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Abstract

In this paper we apply the Lyapunov-Schmidt reduction method,
as developed by Floer and Weinstein, to construct solutions to semi-
linear elliptic equations with nearly critical exponents in R". The
solutions will have fast decay at infinity and will blow up as the ex-

ponent tends to critical exponent.

1 Introduction and Main Result

Of concern is the existence of solutions of

7=
(31t =0 "
where n > 3, ¢ > 1 and K(z) is smooth.

In this paper, we shall prove the existence of decaying solutions of (1.1)
when ¢ is “near” critical, i.e. ¢ = 22 & ¢ with € > 0 small, under a local
condition on K and a reasonable growth restriction on K at infinity.

Equation (1.1) arises in various areas including Riemannian geometry
(¢ = Z—’_Lg), and astrophysics (when K = 1, it is called Lane-Emden-Fowler
equation; when K = 1/(1 + |z|?), it is called Matukuma equation). In the
last decade, equation (1.1) has been studied extensively by many authors.
In 1982, Ni [N] proved that if |K(z1,z2)] < C(1 + |z1])" for some | < —2,
where £ = (71,73) € R® x R"3 then (1.1) has infinitely many bounded
solutions, which are also bounded away from zero. Since then, various exis-
tence results when K decays like or faster than C|z|™2 at infinity have been
obtained by Gui [G1, G2|, Kawano [K|, Kawano, Satsuma and Yotsutani
[KSY], Naito[Na], Naito and Usami [NU], etc.. When K is nonpositive, Ni
[N] and F.-H. Lin [Ln] proved that if |K| decays like or slower than C|z|~2
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at infinity, then (1.1) has no solution (see K.-S. Cheng and J.-T. Lin [CLn]
for refinements). It has been shown in [N] that if K grows like or faster than
C|z|™=2@=1)=2 at infinity, then (1.1) has no solution, either. Thus when ei-
ther | K| decays fast, or grows fast, or K is nonpositive, we have fairly clean
results about (1.1), as far as the existence is concerned.

In the more interesting range of K, i.e. when K is nonnegative and
decays slower than C|z|~2 but grows slower than C|z|(»=2(@=1=2 a¢ infinity,
our understanding of (1.1) is not as complete. Ding and Ni [DN] showed
that if K is nonincreasing along every ray starting at the origin and K
satisfies a certain symmetry condition, then equation (1.1) with ¢ > Z—fg has
infinitely many solutions. They also showed that if K is radial and radially
increasing, and if K is a slight perturbation (near the origin) of the constant
function 1, then (1.1) with ¢ = 2£2 has no radial solution. Combining this
with their existence results, we see that (1.1) is rather sensitive to even the
slightest perturbation of K, at least when ¢ = Z—; For radial K, there
are many other works, of which we only mention a few: Bianchi and Egnell
[BE], Cheng and Chern [CC], Johnson, Pan and Yi [JPY], Li and Ni [LN],
Lin and Lin [LL], Nous! sair and Swanson [NS|, X. Pan [P], W.Rother [R],
and Yanagida and Yotsutani [YY1,YY2]. In particular, [YY1,YY2] contain

rather general existence and classification results, especially some interesting

n+2

results concerning the Ding-Ni phenomena for the critical case ¢ = 75

On the other hand, for nonradial K, there are comparatively fewer results.
C. Gui [G1,G2] studied existence of (1.1) for slow decaying K and large g,
while J. Wei [We] obtained some existence results for K decaying only in
a two-dimensional subspace and ¢ > %2 Y. Y. Li [L] showed that there

are infinitely many solutions of (1.1) with finite energy for n = 3 and ¢ = 5

(critical) assuming, among other things, that K is periodic in one variable. If



K (z) is well defined on S™ (via sterograhic projection) and ¢ = 2£2, equation
(1.1) has been studied in for example [BC], [CY] and [ES] and the references
therein.

In this paper, we shall prove the following existence result:

Theorem 1.1 Let K(z) be a nonnegative C*T® function (0 < a < 1) satis-
fying K(xz) < C(1+ |z])™ for all x € R", where C is some positive constant
and m < 2. Suppose also that K has a nondegenerate critical point xy such

that K(zo) > 0, AK () < 0 when ¢ < n* = 22 and AK(zy) > 0 when
* 12-2m » : _ s
q > n*. Then for n > =" and q near critical, i.e. for ¢ =n"+ e, e>0

small, equation (1.1) has a positive solution u, with
u(r) < Clz|* ™, |z|>1 (1.2)

where C' 1s a constant independent of €. Furthermore, u. concentrates and
blows up at xy as € shrinks to zero.
(The sense in which u. concentrates and blows up will be made clear in

Section 4. See, in particular, (4.5).)

Remarks 1. Recall from [N] that if K(z) grows like or faster than C|z|* at
infinity, equation (1.1) with ¢ = Z—J_“g has no positive solution. So the growth
restriction on K at infinity in Theorem 1.1 is a reasonable one.

2. Note that if xy is a nondegenerate local maximum ( minimum) point
of K, then AK(z) is negative ( positive) and hence Theorem 1.1 applies. Of
course, Theorem 1.1 applies even if xy is a saddle point. Observe also that
if m = 0, i.e. if K is bounded, then the requirement on n is that n > 6. If
m > 0, n is required to be larger. In all cases, our solution u,. decays fast at
infinity.

3. Theorem 1.1 allows for arbitrary behavior of K( except for the reason-

able growth restriction ) outside a neighborhood of . Furthermore, by the
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proof of Theorem 1.1, we actually do not need K € C2t*(R"), K € C2 (R")
and K € C?*® in a neighborhood of z, are sufficient.

