POSITIVE SOLUTIONS OF NONLINEAR SCHRODINGER
EQUATION WITH PEAKS ON A CLIFFORD TORUS

SANJIBAN SANTRA AND JUNCHENG WEI

ABSTRACT. We prove the existence of large energy positive solutions for a
stationary nonlinear Schrédinger equation

Au—V(z)u+uP =0in RV
with peaks on a Clifford type torus. Here
1

a1r™ + a2r + azrt + ... + asr™
1 2 3 s

V(z) =V(ri,re,---,rs) = 1+

1
+ o( T )
(a1r]* + agrl* + azrf* + ... + asr|)t+7
where RN = RNt x RV2... x RNs, with N; > 2 for all i = 1,2,...s, m >

1,7 > 0,7; = |z;|. Each r; is a function 7, ¢1, -+ .¢;—1 and is defined by the

generalized notion of spherical coordinates. The solutions are obtained by a
max or a max  min process.

(ryd1,ds—1) T (¢1,Ps—1)

1. INTRODUCTION

Positive entire solution of
(1.1) Au—u+uP =0on RY

where 1 < p < (%)+, vanishing at infinity have been studied in many context.
This class of problems arises in plasma and condensed-matter physics. For exam-
ple, if one simulates the interaction-effect among many particles by introducing a
nonlinear term, we obtain a nonlinear Schrédinger equation,

e _
—ieor = A0 = Q@)y + [Py
where ¢ is an imaginary unit and p > 1. Making an Ansatz
At
9 1) = exp(—2Ju(z)
one finds that u solves
(1.2) 2Au —V(z)u+uP =0; u € H'(RY)

where V= @ + X\ is a smooth potential. Let V be a smooth potential which is
bounded below by a positive constant. A considerable attention has been paid in
recent years to the problem of constructing standing waves in the so-called semi-
classical limit of (1.2) ¢ — 0. In the pioneering work [18], Floer and Weinstein
constructed positive solutions to (1.2) when p = 3, N = 1, such that the con-
centration takes place near a given non-degenerate critical point g of V' and the
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solutions are exponentially small outside any neighborhood of xy. This was later
extended by Oh [20], [21] for the higher dimensional case. del Pino and Felmer [9]
extended the idea for a large class of nonlinearities with V' which is only locally
Holder continuous function. Byeon and Tanaka [7] proved that under the optimal
conditions of Berestycki-Lions on the nonlinearity, there exists a solution concen-
trating around the topologically stable critical points of V', which are characterized
by mini-max method. In smooth bounded domain the problem (1.2) with Dirichlet
and Neumann boundary condition have been studied by many other authors some
of them being [1], [3], [6], [10], [11]. Higher dimensional concentrating solutions of
(1.2) was studied by Ambrosetti, Malchiodi and Ni in symmetric domain [2], [4];
they consider solutions which concentrate on spheres, i.e. on (N — 1)- dimensional
manifolds. Also see del Pino, Kowalczyk and Wei [12] in R? and Esposito et. al.
[17] for the Dirichlet case in an annulus. Pacella and Srikanth [22] employed the
symmetry of the domain to construct solutions which concentrate on spheres for
some singularly perturbed problems.
In this paper, we consider the equation

(1.3) Au—V(z)u+uP =0,u>0; uec H' (RY)

where RY = RM xRNz ... xRNs | where N; > 2 foralli = 1,2,...s,m > 1,7; = |z4].
Here V(z) = V(x1, 22, - x5) with z; € RN

1
Viz)=V(ri,re,---,r = 1+
(z) (r1,m2 s) (a1 + aorf + asr* + ... + asr™)
1
1.4 + O
(1.4) ((alr{"+a2r§”+a3r§”+...+a5r;”)1+7>

where 7 > 0, a; > 0 and a; # a; for some i # j. Moreover, r; are given by the
generalization of spherical coordinates and defined by
71 =7rsin¢gy sin gy - - -singg_q
7o = r8in ¢ sin ¢ - - - COS Ps_1
(1.5) ......
rs_1 = T SIin @1 COS P2

Ts = T COS ¢1;

where ¢; € [0,7],i=1,2---5 — 2;¢s_1 = [0, 27]. Define the point

i1=D= i(Gp—1)m i(js—Dm
(1‘6) Pj1j2"'js = (Pj17Pj27"'Pjs) = (7“16 Fooyree B e Tse R );
where i denotes the square root of —1. Hence any point defined by (1.6) is a function
of r and ¢; wherei=1,2,--- ;s —1. We are going to construct solutions which has
peak at the point P}, ;,...5. .

