |z| < and x(z) =0
for |z| > 20 where § is small ( actually we choose § as in (1.6)).
It follows from (3.3) and the smoothness of x that

ik (- + P Jer) lmr2(ray < C
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for all k£ sufficiently large. Therefore there exists a subsequence, again de-
noted by {¢; x} which converges weakly in H*(R") to a limit ¢; , as k — oo.

We are now going to show that ¢; ., = 0. As a first step we deduce

ow
ioo—:(), .:1,...,N. 3.6
[ o j (36)

This statement is shown as follows.

ow
oir(y + BF/ex) 5—dy
| owt+ Phe0

— [ Xewmly+ PO Sy + o)
st5Pik aPZ’]

— [ xtey = P - )@ dy + o)
Q 0,J

€k

=o(1)
Here we have used the facts that ®; € K., pr and w(@) is exponentially
decaying outside Bs(PF). This implies (3.6).
Let ICp and Cy be the kernel and cokernel, respectively, of the linear oper-

ator S)(w) which is the Fréchet derivative at w of
So(v) = Av —v + f(v),
Sy + H*(R") — L*(R"),

Note that

K0=C0=span{a—w|j:1,...,N}.
ayj

Equation (3.6) implies that ¢; ., € Ki. By the exponential decay of w and
by (3.2) we have after possibly taking a further subsequence that

A(101',00 — Pi,00 + fl(w)gpz,oo - Oa

i.e. ¥io € Ko. Therefore ¢; o, = 0.

Hence
wix =0 weakly in H*(R") (3.7)

as k — oco. By the definition of ¢;; we get &, — 0 in H? and

K
/' Po, uw)®sllie =0 as k — oo,
i=1 t
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Furthermore,

(A —1)®k||2 — 0 as k — oo.

Since

/ VO[> + @3 = [(1— A)®,] P

- Q,
< Ol[(A = 1)®g|2
we have that
| Pk ||y — O as k — oo.

In summary:
|A®||z2: — 0 and |[®k||z1 — 0. (3.8)

From (3.8) and the following elliptic regularity estimate (for a proof see
Appendix B in [42])

[Pkl < C(|1 ARk L2 + || Dl 1) (3.9)
for ®, € H3 we imply that
| Pk||zz — O as k — oo.
This contradicts the assumption
[@xlle =1

and the proof of Proposition 3.1 is completed. O
Proof of Proposition 3.2: We define a linear operator 17" from L?((,) to
itself by

T = Te,p © LOWE,P

It’s domain of definition is H%(.). By the theory of elliptic equations
and by integration by parts it is easy to see that T is a (unbounded) self-
adjoint operator on L?(f).) and a closed operator. The L? estimates of
elliptic equations imply that the range of T is closed in L?(£2,). Then by the
Closed Range Theorem ([46], page 205), we know that the range of T is the
orthogonal complement of its kernel which is, by Proposition 3.1, K, p. This

leads to Proposition 3.2. O
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We are now in a position to solve the equation

Tep © Ss(i Pw; + ®.p) = 0. (3.10)
Note that o
SE(Z Pw;+®.p,.. pe)=L(P.p)+ N.p+ M.p (3.11)
i=1
where

K
N.p = Z Pw; + @, p) Z Pw;) — f () Pw)®.p
=1

=1
and

K K
M.p = f(z Puw;) — Z f(ws).
i=1 i=1
Before we move on, we need the following error estimates.

Lemma 3.3. For ¢ sufficiently small, we have
[Nepl < O(1®ep 7 + |ep[™) (3.12)
IMepll 120,y < Ce™ 55 2# (P (3.13)
Proof: It is easy to derive (3.12) from the mean value theorem.
To prove (3.13), we divide the domain into (K + 1) parts: let Q = UK,
where )
. ={|z — P| < =min |P, — i=1,...
Qz {|£E -PZ‘ = 2%1#1?|Pk: Pl|}> i 11 7Ka
Qr1 = Q\UE, Q
We now estimate M, p in each domain.