It is interesting to compare Theorem 1.1 to the following nonexistence
result of Li and Ni [LN].
Theorem A. Suppose that K decays faster than C|z|™? at infinity and that

_(n=2)(g+1)

L(z) = 5

K(z)+z-VK(z)

never changes sign in R™. Then (1.1) has no solutions which decay at infinity.

As remarked in [LN], when ¢ < n*, the assumptions stated in Theorem
A are never satisfied, except when K = 0. When ¢ > n*, if K has a critical
point zg as stated in Theorem 1.1, then it is easy to verify directly that L(x)
must change sign, provided ¢ is close to n*. This may not be the case if
AK(zy) < 0 or if AK(xy) < 0 but g is not close to n*. Theorem A also
implies that Theorem 1.1 generally fails to be true for ¢ = n* since our
conditions on K at x, alone are certainly not enough for L(z) = z - VK ()
to change sign.

To illustrate the idea behind Theorem 1.1, we may assume without loss
of generality that zy in the statement of Theorem 1.1 is the origin, and that
K (zy) = 1. We first observe that if we rescale u in (1.1) as eq%u(ex + 2)
(where z is fixed in R"), then (1.1) is transformed into an equivalent form

u>0,z € R". (1.3)

{ Au+ K(ex + z)u? = 0,
(The reason for introducing z will be seen in the future.)
If g = n* + ¢ (as assumed in Theorem 1.1), then, letting both € and z go

to zero, we see that the limiting equation of (1.3) is:

Au+u™ =0,
{ u>0,re R" (1.4)

4



It is well-known (see [CGS] or [CLi]) that all solutions of (1.4) are of the

form (up to translations)
Up(z) = AT U(\z), (1.5)

where A > 0 and U(z) = (1 + n(‘Z‘;))‘Z—TTL One then tends to guess (perhaps

very cautiously) that when € and |z| are small, equation (1.3) should have a
solution u close to U, for some A > 0. If this is indeed the case, (1.1) must
have a solution u. close to e_fz—%UA(%) for some A > 0.

If we take z = o(e) and if we can bound A between two fixed positive
constants as € — 0, then we see that u, should concentrate and blow up at
xo. This is precisely what is claimed in Theorem 1.1.

Rescaling u in (1.3) as /\_q%lu(/\_lx), A > 0, we see that equation (1.3)
is equivalent to:

@ g _
{ Au+ K(§ + 2)u? =0, (1.6)

u>0, re R".
Since equation (1.3) is expected to have a solution close to Uy for some
A (bounded between two positive constants), equation (1.6) should have a

solution close to
AT (A L) = AT U (2) ~ U(x). (1.7)

It is our goal to find a solution u of (1.6) of the form u = U+ ¢, where ¢ is
“small”, z = o(€), A is bounded by two positive constants and € is small. To
this end, we apply the Lyapunov-Schmidt reduction method, as developed by
Floer and Weinstein in [FW], where they studied the semi-classical solutions

of the nonlinear Schrodinger equation

?Au - (V(z) — E)u+u? =01in R", (1.8)



for h small. (The same method was used in [O1] and in [O2].) At the starting
point of the Lyapunov-Schmidt procedure, we need to study the linearized

operator (obtained by linearizing equation (1.6) at U)
L=A+nU""", (1.9)

Of importance here are the kernel of L and the Fredholm property of L,
in some appropriate setting. For L to have the Fredholm property, we have
to work in weighted Sobolev spaces, in which the general linear theory is well
developed by Nirenberg and Walker [LW], Cantor[C1,C2], Lockhart [Lo] and
McOwen [Mc].

In this paper, we shall prove in detail Theorem 1.1 in case ¢ = n* — €2.
The case ¢ = n* + €2 can be handled by slightly modifying the arguments in
Sections 3 and 4 . So from now on, we assume ¢ = n* — €.

Throughout the remainder of this paper, we assume, without loss of gen-
erality, that K satisfies the hypotheses of Theorem 1.1, that o = 0 and
K(0)=1.

This paper is organized as follows. In Section 2, we recall some properties
of weighted Sobolev spaces and study the kernel of the linearized operator
L and its Fredholm property. Section 3 contains some error estimates and
the reduction to finite dimensions. Finally, in Section 4, we apply a degree-
theoretic argument to solve the reduced problem and we also explain why wu,

concentrates and blows up as € — 0, thereby completing the proof.



2 Weighted Sobolev Spaces and the Linearized
Operator

For 1 < p < 00, a nonnegative integer [ and a real number (3, the weighted
Sobolev space W/; is defined to be the completion of Cg°(R") under the

norm:
l

[ullpas =D 1| <z > 0%ul|orny,
|a|=0

where < z >= (1+ \:r|2)%. If 3 = 0 =1, then W}, is just the usual L” space.
When [ = 0, we write W5 as L}. It is easy to see that the conjugate of L7
is L{ﬁ under the action < f,u >= fRn f(z)u(z)dz, f € Lliﬁ, u € Lg, where
p denotes, as always, the conjugate of p: % + i =1.

The following known results will be useful in this paper.

Proposition 2.1 (1). I/Vl’:ﬁ can be continously embedded into L1, provided
%—%+520,oo>q2p>1 andy < B+ — 2
(2). Suppose | > sand 2+ f3>0. If f € W/, then f € C;O_C%(R”) and
f(@)| <2 >°< C6,p,1,8,0)fllpi5-
(3). The integral operator

Tu() = /R u(y)

|z —yln? y

is a bounded operator from L to Lj_,, provided 2 — S <pB< 1%'

Proof: (1) is a special case of [Lo], Theorem 2.14. (2) follows from the proof
of [C2], Theorem 5.4 (the Holder continuity of f follows from the fact that
WPy — WEP(R™) ( the usual Sobolev space) and the embedding theorem).