We define the approximate solution as:

(1.7) Wiy jarje () = w(x = Pjyjyenj,)

where 1 < j; < k for all 1 < i < s. Here we identify the Euclidean space RY: with
C x RMi=2_ and the coordinates of a point RY are given by (z,0) where z € C and
0 € RY:=2, Moreover, w is the unique positive entire solution of

(1.8) Aw —w +wP =0; we HY(RY).
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It is well known by [19] that w(z) = w(|z|) and the asymptotic behavior of w at
infinity is given by
- 1
w(z) = A\x|_N2 Sl <1 + O(|>>
x

w'(z) = —Alz|~ "z eIl (1 + 0(@))

for some constant A > 0. Moreover, w is non-degenerate, that is

ow Ow ow

Ory’ Oz’ &rzv}'

Theorem 1.1. There exists kg € N such that for all k > ko, there exists r €

[y1kInk, v2kInk] and ¢; € R, (for the definition of R; i =1,--+ ,s—1 see Lemma
2.1), with

(1.9)

(110) KGTHl(RN)(A—l—i—pwp_l) = {

k
(1.11) we(@) = > Wi (2) + k(x)
Ji,J2,js=1
being a solution ux of (1.3) and pr(x) — 0 as k — oo locally uniformly where
v1 > 0 and v > 0 are positive constants independent of k.

We recall some previous results. Wei and Yan [23] considered the problem
(1.12) Au—V(z)u+uP =0,u>0; uec H' (RY)

with symmetric potential

a 1

(1.13) Vi)=V(r)=VW+ T + O<W>

for some Vy > 0,a > 0,0 > 0 and m > 1, and proved that (1.12) has infinitely many
non-radial solutions. In fact, they proved that (1.12) admits solutions with large
number of bumps on a large circle near the infinity. They conjectured that similar
result holds for non-symmetric potentials. In this regard, there are two recent
papers with different approaches. In [13], del Pino, the second author and Yao
used the intermediate Lyapunov-Schmidt reduction method to prove the existence
of infinitely many positive solutions to (1.12) for non-symmetric potentials, when
N =2, and (m,p, o) satisfies

—1
(1.14) min{l,pQ}m>2,o>2.

On the other hand, Devillanova and Solimini [14] used variational methods to show
that there are infinitely many positive solutions to (1.12) for non-symmetric poten-
tials, when N = 2, and V() satisfies

4 <V(z) = Ve <

Jal* =

Ay

x|’

(1.15) for z large and s < 4

Moreover, if V(z) tends to Vo from above with a suitable

(1.16) V(z) > Vm,| lim (V(z) — Vio)e"® = +o00 for some 7 € (0, v/Vao)

z|—00
and V satisfies a global condition:
(1.17) sup [|V(z) — Vol

z€RN

¥mw SV
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where v is a small positive constant, Cerami, Passaseo and Solimini [8]; Ao and

Wei [5] proved that (1.12) admits infinitely many positive solutions by purely vari-
ational methods.

Remark 1.1. Theorem 1.1 deals with the anisotropic case. Here we have the fol-

lowing asymptotic expansion V = Vo, + a(9) +O(Tm+¢> where a(8) is anisotropic.
In this case, even the distribution of spikes is not known.

Here we allow N > 3 and m > 4 (comparing with [14]). Our result suggests that
the following conjecture should be true:

Conjecture: There are infinitely many positive solutions to (1.12) provided V
satisfies
Ay

A
WSV(J;)_VOO<72 for x large and m; > mg >0

— |x|m2 )

(1.18)

Finally, we mention several results on concentrations on spheres. M. del Pino et.
al. [15] considered the Yamabe problem

N(N —2)
2

They construct infinitely many sign-changing solutions for (1.19). The idea of the
proof is as follows. Decompose RY = C x RN~2. Then they produce solution of the

form
“55)

k
(1.20) up(z Z
where U(z) = CN(W) =, pk =% when N >4y = k2(logk)2 when N =3

(1.19) Au + lu> 2u = 0; u € DY2(RM).