In Qgq, we have
‘ngpla“'aPK‘ S (wl + A + wK)1+U
< O(e—HToémiﬂk;él\Pk—Pl\)
Hence
_lto1
||M€,P||L2((QK+1)E) < O( 37 2 o(Pr,e. ,PK))
In ©;,2=1,..., K, we have

Ml < 0 (1 (i) + 1 (w) (P = w3 )|
J#i
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+O(Y (1P [+ + [wy[19)) + O(| Py — w1 )
J#i
Hence using Lemmas 2.1, 2.2 and the exponential decay of w, we have

| M, < O(e‘HTG éw(Pl,...,PK))

U
Next we solve (3.12). Since Lp|x1, is invertible (call the inverse L p)
we can rewrite
¢ = _(Ls_,%’ omep)(M.p)

—(L;p o mep) Nep(®)
=G.p(P) (3.14)
where the operator G, p is defined by the last equation for & € H%(€.). We
are going to show that the operator G, p is a contraction on
B.; = {® € Hy ()|l #2(0.) < 0}
if 0 is small enough. We have
IGep(®) |20y < A7 (I7ep © Nep(®) 220

+||7ep o (Mep)||L2(0.))
<A 'C(e(8)6 +6.)
140 1

where \ > 0 is independent of § > 0, §, = e 2 #(P1»PK) and ¢(§) — 0 as
0 — 0. Similarly we show

1G:p(®) — Gep(®)|lm2(0n) < A7 'e(0)]|@ — @'\ 20,

where ¢(6) — 0 as § — 0. Therefore G.p is a contraction on Bs. The
existence of a fixed point ®, p now follows from the Contraction Mapping
Principle and @, p is a solution of (3.14).

Because of
12 llz2(0. ) < A7 (INep(ep) 22052
+|| M. p,.....Pell22)
< ATHCO: + ()] 2l 2(0.))
we have

(1 - )\_IC((S))”(DE,p”hm S 056
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We have proved

Lemma 3.4. There exists € > 0 such that for any 0 < ¢ <€ and P € A
there exists a unique ®.p € K p satisfying SE(X:Z.I;1 Pw; + ®.p) € Clp and
|®c.p||#20.) < Ce. (3.15)

1401
where §, = e~ 3 e?(PrrPx),

Finally we show that ®, p is actually smooth in P

Lemma 3.5. Let ®.p be defined by Lemma 3.4. Then ®.p € C* in P.

Proof:
Recall that ®, p is a solution of the equation
K
mep 0 8.()  Pwi+ ®.p) =0 (3.16)
i=1
such that
®.p € Klp. (3.17)

Note that by differentiating equation (3.16) twice we easily conclude that
the functions Pw; and 0*Pw;/(0P;;0P;;) are C* in P. This implies that
the projection 7. p is C* in P. Applying 9/0P; ; to (3.16) gives

K K
P i q)s
Te, P e} DSE(Z sz + (DE,P) ( 8 ad + a ’P>

=1 i=1 aPZ’J aPL:]

87'('5,13

+ 3P

K
0 S.(Y  Pw;+®.p)=0. (3.18)
=1

7j
where
K K
DS.(> Pwi+®.p)=A—1+f (D Puw;+2.p).
i=1 i=1

0%, p
oP;;

0p _ (002  (00.r
oP,; \ 0Py ), P /,

0P, 9%,
where (3P¢;>1 € K.p and ( 'P)2 € ICEL’P.

We decompose into two parts:

BPM
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We can easily see that (%%,’?) is continuous in P since
i )1
8Pwk
. p—5— =0, kiI=1,..,N
/ T
and hence
aq)s,P apwk / (92Pwk —0
[ aTPi,j apk,l Qe &P anw. aPkJ

where 1, 7, k, [ are indice from 1 to K.

Now we can write equation (3.23) as

- a(pa P
Te,p © DSE(Z Pw; + @, p) (( (9P-,- )2)
i=1 bl

K K
O0Pw; 00,
+7TE,P e} DSE(Z sz + @g,P) ( o + ( P )1)

i=1 = 0P OF
on s
&,P
—05.()_Pwi+®.p)=0. 3.19
+aPi,jo (ZZ:I‘ vt ber) (319)
As in the proof of Propositions 3.1 and 3.2 we can show that the operator
K
Te P o DSg(Z P’ll)Z + (I>5,P)
i=1

is invertible from Ktp to Clp. Then we can take inverse of 7. poDS. (3 ;- Pw;+

®, p) in above equation, and the inverse is continuous in P.

dPw; (3‘1’5,P onc p
drp; ;7 \ 0Py oP; 7

conclude that (0@, p/(OP, ;))2 is also continuous in P. This is the same as
the C' dependence of ®, p in P. The proof is finished. O

Since )1 € K. p are continuous in P € A and so is we

4. THE REDUCED PROBLEM: A MAXIMIZATION PROCEDURE

In this section, we study a maximization problem.
Fix P € A. Let ®. p be the solution given by Lemma 3.4. We define a

new functional

K
M.(P)=J.(> Pwi+®.p,..p): A= R (4.1)
=1

We shall prove



22 CHANGFENG GUI AND JUNCHENG WEI

Proposition 4.1. For e small, the following mazximization problem
max{M,.(P): P € A} (4.2)

has a solution P® € A.