loc

(3) follows from [NW], Lemma 2.1, and is also proved in Corollay 1, [Mc].O



We now turn to the linear operator L = A + n*U™ 1 : Lg — L%H with
domain Dom(L) = Wy ,. The conjugate L* of L is a linear mapping from
L’i’ (5+2) — Lfi’ s with domain Dom(L*), which is the space of all fuctions
u € Ll
| [gn uLvdz| < Cl[vl[zz, for all v € W;ﬂ' Clearly, W _ 5.,
and L*v = (A +n*U" 1)v for v € W3 (5.2 On the other hand, for any

u € Dom(L*), we have (A +n*U" ~")u € L” ;. By Theorem 3.1 in [NW],

with the property that 3C' > 0, such that | < u,Lv > | =
C Dom(L*)

u must belong to W) ~ (Note that the condition that u belongs to

B+2)
the usual Sobolev space WP can be removed from [NW] in our present

situation.) Thus Dom/(L*) = Wy _ 5.4

Proposition 2.2 If—% <pB< ﬁ — 2, then Ker(L) = X = Ker(L*), where
X=span {2, .., 2L z- VU + 22U}

Oxr1? "7 dxzy?

Proof: We shall only prove Ker(L) = X. The proof of Ker(L*) = X is
similar.

Since ( < ;‘—, — 2, by some simple calculations, we see that X C Ker(L).
On the other hand, we claim that the dimension of Ker(L) < n+1. Then the
desired conclusion follows immediately. The proof of this claim is identical to
that of [W], Lemma 4.2, except that now, for any ¢ € Ker(L), the argument
leading to the fact that ¢ and V¢ decay at infinity is different( also see an
earlier paper [NT] which concerns a different operator but involves the same
idea). Therefore, we shall only prove the decay of ¢ and V¢ here.

Observe that once we know that ¢ decays, the decay of V¢ follows from
the interior LP estimates and embedding theorems. Observe also that if
p > %, then by Proposition 2.1, ¢ — 0 as || — oco. So in the rest of this
proof, we may assume p < 7.

We shall first prove that ¢ € L"(R") for some r > 1.
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If p= %, then by (1) of Proposition 2.1, ¢ € L" for r > max(#,p), SO
in the remainder of the proof of the assertion “¢ € L™, we assume p < 7.

Notice that for any u € W{ 5, we have the representation formula:

ule) = [ T(a-y)dulp)dy. o€ R
where [' is the fundamental solution of A in R™. This follows from an ar-
gument involving cut-off functions, as in [NW], p. 278. Here we use the
assumption that g > —%.

For any ¢ € Ker(L), we have
Ap+n'U" =0 in R" (2.1)
and ¢ € C*°(R") by the elliptic regularity theory. Thus
o) = [ Tw-pf@dy, zer (2.2

where f = —n*U™ ~1p. Observe that f € Liw- Now if 4 + 3 > ﬁ, then

of course f € L§. In this case, by (2.2) and the Hardy-Littlewood-Sobolev

1 1 2

inequality, ¢ € L" where . = >~ (recall that we have assumed p < 2

29
so r > 1). On the other hand, if 4 + 8 < ]% (recall that -2 < B3), then by
(2.2) and Proposition 2.1, ¢ € L}, ,, which in turn implies that Ay = f €

LE g HE6+052> ﬁ, the Hardy-Littlewood-Sobolev inequality again implies
pel,l= 1% — 2. Thus ¢ € L}, ;5 and hence Ap € L% ;. Repeating this

process finitely many times, we eventually have ¢ € L" for some r > 1.
Applying the one-sided Harnack inequality ([GT], Theorem 8.17) to (2.1),
we have
pl(Q) < C(n,p)ll¢l|L(B1(@)
where B;(Q) is the unit ball centered at Q € R". Letting |Q| — oo and
recalling that ¢ € L", we have ¢(Q) — 0 as |@Q| — oo. The proof of

Proposition 2.2 is complete. O



By [Lo], Corollary 5.7, L is Fredholm if —% < fB< ﬁ — 2. So in our case,
Range(L) is closed and equal to

W= (KerL')" =X+ ={ue Lol <u,v >:/ u(z)v(z)dr =0,v € X}.

T

Observe that when 2 — % <pB< 1% — 2, we can decompose Wﬁﬂ as

W3, =X@Y, where

V= {ue Wyl Jpn wvdz = 0, for all v € X} (2.3)

( The condition “8 > 2 — 2” implies that uv € L' forue L5 ve X))
Y is a Banach space equipped with W£ s norm and W = Range(L) is also
a Banach space equipped with Lg 4o norm. By the Closed Graph Theorem,

we have

Proposition 2.3 Suppose n >4 and 2 — % <pB< ﬁ — 2. Then
L7 W-=Y

exists and is bounded.

Finally, let us make a remark about the decomposition of L 4 B <

ﬁ — 4, it is easy to see that X C Lg+ﬂ. Recall that when —% < B <

% —2,W = Range(L) = (KerL*)* = X+ Soif -2 < 3 < o —4, L5 4 can
be decomposed as
Lb,=X@Pw. (24)

3 Reduction to finite dimensions

As discussed in Section 1, to prove Theorem 1.1, we need only show that for

small € > 0, equation (1.6) has a solution u of the form u = U + ¢, where ¢ is
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“small”, |z| = o(€) and X is bounded by two positive constants independent
of e.

Let Sc(u) = Au+ K( + z)uf, where u; = max(0,u). Then equation
(1.6) is equivalent to

Se(u) =0, uy #0, z € R™ (3.1)

For if u satisfies (3.1), then by the Maximum Principle, v > 0 in R" and
hence (1.6) is satisfied.
Observe that

S(U+9) = AU+9)+K(S +2(U+0)s,
= Lo+ N/(¢) + N2(¢)+ M} + M?,

where

Lé = A¢p+n'U" ¢,

Ni(¢) = ( +2) (U +¢)} —UT—n'U"'¢),
Ni(9) = (K ( +2) = 1)(n'U" ),

M, = (K ( +2) - U™,

Mg = ( +2) (U -U").