N—2

2jmi

and &;(k) = (e7% ,0) € C x RN=2,
In dimension N > 5, del Pino et. al. [16] obtained a sequences of solutions
whose energy concentrates along a two dimensional Clifford torus for the problem

N(N —2)
4

2. PRELIMINARIES

(1.21) Agsu + (1—|ul* )u=0 onS".

We are given that V satisfies (1.4) and r; satisfies (1.5). Using (1.5) we obtain

a1r]t + agry’ +asry + ... tasry =1" [sinm 01 {al sin™ ¢y - - -sin”™ @1

4+ agsin™ ¢g---cos™ ps_1 + - as_1cos™ Qﬁg:l + a4 cos™ d)l}
Let
(2.1) S(¢1, 01, ds—1) =sin™ p1H1 (2, d3, - - ps—1) + ascos™ ¢

where
Hi(¢p2,¢3, - ¢s—1) = arsin™ ¢y---sin™ ¢,y
+ agsin™ ¢g---cos" Pg_1 + - as_1co8™ Po
(2.2) = sin" ¢aHa (g3, Pps—1) + as_1cos™ ¢a.



5

Forifi=1,2,---,s—1;0<¢; < g, then S(¢1,' : '(bs—l) and Hi(¢i+17' : '¢s—1)
are positive functions.

Now we describe two lemmas which will be crucial for the proof of the main
theorem.

Lemma 2.1. Let go(¢1) = [Hysin™ ¢1 + as cos™ ¢1]. Then go attains a mazimum

as

m—2
at a point ¢ = ¢1,0 = tan~ ! <H1) whenever m < 2 and gy attains a minimum

1

m—2
at ¢1,0 = tan™* <1‘§1> whenever m > 2.

Proof. Differentiating we obtain g{(¢1) = %(Hl sin™ 2 ¢y — a, cos™ 2 ¢1) sin 2¢;.

m—2
Hence gj(¢1) = 0 implies that ¢1 o = tan™! <I‘fh) . Moreover,

90 (b1,0) = w

As a result, g (¢1,0) < 0 when m < 2 and ¢{(¢1,0) > 0 when m > 2 which
implies that go achieves its maximum at a point ¢; o and go achieves its minimum
at ¢1,0 when m > 2. O

(Hl Sinm74 ¢170 + Qg COSm_4 (bl,O) sin2 2(]51}0.

Remark 2.1. Similarly for i = 1,2,--- ;s — 2; gi(¢ix1) = [Hix1sin™ ¢ir1 +
1
m—2
as—; cos™ ¢piq1] attains a mazimum at ¢; o = tan—! <Z["+Z) whenever m < 2

1

and g; attains a minimum at ¢; o = tan™? <Z,+1
k3

m—2
) whenever m > 2.

Remark 2.2. Note that when m = 2, go(¢1) = [H sin? ¢ + a, cos? ¢1] has a
critical point at ¢1 = 5. But

9o (1) = 2[Hy — as] cos 2¢;

which implies that go has a mazimum if Hy > ag and gy has a minimum if H) < ag
at ¢1 = 5. But rs = rcos ¢y can be very small when ¢ is close to ¢1 = n/2. Then
the distance between the spikes and the location of the spikes may become O(1)
which in our case breaks down the linear theory. As a result, in the case m = 2, we
cannot use the method in Theorem 1.1.

Lemma 2.2. Let F(r) = r~™ — e~ % where 0 < r < +oo. Then F attains its

mazimum at a point v = (" + o(1))kInk.