Proof: Since J.(Yr, Po, . w + @ p) is continuous in P, the maximization
problem has a solution. Let M, (P¢) be the maximum where P° € A.
We claim that P® € A.

In fact for any P € A, we have
K

M.(P) = JE(Z Pw;) + g.p (P p) + O(HCDE,P”?{Z)
=1

where

e, P ((1)6 P)
K

:/ S (VPw;V®.p + Puw;®.p) / Zsz P
Qe 51 Qe =1
K
-/ 3 ) — (3 Pulaep
=1

6zl

<l Zf(wi) - f(ZPwi)llellq)s,Plle

=1
< O( 1—|—0’ (Pl,...,PK))

By Lemma 2.6 and Lemma 3.4, we have

|\P, — P
E

M.(P) =" [KI(w )——7+0 Zef ) =(y+o(1) Y w( )]

k£l
Since M, (P¢) is the maximum, we have

_Ze—g1ﬁs(PE 3 |P€— < ;Z L) L | k—P, )+o(1)

k#l k#l
for any P = (P, ..., Px) € A. This implies that

o(Py, ..., Pi) > max (P, ..., Px) — 0
PecA
for any d > 0.

So ¢(Pf, ..., P%) — maxpep @(Py, ..., Px) as ¢ — 0. By condition (1.5),
we conclude P® € A. This completes the proof of Proposition 4.1.
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5. PROOF OF THEOREM 1.1

In this section section, we apply results in Section 3 and Section 4 to prove
Theorem 1.1 and Corollary 1.2.
Proofs of Theorem 1.1 and Corollary 1.2

By Lemma 3.4 and Lemma 3.5, there exists eg such that for ¢ < g7 we

have a C' map which, to any P € A, associates ®, p, _p. € K1p su ch that
31y K e,P

2

k=1,..,K;l=1,...N

8Pwk
8Pk,l

K
Sg(z sz + (I)E,Pl,...,PK) =

=1

(677 (51)

for some constants oy € REYN.
By Proposition 4.1, we have P¢ € A, achieving the maximum of the max-
imization problem in Proposition 4.1. Let u, = Zfil PQE,P‘E/LU + @5,]315,___,}915{.

Then we have

DPi,j‘Pi:PfME(PE) - O,Z - 1, “eey K,] - 1, N

Y

Hence we have

a(Zfil sz + (I)E,Pl,...,PK)

a(zfil sz + (Ds,Pl,...,PK)

[VUEV |1Dl:1D.E +u, ‘Pi:P.E
o¥ OP;; ’ dP, :
8(251 sz -+ (I)E P, PK)
_ . 1= bl 9tecy _pe| = 0
f(ue) 9P, | pi=pe]
Hence we have o(p o )
w; + Lo p P
VUEV s L1y UK |Pl:P5
Q. OP, '
O(Pw; + ¢. pi.,...Pyx) O(Pw; + ¢e,pr,...Py)
. 3 gunny _pe — . 9L 19eeey _pe = 0
u P, lriry = J(ue) op;, nen
fori=1,..,Kand j=1,..,N.
Therefore we have
OPwy, O(Pw; + @, p,
Z u aPUJk ( w -gP ,P ,...,PK) -0 (5.2)
k=1,..,K;l=1,..,N Qe Yk iJ
Since ®, p, .. p, € K. p, we have that
OPwy 0%, p,, . Pr 0*Pw;

J

. 0Py

0P, ;
82Pw,~

0P, 0P Iz

J

|9c,pi,....Prcl| 22

7(D€P P
. aPk,lapz’j s 1y FK
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140

_ O(efTétp(Pf,...,Pf{))

Thus equation (5.2) becomes a system of homogeneous equations for ay;
and the matrix of the system is nonsingular since it is diagonally dominant.
Soay=0,k=1,...,K,l=1,..N.

Hence u, = Zfil Po_,.w+ @ ps, . ps is a solution of (1.2).

By our construction, i’E is easy to see that by Maximum Principle u, > 0
in Q. Moreover e¥J.(u.) — KI(w) and u. has only K local maximum
points @5, ..., Q%. By the structure of u. we see that (up to a permutation)
Q; — Pf = o(1). Hence ¢(Q)f, ..., Q%) — maxpep ¢(Pi, ..., Pk). This proves
Theorem 1.1.

Finally, Corollary 1.2 can be easily proved by taking A = {(z1,...,2x) €
O d(x;,00) > 6,1=1,.... K, |ty — ;| >,k # [} where § > 0 is small.
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