So (3.1) is equivalent to
Lo+ N(9) + N(9) + M + MZ =0, (U+¢) #£0.  (3.2)

We shall solve (3.2) in the W3, setting. In this section, we solve (3.2)
modulo X (= Ker(L)) for ¢ € Y, and by doing so, we reduce our problem to

a finite dimensional one.
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Recall that when 2 — % < B < ﬁ — 4, we can decompose both Wﬁﬂ
and Ly, ; as in (2.3) and (2.4) (it is here we require n > 6). Let ) be the
projection of L5, ; onto X. Then P = I — Q is the projection of L5, ; onto
w.

Let Fi(¢) = —L7'P(N}(¢) + N2 (¢) + M} + M?), ¢ € W} ;. Then solving
(3.2) modulo X is equivalent to finding a fixed point of Fi(¢).

We shall always assume that |z| < 1 and A € [a, b], where a and b are
positive constants to be specified in the next section.

The following technical lemmas guarantee that if ¢ € W3, then N/(¢)
and M’ (i = 1,2) are in ng for suitable p and 3 . We shall delay their

proofs until the end of this section..

Lemma 3.1 Suppose n > 6,p > n2—f2 and W — % < B. Then there

exist a small constant ¢, = €1(p,n, B,m,a,b) and a constant C' independent

of €,z and ), such that for 0 < € < e, and ¢ € Wy,

n*—e2

INE (D)l lpo248 < C(€*]| @l + 10105 + [0

b2s) (3.3)

Lemma 3.2 For every p > 1 and 3 € R', there erists a constant C, inde-
pendent of €,z and X\, such that for ¢ € Wﬁﬂ,

INE(@)lpo24s < C€"+ [2*) ||l

p521/8' (34)

Lemma 3.3 For everyp > 1,8 € R! satifying 3 < ;’—, —2, there exist a small
constant €3 = €3(p, n, f, m,a,b) and a constant C independent of €,z and A,

such that for 0 < e < €,

M} ]p0,2+5 C(e +|z%), (3.5)
[MZ|po2rs < C€. (3.6)

IN

AN



Combining Lemmas 3.1-3.3 and recalling (2.4) and Proposition 2.3, we

have the following:
Proposition 3.4 Suppose p > 2” and W L<p< ﬁ — 4 (this re-

quires that n > 2=21),

Then there exist a small constant €3 = e3(p,n, B, m,a,b)
and a constant C independent of €,z and X\, such that for 0 < € < €3 and

1Fe(Dlpzs < Clllglos+ [16ll52,5°
+ (€ + )| @llp2s + (" + |27 }- (3.7)

Now let Bs be the ball in Y with center 0 and radius . Take z such that
lz| <e. IfW—%<ﬂ<I%—él,thenfor(]SegegandéeBg,we
have F (¢) € Y and

1F(@)lp2s < C(E)" + (6)" 7% + (ea)?) < 0,

provided 4 and €3 are chosen small enough. Thus, under the above conditions,
F, is a mapping from B; to By.

Next, we want to show that F, is a contraction mapping. To this end, we
need the following estimates, whose proofs will also be postponed until the

end of this section.

Proposition 3.5 Suppose n > 13 im,p > anQ and W _% < B <

1% — 4 . Then there exist a small constant €4 = €e4(p,n, S, m,a,b) and a

constant C independent of €,z and X\, such that for 0 < e < e€4 and ¢ € Wﬁﬂ,

||F€(¢1) - Fe(¢2)

p2s < C{llo1— dal[ny 5+ [l — ¢2||22_ﬁ64
+ [|¢1 — @2

71’*—1—6?1
l|2]lp05 * + |02

p2,8(€ + |27 +

pop) ) (3-8)
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From this result, we see that F, : B; — Bj is a contraction mapping
for A € [a,b],]2] < e and 0 < € < ¢, provided that € and § are chosen
sufficiently small (of course €g < min(er, €, €3,€4)). By the Contraction
Mapping Principle, F, has a unique fixed point ¢, » on Bs C Y. Obviously,
Oz, solves

Lo+ P(N!(¢) + N2(¢) + M! + M?) = 0. (3.9)

Hence it is a solution of (3.2) modulo X.
We now show that ¢, » is “small ”. By Proposition 3.4, we have (recall

that we take z such that |z| < e),

| | ¢e,z,/\

2,8 = ||F€(¢e,z,)\)
C(||¢e,z,)\
+€’lg

p,2,3
* 2
n*—eg

*
p2. T [[0cenllpas

|p527/3 + 62)’

IA

for 0 < € < ¢y. Taking ¢y and ¢ small, we obtain

|¢e,znllp2s < O for 0 < e < e. (3.10)

Summarizing what we have obtained in this section, we have:

Proposition 3.6 Suppose that the hypotheses in Proposition 3.5 hold. Then
there ezists a small constant ey = €y(p, n, B, m, a,b), such that for every triple
(€,2,A) € [0,e)] x Be(0) x [a,b], (3.9) has a unique solution ¢., € Y.
Furthermore (3.10) holds.

In the next section, we will show that if z and A are chosen suitably, ¢ .
is actually a solution of (3.2).
We devote the remainder of this section to the proofs of Lemmas 3.1-3.3

and Proposition 3.5.
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Proof of Lemma 3.1: Note that
€x R
N#) = K(5+2(U+)L—U'—nU""'9)

= K(S 420 +0)f < —U" < = (= )um g

+ n*(Un*—1—52 o Un*—1)¢ _ €2Un*—1—e2¢}

- K(% + )L+ L + I},

where I, I, and I3 are defined at the last equality.
Take a small €; > 0, to be specified later. Then for 0 < € < ¢y,

(4
K+ 2y

IN

Ce(1+| 5+ 2l U gl
062 < >m—4—|—e%(n—2) |¢"

Ce’ <z >™ U™ 1| logU||¢|

IA

IN

€T
K+

< Ce <g>m IR g,
Thus
IK(S + 2+ B)loass < CE([ (<a>mmt2d0-0i2 | g)pa);
< ol p,0,8
< Celgllp2p (3.11)

provided 0 < € < ¢, with ¢ taken so small that m — 2 + 2¢2(n — 2) < 0.