Proof. In fact, it is easy to check that F has a critical point at r = (2 +
o(1)klnk. O

Choose a § > 0 small such that R; = [¢;0 — 9, ¢s,0 + 0] with ¢;0 — > 0 and
¢io+0 < 5 wherei=1,2---,s—1. Let M > 0 be large and x, j,...;, be a smooth
function with compact support such that

1 if|le—Pj | < —
if |z J1j2ds oM

(2.3) Xjriaa (%) = 3

0 if o = Pjije| > 37
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and SUPPXj, jp-j. N SUPPXky ko---k, = O Whenever (j1, j2, - - js) # (k1, k2 - - - ks). Now
define

Zjijaer-jan = Xjrjz---js (I)%; 1<ji,j2-js<kandl1<n<N.
T
Furthermore, define
(2.4) D={r:re[mklnk, vnklnk]}.

We are going to construct solutions of (1.3) using the

max U(r, 1, P, -+ - Pg_
(ry¢1,¢s—1)EDXRL - XRs_1 ( b1, P2 bs 1)

or

max min U(r g
T€ED (¢p1,Pps—1)ER1-XRs_1 ( 7¢1,¢2’ ng. 1)

where ¥ will be defined in (6.1). If we substitute

k
> Wia (@) + 0x(@)

Jijz-js=1

ug(z)

in (1.3), then we can write (1.3) as

(2.5) Sluk] = L(¢) + E + N(p) = 0;
where
k p—1
(2.6) L(p) = Ap— ¢ +p< > lejzmjs) ¢
Jijz-gs=1

the error due to the approximation

k » k
E = ( Z lejz'”js) - ( Z ijljz“'js>
J1jz-js=1 J1jz-js=1
k
(2.7) - Z (V(z) - I)Wj1j2"'js
Jijz-js=1

and the remainder

N(p) = ( Xk: 1Wj1jz~~js+<ﬂ>p—< zk: lejz“'js)p

J1jejs= Jijz2-js=1
k p—1
(23) o X W) era-vee
J1j2-js=1
Define the norm by

k

||¢||*_s§%)< Z enszl,m,...jsl)w(x)L

Jijz-js=1

for some 0 <7 < 1.



3. LINEAR THEORY

We first study the model problem

N k
L((p) =h+ Z Z lejzu.anZjle.A.jsnin RN,
(3.1) n=1j;,ja,js=1

/ ¢Zj1j2"‘jsndm =0forn=1,---N;1<jjjo, - js <k
RN

where h lies in some space. In some sense L is made up of operators Lj, j,...;, where

(3.2) Ljyjas.(9) = Do — o+ pW] 1L .

Lemma 3.1. Let h be a function with ||h||« < +00 and assume ¢; € Ri; (¢j,jsjuns @)
is a solution to (3.1). There exists n € (0,1), C > 0 and ro > 0 such that for all
r > 1o satisfying (3.1), we have

(3-3) el < CllA]x-

Proof. If possible, let there exists a solution to (3.1) with
1Alle = 0, Il = 1.

We claim, that
Cj1ja-jsn 7 0

forallmand 1 < j; < k,i=1,---s. First note that
(3.4) / Zj1ja---jspLhika-koqd® =0
RN
ifp#qor(ji,ja---,7s) # (k1, k2 - -+, ks). Multiplying (3.1) by Z;, j,...;.n We obtain

(3.5) /L(W)ijmjsn = / thljzmjsn+Cj1j2~~jsn/ Z3 jyejun
RN RN RN

Moreover, there exists a small n > 0 such that

ow \? (1)
/RN ijvljt"szndx:/ﬂ{azv (8$n> de+Ole o -

On the other hand

/RN th1j2"'j5ndm S C”hH*
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When p > 2, by the integrating by parts, we obtain

p—1
/ L((p)Zﬁ]é"‘jsndx = / |:A90 -+ p( Z WJ1]2 Js) 90] Zjljz'“jsn
RN RN

=1

k p—1
/]RN[AZjljw-jsn@ Zjija- m<P+P( > lejz"'js> Zjyjaeeejen )

J1jz-gs=1

k p—1
-1
- p/RN {( Z Wj1j2"~js) - Wj[;jz---js]zj1jz-~-jsn<ﬂ

J1,J2,ds=1

v W AW
- / ViXiriarisV 5]31]2 - pdz + / AXGrja- s %(pdm
n n
= 0 e(pz)lpjlj2“‘jsPklkz---ks) / Zjindin®
RN