To estimate I, observe that since n > 6, 1 < n* < 2. So there exist a
small ¢, > 0 and a constant C' independent of ¢, such that for 0 < e < ¢,
(ER,

(A+9T™" — 1 (0"~ )¢ < Ole™ . (3.12)

. From this it follows that for 0 < e < ¢y,

K(S+2h| < C<ao>mgf
< C<a>™ (9" + ¢

n*).
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Hence for 0 < € < ¢,

HK( +Z)Il||p02+ﬂ < C{(/n(<x> 2)”dac)a%

+(/n(<x>

- C{||¢|| 7;_15 0,(24+m+8)/(n* —6

" )Pdz)»}

pn ,0,(24+m+8) /n* }

So

K5 Y T A lpozes < C(ll6llas p2,8) (3.13)

provided the conditions for embedding (see Proposition 2.1) are satisfied:

%—% >0, 24+m+p)/(n*—¢€) < ﬂ—i—ﬂ —n/p(n* — €?). It is easy to
see that these conditions are satisfied if p > -~ +2, W — ; < B and if

€1 is taken sufficiently small.
Combining (3.11) and (3.13), we reach the desired conclusion. O
Proof of Lemma 3.2:
Recall that the C? function K satisfies: K (0) =1, VK (0) = 0 and
0 < K(z) <C(1+ |z])™ with m < 2. Then it is easy to see that

K(S+2) -1 < 5 +4

C(€zl* + |2I%).

N

Therefore we have

INE(9)

IN

0(/ Q2] + 22) < 7 >~t< 3 528 |§))Pdz)s
Rn

< C(€ + 2@l
< C(E@+[2)]1lp2s D

p,0,2+03

Proof of Lemma 3.3: The proof of (3.5) is similar to that of Lemma 3.2

and hence we omit the details.
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To show (3.6), we observe that for 0 < e < ¢,

S
|

P = [K(S+2)Um - um)
< C(L+ela] + 2l)"eU™ = |log U]

< O <z >2< g >~ 0-2)
So for 0 < € < €y, we have
1M lppzrs < CE([ (o> a0 Dypas))
< Cé,
provided €5 is taken so small that
(2+8—-n+26(n—2))p+n<0.

But this is possible since we assumed 3 < ;L—, —2.0

Proof of Lemma 3.5: By Proposition 2.3 we have

1Fe(61) = Fe(@2)llpzs < CUINE(d1) = N (82)llpo,s + [INE(61) = NE(2)lp,0.,6)
= I+ 1Is,
where I, and I5 are defined at the last equality.
Since N?(¢) is linear in ¢, then by Lemma 3.2,
I; < C(e + |2])| g1 — b2 2,8+ (3.14)

To estimate I, we observe that

N (92) = N2 (@2)] <
K(5 + 2|0+ 607 = (U4 62)7 = (0" = &)U + 62)7 77 (61 = 62)|

A
ex * *
+K(5 +2)(0" = )U +62) 77 = UM |g1 — 6
+ K(% 4 2)|(n* — U™ 1 — U 1|y — ).
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Since 1 < n* < 2, there exist a small constant ¢, and a constant C

independent of €, such that for 0 < € < ¢4, £ and n € R!,

(1+OT ™ = (1 +n)T " = (0" =) A+ (E=m)| < ClE—n|" 7,
(3.15)

(1487 " - (3.16)

Thus for 0 < € < ¢4,

[Nt (1) — Ne(¢2)]

< C<z>" (g1 — ¢ ) 2-|-|<Z52 ’ — ¢o
+EU™ 1 logU|| ¢y — o)
< C<x>m{|¢1—¢2*

+|p1 — Bo| (|2]™ +WV“*+e<m>4““"”ﬂw3W)

Observe that the ng norm of < z >™ |¢; — q52|"*_63 is equal to

|1 — ¢2|‘Z(n:6fe4)0(2+m+ﬂ)/(n*—62) < Cllor — ¢2Hg2iﬂ€4’

if we take ¢, small and then use Proposition 2.1 ( see the proof of Lemma
3.1 for the same situation).
Observe also that the L5, ; norm of <z >™ |¢; — ba|do|™ 471 is equal

to

(/ (<2 > gy — @yl o|™ ™17 2)”clx)ﬁ
< (/ <7 >p(2+m+ﬂ |¢ |pn —€2 d.’l?)(n —e2—-1)/p(n*—¢€2)
X (/ (< x SP2+m+h) |¢1 _ ¢2|P(n*—€2)d$)l/(p(n*—e?1))

n*—e;—1
= 122llpe"2) 0. 00m18)/m )11 = B2llpne—)0.01me8) /0 —e3)

—1—
< Cllealllys “llé1 — bollpag,
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where at the first step, we use Holder’s inequality, and at the last step we
use Proposition 2.1.
Estimating each term on the right side of (3.17) in the same fashion, we

have

I, = ||N3(¢1)_N3(¢2)

p,0,2+3

1
*_'62
< C{Z 161 = P2llpos™ + 161 — d2llp2,s(e” + [2]7)

ZII%

Combining this with (3.14), we are done. O

—1-
3’2 /8 ]64 ||¢1 - ¢2| |p725/3}'

4 Reduced Problem

In this section, we shall prove that the fixed point ¢, . in Proposition
3.6 is indeed a solution of (3.2) for suitable z and A. To this end, it suffices

to show
Se(U+ ¢ez0), ¥ >=0, (4.1)

z- VU + "2U}.

Throughout the remainder of this paper, we will assume that the condi-

for all ¥ € X = span {Bm -

’6.’[}’

tions in Proposition 3.5 hold, that 0 < € < ¢y and A € [a, b], where ¢ is given
as in Proposition 3.6.
Take z = €7, where 7 is in the closed unit ball B;(0) in R", and + is a

constant (to be specified later) greater than 1 . Define a vector field

Ve= (V2 V2., V) Q= Bi(0) X [a,8] — R™
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by the following:

- 1 oUu ,
Vin,A) = i {/n Se(U + ¢€,z,,\)a—xjdx} ,j=1,..,n,

n—2

Vit (n, A) == 1 {/n Se(U + ¢ 0) (VU +

€2

)iz .

where (9, A) € Q.

Proposition 4.1 (1). For each fized €, V. is continuous on Q.
(2). Take the constant vy such that 1 <y < min(2(n* —€3),1+a) (« is
the Holder exponent of D*K ). Then V, converges to Vy uniformly on Q as

€ — 0, where

; n—2 . - _
Vi(mA) = — Y /R u" +1(:E)d:cZKjl(O)m,j =1,..,m,
=1

n_2 AK O ,n* n_2 TL*
5 (%/JE%U i (x)dz + 5 / U™t (z)dx)

( where K;;(0) stands for 62;5{” (0)).

Vitt(n, A) =

We delay the proof of this result but use it to prove Theorem 1.1 now.

Since AK(0) < 0, there exists a unique \g > 0 such that V**'(n, \¢) = 0
for n € B;(0) (Ao depends only on n). Now choose a = 22,b = 2. Since
0 is a nondegenerate critical point of K, i.e. det(K;;(0)) # 0, Vj never
vanishes on the boundary of Q and deg(Vp,2,0) # 0. By Proposition 4.1,
the continuous vector field V, is close to, and hence, homotopic to V; for
each small € > 0. Thus deg(V,2,0) = deg(V4,$2,0) # 0 and consequently
V. has a zero point (n(€), A(€)) € Bi(0) x [22,2)\]. Now (4.1) holds for
z = z(e) = €'n(e), A = A(¢) and small € > 0. Therefore v. = U + ¢, where

¢, stands for ¢, , ., is a weak and hence positive classical solution of (3.1)

€
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and of (1.6) (the fact that (v.), # 0 follows from (3.10)). Going backwards
from (1.6) to (1.1), we see that

u(e) = (AD)atey, 2O = 29), (42)

is a solution of (1.1).

Next we discuss the decay rate and asymptotic behavior of u.. It is clear
that for fixed p, Wﬁ 5 and g +p get smaller as § gets larger. So for fixed
p> n2—f2, ¢ (which is the fixed point of F, on Bs CY C Wﬁﬂ) is independent
of 3, where [ satisfies the condition in Proposition 3.5, i.e.

(24+m)(n—2)
4

<ﬂ+g<n—4 (4.3)

Now choose p so large that 2 > 2. Then by (4.3), (2) of Proposition 2.1 and
(3.10), we have for I < n — 4,

be(2)] < C <z >7"oellpays

< Cé<r>'weR (4.4)

where C' is a constant, dependent on [ but independent of e. This and (4.2)
imply that u.(0) — oo as € — 0 and that

Ale) Ale)(z — Z(e))) 4 C(/\(é)

€ €

)=z — ()|

Ale)

0<ulz) < C(EL)FTy(

Ale)

VAN

CED) T =2 D 4+ O(= )z — 2()

< Cét2"F |z — 2()| 7D + |z — 2(6)| 7Y

(recall A(e) < 2Xg(n)).
Hence for any fixed 4 > 0 and | < n — 4, we have

0 < ue(z) < C>="7" 2| for |z] > 6, (4.5)
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where C is a constant, independent of small € but dependent on [ and 4. If [
is close to n — 4, then [ + 2 — %52 is close to 252 > 0. So (4.5) implies that
ue decays uniformly outside any fixed neighborhood of the origin.

We have thus established the conclusion in Theorem 1.1 concerning u, ’s
blow-up and concentration. Next, we shall prove (1.2), i.e. u’s decay rate.
Assume now that |z| > 1. In the following, C always denotes a constant
independent of € but dependent on p, 5,/ and n.

By (4.4) and (4.2), we have that

K(y)ully)dy < C ul (y)dy

<1 ly|<1
< C/ (A(e))%vg()\(e)(y_Z(e)))dy
ly<t € €
= OA(e)a=T "¢ i v (2)dz
Ity tz(e)<1
< O a1 vi(z)dx

U (2)dz + / (6() 1dz)

INA
Q
™M

i
=)
||,g°
L
—
B
A
o

< z|< 220
< CTI(C 4 i),
Hence, we have
[ Kwuway<c [ wwiy<c (46)
ly|<1 lyl<1

Observe that

ue(x)

IN

K q
o + / + / )7@)“;@ dy
y—ai<lzl  Jlzl<ya<aal  Jopl<y—a” 1€ =Yl

- 16+I7+Ig,
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where Ig, I; and Ig are defined by the last equality.