(Grg2-+3s)#(kikz--ks)

v Wi
" / VXGia-riaV gﬂz - P+ / AXjijarejs %‘Pdm
@

> e(PQ)Iij---jSPklkz---ks)w*

(g1j2-ds)#(k1ka--ks)
(3:6) + O gl
When 1 < p <2, we obtain

k p—1
/ L(9)Zj jy-wjonda = / [A@—er( > lejz'"js) P1Zj,ja-wejum
RN RN

Jiyjs=1

k p—1
= /N[Azjljamjsn@Zj1j2~~~jsn<P+P( >, lejz"'js> ©Zjjajen]
R Jraceeds
p—1

1
= / |:< Z WJIJZ h) _W]pljrz ]§:|Zj1j2"'jsn(p

J1ijz2-Js
v Wiria:i W, s,
" / VXia-winV gh ’ gad:c+/ AXji ja- Jeﬁl@dx

p—1
2
= O(( N Z lejz---jkulkz»--ks> )/RN Zj1ja-jen®

(J1jz-js)#(kika - ks)
+ 0@ M)p].
= O Z @p21|P7’1j2---j5Pklkz..,k3|> ||<P||*
(j1j2+ds)F(kikaks)
(3.7) + O(e—(l—n)r)”w”*.
Hence from (3.5) we have
(3‘8) |Cj1j2---j5n

and as a result we obtain

< Clliall + 0= M) loll];

— 0 as r — oo.

|Cjrjajsn



Now define
k

(3.9) Rz)= Y el Pui
Jije--js=1
for some 1 € (0,1). Then we have
1
L(R) = 5(1~ )Rz € RN\ UY ;. Bs(Pjjy..j.)

for some ¢ > 0 independent k. Hence we can use the barrier as R to obtain
k

(3.10) lp(z)]| < C(IIhII* + Y <P|Loo(aBs(lej2...js>))R($)
Jijz-js=1
in RV \ U?ljz"'js Bs(Pj,j,--j,). Now we prove the main part. If possible, let there

be a sequence of r, — +00 with h, and ¢, such that
[hall« = 0, [l¢alls =1

as @ — +o00o. But by (3.8)

(@)

S 0as a—

lc

and due to the exponentially decay of Z;, j,...;.n We have

N k
(3.11) YooY | =0
n=1j1jo--js=1 *
Hence there exists a point of PJ(EL js where Pj(f;l j.isa function of r, € D and
¢i,o € Ry such that
o > .
ol oo, (piey 9y Z €0

By the standard elliptic estimate and the Arzela—Ascoli’s theorem, ¢, converges
locally uniformly to ¢ as & — co where ¢ satisfies

(A =1+ pw” Hp=0in RY

with [p(z)| < ce™*| for some i > 0 and ¢ > 0. Moreover, note that ¢, satisfies
the orthogonality condition. Hence we must have

(3.12) / pVwdr = 0.
RN
This implies ¢ = 0 as w is non-degenerate, a contradiction. (|

Lemma 3.2. There exists n € (0,1), C > 0 such that for all r > 1o and ¢; € R; ,
there exists a unique solution (cj, j,...j.n, ) satisfying (3.1). Furthermore,

(3.13) olls < CllAllx

Proof. Define the Sobolev space

H= {Lﬂ eHl(RN) :/ ©Zj jgjondr =0n=1,--- N;1<j; <k,i= 1,2,~--s}.
RN

Then (3.1) is expressible as
(3.14) ¢+ K(p) = h.

where £ is defined by duality and K : H — H is a linear compact operator. Using
the Fredholm’s alternative, (3.1) has a unique solution for each h which is equivalent
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to showing that the equation admit a unique solution for h = 0 which in turn follows

from Lemma 3.1. The estimate (3.13) follows directly from Lemma 3.1. Moreover,

if ¢ is a unique solution of (3.1), we can write ¢ = A(h) and hence from (3.13) we

have
(3.15) [AR) [« < Clh|l-

4. THE NON-LINEAR PROBLEM
Now we consider a nonlinear projected problem
N k
: N
L(Q@)-i-E—i—N((p) = Z Z C,jljZ"'janjle"'jsn in R 5
(4,1) n=1jijz--js=1

/ (pzjljzja”dx =0 forn = 15N71 < jlaj%'"js < k.
RN

We are going to show the solvability of (4.1) in (¢, j,.-.j.n, ¥) Whenever r € D and

;i €R; withi=1,2---,s— 1.

Lemma 4.1. There exist ro > 0 large and C > 0 such that for all r > r¢ and

for any r € D, ¢; € R; , there exists a unique solution (¢;,j,...j.n, ) of (4.1).

Furthermore,
(4.2) gl < crm.
Proof. Note that ¢ solves (4.1) if and only if
(4.3) ¢=A(-E - N(p))
where A is the linear operator introduced in Lemma 3.2. If we define
(4.4) F(p) = A(=E = N(9));
then we are reduced to studying the fixed points of the map F. Define a ball
(4.5) B={peH: ol <nr™}
for some 1 > 0. Now we claim that
(4.6) IE|. < Cr—™.
Fix a point P}, j,...j, with [z — P}, ;,..;.| < 575 where o > 0 is small number. Then
we have
r r ro
— Prikgkio| 2 | Prykgoky — Pjrioil| — > —
|l‘ kika-ks| Z | kika-ks Ji1j2-Js 2+0_ =9 + 2(2+0_)
whenever |Pj, j,...;. — Prikyks| > 7
Hence we obtain,
_ C
B < CWIl > Whikybe + SOy e o) Y Wiawi,
(kaka-ks)#(j1ga +js) L¥2 s G gaega=1
_ C
S CWﬁJZIJs Z U}($ - Pk1k2"'ks) + Tm8(¢ ¢ . ¢ ) Z WJI]Q,]&
(kaka-ks)#(j1ga +js) L¥2 s G gaega=1
r ro C
< CWP_-I ) T 27 2(2%0) Wi .
- J1J2Js Z ) ) € + TmS(¢1,¢2,~--¢S_1) . .Z_ J1J2-Js
(kikaks)#(j15275) Jijzejs=1
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In the region |z — Pj,j,..j,| > 575, choosing 0 < pu < 1

Bl < C Y WP i +C > Wi,

Jijz2gs=1 Jijz--js=1
(p—p)r
el Pl e o
< C( e Juiz-dsl e e +(C lejz'”]s
Jijz-gs=1 J1j2-js=1
( ) k A—p)
— i — i
< C( E e#lijle---jJ)@— = _|_O< E 6#|IPj1j2___js)e— e )
Jijz-js=1 J1jz--js=1

Hence the result follows. Moreover, for any ¢ € B we have
IN(@)] < C(lel* + ll” + 7).

Hence

(4.7) IN(@)ll < Cliell? + llel? + 7™ llell)-

Now we need to check whether the map (4.4) is in fact a contraction from B to B.
We have

(4.8) 1E(@)llx = [[A(E + N(@)lls < CIE[x + CIN(p)[l« <nr™™

Moreover, for any @1, @2 € B

(4.9) [1F(p1) = Fgp2)lls < ClIN(p1) = N(@2)llx = o(1)ller — w2l
As a consequence of the contraction mapping principle, we obtain the required
result. O

5. THE REDUCED PROBLEM

Denote the functional associated to (1.3) by

1 1 1
I(u) = SVl + SV (2)u? — ——uPt| da.
(u) /RN [2| ul +2 (2)u p+1u x

Lemma 5.1. Then we have

k
A B _2xr 1
=1 E = — —e 'k O
k ( W]1]2 ]s) 0+ 27ﬂm8(¢17¢2,"'¢571) 26 + (Tm+T)

J1jz-gs=1

where Iy = 2&;;1) Jan wPtda; A = [o w?dz and some constant B > 0.