For I, we note that in Q; = {y € R"|ly —z| < %'}, % < ‘21‘ < |yl < %
Thus by (4.5),
C<y>m<y>4¢
Iy < / vz =V= 4
y—z|<l2 |z —y|"

< y >m—ql

|y—w|§% |$ - yln—2

2|

= C dy

< C’\x|m_ql/2 L7""_1d7“
- 0 rn—2

— C‘m|m*ql+2'

Iy may be estimated similarly. For in Q3 = {y € R"|2|z| < |y — x|},
1< Jof < 258 < Jy| < 32 Hence,

< >qul
Iy < C/ yi_Qdy
Q3 |:E _y|n

< C

o ,r.nfl
S 0/ n—2 l—mdr
2| T rd

where we choose [ close to n —4 and e small enough such that m—ql+2 < 0.
To estimate I, let Qy = {y € R"\% <ly—z| < 2|x\}, and observe that
by (4.6),

C
I; < —= [ Kuly)dy
|$| Qo
C q q
< —l K (y)ul(y)dy + K (y)ul(y)dy)
|| ly|<1 1<|y| <3|

- C+/ <
PRl AT
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Clz|*™, ifn—1+m-—gql <-1.
< Clz[*"(log|z| + 1), ifn—1+m-—gql=-1.
Cla~(C + |z]"*™=), ifn—1+m—ql>-1.

Now we see that

Clz|*~™, if n+m—gql <O0.
ue(z) << Clzl(og|z| +1), ifn+m—ql=0. (4.7)
C|x|m-a+2] if n+m —ql > 0.

But since n +m — ¢l > 0, it follows that
u(zr) < Clo|™ %2 |z| > 1. (4.8)

This decay result is an improvement of (4.5), since m — ql + 2 < —I for [
close to n — 4 and € small ( recall that n > (12 — 2m)/(2 — m)). Moreover,
we can keep on improving (4.8) until we reach (1.2) as follows.

Let lp = —(m — ¢l + 2). Using (4.8) and repeating the arguments leading
to (4.7), we have that (4.7) with [ replaced by Iy holds. If n +m — qly < 0,
we are done; If n+m — qly = 0, by increasing [ a little we reduce this case to
the previous one and hence we are also done; If n + m — qly > 0, then (4.8)
with [ replaced by Iy holds. In this case we let [; = —(m —qly+2) and repeat
the above process with Iy replaced by [;, which leads to either (1.2) or (4.8)
with [ replaced by [;. If the latter occurs, we iterate the above process again

and again, and each time we are led to (4.8) with [ replaced by
=—(m—-qlh-1+2), k=12,.., (4.9)

until we reach n + m — gl < 0 (and hence (1.2)). On the other hand, it is
easy to see that [ < lyp < l; < ... <l — o0 as k — oo. Thus after finitely
many iterations, we eventually have (1.2).

The proof of Theorem 1.1 is complete.
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Proof of Proposition 4.1:

(1) Since e is fixed, in this part of the proof we can always assume that
€ = 1 (which causes no loss of generality), and we thus write ¢, as ¢,.,
F.(¢) (defined in Section 3) as F, x(¢), Ve as V. Now z = 7, and hence our
goal is to show the continuity of V' (2, A) on 2.

We claim that ¢, is continuous in (z, A) with respect to the W3 ; norm.
To prove this, observe that since ¢,y is the fixed point of the contraction
mapping F, , on the ball Bs C Y (0 is independent of (z,A) € ), we have,

for some positive constant ¢ < 1,

‘ ‘¢21,)\1 - ¢22,)\2 | |P,2,ﬂ
HF21,)\1 (¢21,>\1) - FZ1,>\1 (¢22,>\2)|‘P,2,ﬂ + ||F21,)\1 (¢22,)\2) - FZ2,)\2 (¢22,>\2)HP,2,5

< EH¢21,)\1 - ¢22,)\2 | ‘p,Q,ﬂ + Hle,)\l (¢Z2,/\2) - Fzz,/\z (¢Z2,A2)Hp,2,/3‘

VAN

Thus to prove the claim, we need only verify that for any fixed ¢ € By,

we have
Fon (@) = Foy 2y (0)lp2,s — 0 as (21, A1) — (22, Ag)- (4.10)
Observe that

||F21,)\1 (¢) - FZz,)\z (gb)Hp,?ﬁ

= [IL7P |(K(5- +2) = K( +2)(U + 8)4| llpas
1 2
< CIE(D +2) = K(+2) U+ 8 hoaes (411)

and that

|(K(/\£1 Ya) - K()% +)U+0)% <C<a>m(U+e), (4.12)
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whose L} +p orm is equal to

(U + <ZS)Jf‘|gp,0,(m+2+ﬁ)/q < Cll(U + ¢)+HZ,2,5 < 0o

At the last step, we used Proposition 2.1, just as we did in the derivation of
(3.13).

Now (4.10) follows from (4.11), (4.12) and the Lebesgue Dominated Con-
vergence Theorem. Hence we have shown the continuity of ¢, , in (2, A) w.r.t.
W{ 5 norm.

To prove the continuity of V' on {2, we need only prove the continuity of
SWU+ ¢2p) = AU + ¢op0) + K(5+ 2)(U + ¢.0)% in (2,A) € Q wor.t. ng
norm.

To this end, we deduce that

HS(U + ¢Z1,)\1) - S(U + ¢z2,/\2) ‘ |p,0,2+/3

< HA((bzl,/\l - ¢z2,)\2)Hp,0,2+5
s
+||K (A—1 +21) (U + bz 0)G — (U + b2u00) ] lp0218
a s
+H(K(A_1 +21) — K(/\—2 + 22)) (U + ¢230,)% | [p,0,248

= o+ Lo+ I,

where Iy, 1o and I;; are defined at the last equality.
But
Iy < C||¢z1,)\1 - ¢22,)\2Hp,2,ﬂ — 0

as (21, A1) — (22, A2). Aslo as shown in the proof of (4.10), I;; — 0 when
(21, A1) = (22, A2) . 1o can be handled similarly as in the proof of Proposition
3.5, and by combining the estimates there with the continuity of ¢, » in (z, A),
we see that Irg — 0 as (21, A1) = (22, \2).

(1) of Proposition 4.1 is proved.
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(2) Since g—g € X = Ker(L*), we have

oUu
S (U exn) =—d.
1 2 1 01 OU
= I:L¢€,Z,A + NE (¢€7Z7A) + N€ (¢€1Z=A) + M€ + M€] %d'x
n J
oU oU oU oU
= < NYberr),— >4+ < N (b)), — >+ < M' — >4+ < M? — >
€ (¢ ’ ’)\), 81‘]' + € (QS ’ ’)\)’ (%j + €’ a.fL‘j + €’ (%j
= 1L+ 1L+ 115+ 11,
where 111,115,113 and I1 are defined at the last equality.
By Lemma 3.1, Lemma 3.2 and (3.10), we have
oU
1L < [N (¢e,z0) po2+8ll 5 llpo-c+e)
j
< Ot + & =<d) (4.13)
and
|15 < 062(62 + \z|2) < Ceé. (4.14)

Since 0 is a critical point of K € Ci%(R")(0 < a < 1) and 0 < K(z) <
C(1+ |z|)™ with m < 2, we have

1 n
K@) =1+ > Ky(0)ziz + O(|z*t®), z € R (4.15)
il=1
where |O(|z|**®)| < C|z|**® for some constant C and all z € R". By this,
together with the fact that g—g is odd in z; and even in the other variables,

we obtain

€T . oU

m J
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n

1 €T; €x; €T 9 L oU
= - KZ — i)(— — +a nt_- -
/| [2;_; O + 2+ 20+ 05 + )| U™ Sda

€ = L N N
- X/anlrg-,(o)zl(f ) g+ O 5 f147)
=1

TL*+1 n
_ #/ $_8U d$ZKjl(0)zl+O(62+a+ |Z‘2+a)

(n* + DA Jpn 7 Ox; —
€ * "
= ey U K0+ O+ 1)

=1
( integrating by parts. )

Hence
et

- - n*+1 ) 24+«
II; = T DA RnU dx;Kﬂ(O)nH—O(e ). (4.16)

ou

Since 7~ is odd in x;, we see that
J

oU

€T * 2 *
I, = | K= wee Uy Z=d
4 o ()\—f—Z)(U U )8% T
ou

€T * 2 *
— i 1 n—et _ ' dx.
/n(K(A 42— 1)U U) g

So by (4.15), the mean value theorem and the fact that U < 1, we deduce
that

0L < 0/ @[22 + 122) U™ =3 10g U | 2 | da

VAN

* 2 8U
064/ 220"~ log U|| ¥ |da
. U
+062|z|2/ U™ | log U||=—|dz
< Cle* +€zP).

Combining this with (4.13), (4.14) and (4.16), we see that VJ converges to

Voj uniformly on Q2 as e -+ 0,7 =1,...,n.
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It remains to show that V"*! converges uniformly to Vy'*'. We shall
denote z - VU + "T_ZU by ¥
As before, we have
| 5.0+ 6..0)vds
= < NNpesn), U >+ < N ¢eon), ¥ >+ < MLNU >+ < M2U >
= [y +1Ig+ I1; + 11,
where 115, IIg, II; and IIg are defined at the last equality, and that
1I5] < C(e* + =) (4.17)
IIg] < CE(e + |2*) < Ce. (4.18)
For II;, by using (4.15) and the symmetry property of ¥, we deduce that

th = / (K(5 +2) - U™ ¥da
= /Rn [% ZK”(O)(G)\& )(T+Zl)+0(| X +Z)|2+a) U™ Wda

— 2 n*
= /ZK iU Wz
1=1

1 . .
+ é / Z KZI(O)ZZZlUn Vdr + 0(62+a + |Z|2+a)
R =1

— J1+J2+O(€2+a+|2|2+a),

where Ji, Jo are defined at the last equality.
To compute J, we first observe that ¥ = aU*| a=1, where Uy(z) =
A"z U(Az). Hence

- oU, 1 0 n
/nU Udr = /RnUA aAd:ﬂ“ ﬁaA/ Uy x| =

1 0 )
= — U Hdzly_y =0
+ 1A J o zh=1
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and thus J; = 0. To compute J;, we apply integration by parts on

* * _2
/me" Udr = / 22U ( "2 )dz

Thus \
2 - *
Il = %AK(O) / 22U . (4.19)
n

Write I1g as

I, = / (K(% +2) - 1)(U" = U™ )Wdz + / U™~ - U™ )Wdz
= J3+ Js,

where J3 and J, are defined at the last equality.

J3 can be estimated just as we did for I1:
|J5] < CE( + |2]?) < Ot (4.20)
By Taylor’s theorem, we have that for some 0 < ¢ < 1,
Jy = / { U™ logU +3 Lagm-e (logU) } Udz
= —¢ / U™ log UWdz + O(e*)

« oU,
= —62/ U;L lo gU,\—d.’E|,\ 1+O( )
Rn

oA
€ 0 e - 0U,
= i . 3)\(U log Uy)dz|y=1 + *+1/RnU)‘ B\ —=dz|o1 + O(')
€2 0
=~ /| 3O “logUn)dz|x=1 + 0+ O(e").
Rn
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Observe that

n—2

/ Uy T logUsdz = / APU™ T (\)(

n—2

— 5 log)\/ U"*+1(y)dy+/ U"*H(y)logU(y)dy.

log A +logU(\x))dx

So we see that

e n—2 .

- n*+1 4

no= -t [ ety o

62(" B 2)2 n*+1 4
= _T/n U™ T (y)dy + O(€").
This and (4.19) imply
2 - 2 2 *
Iy = _% U™+ (y)dy + O(e* + €2|2]2). (4.21)
RTL

Now (4.16)-(4.21) imply the desired uniform convergence of V**! to Vj**!
onlase—0. O
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