Proof. We write

1 1 1
I(u) = S| Vul’ + SV (2)u? - — P+1]d
O O

1 2 oy, 1 2 1 o
= - S(V(z) - Du? — ——urtt|d
/RN [2(|Vu +u?) + 2(V(:z:) u p+1u o

(5.1) — -A+-B-—
p
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where A = [on (|Vul* +u?)dz, B = [pn (V(2) —1)u?de and C = [ uPT'dz. Hence
we obtain

k 2 k 2
A = /RN (‘V( > Wj1j2"'js> +( > ijmjs) >dw

J1jz2-gs=1 J1jz2+Js

Z Z /RN( Jija- J5>Wk1k2 N

Jij2-gs=1kika--ks=1

ks/ wPHde +
]RN

Using (1.4) we obtain

RN( _1><, Ek: lejz...js)de

Jijz gs=1

/ (V( ) )Wj21j2 ]&dx + Z / (V(‘T) - 1) WklkZ”'kstle”js
RN RN

(J1g2-ds)#(kika--ks)

/RN <V($ + Pijujaie) = 1) w?(z)dz + o(e” )

> /N w(@ = (Pjyjyeje = Prikyei,))wP (z)da.
)#(k

(J1j2-Js 1ka-ks)

B

/ (V($1+P]17x2+P]27""mSJ’_P‘s)_l)wQ(x)dx
RN

1
/37-/2(0) <a1|$1 + P, ™ + az|za + Pp|™ + - + as|ws + Py ™

1
o,
B,2(0) \1|z1 + Pj|™ + ag|zs + Pj,|™ + - + as|zs

+ O(e1-m)

for some 7 > 0 small. Moreover, for any (21,2, --x,) € B, /2(0)

>w2(m)dw

) )

+

B
[\&)
+
_3
_3
7 N
=
+
o
O
1?

(5.2)

m:|P
s

)
m 1+o<

( P, |
ar]zs + P, [ + as|we + Pjp ™ + -+ 4 as|ws

" 2 " 2 " .
= P 1 P 1 1
il (1+0(5) ) + ipar (1+0(52) )+ aimr (140 3

= al‘Pj1|m+a2|Pj2|m+ T Qs

|1] |2 ||
+ alP'1|m(’)< + as|P;,|"O s as| Py MO .
! | Py, | | Py, [ Y [P,

|xs

and hence
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As a result we have,
(ar|zs + Py, [™ + aglwg + Pp, | + - + aglzs + Py [™)

1
ar| Py, |™ + az| P, |™ - - + as| P,

x (1 + 0<a1|PJ1|m_1|$1| + ag| Pj, | Hwa| + - + as|Pj5|m_1|$5|)>.
al‘Pj1|m +CL2|]DJ2|m +"'+a5|Pls m

m

Hence we have,

1
/BT/Q(O) (a1|$1 + Py ™ + az|a + Pj,|™ + - as|zs + Py ™

( 1 ) [
= w XL
ar| Py, ™ + ag| Py, [™ + - - - as| P |™ ) Jrn

1 2
(a’1|Pj1|m+a2Pj2|m +"'aS‘P’s m)

O( [l +a2Pj2|m1|x2|--~+as|Pjs|m1|xs|>w2dx)
RN

_ 1 2 1
= <8(¢1’¢2,,,.¢51)7ﬂm> /]RNw dx+o<($(¢la 7¢sl))27ﬂm+1).

Moreover, as p > 1 using the Taylor expansion we obtain,

k p+1
c = /RN < Z lej?"'js) dx

)wz(x)da:

+

X

Jrjzje=1
k
+1
= Z /N ijljgszdx + (p+ 1) Z /RN ijleWjSWkle...ksd{L‘
Jrje-js=1"F (krkz-ks)#(jrja - js)
1 2

+ O( > /N Wﬁjzmjswklkz--ksdx)

(jrja--js) Ak ka-ks) VB
= ks/ wp+1dx + (p + 1) Z / wp(:v)w(a: — (lejZ"'.js — Pklkzmks))dx

RY (Grga-do) 2 (kaka--hy) VBN
+ O( Z / wp*l(x)wQ(x - lejz‘“js + PklkZ"‘ks)dx) :

]RN

(J1J2--7s)F#(k1ka--ks)

Hence from (5.1) we obtain

_ (p—Dk p+1 ( k* > 24
W= S+ /RN R X P e /RN W
1
- 3 Z /RN wP(x)w(x — (Pjyjp-j, — Prikyk,))dx

(G1j2ds)#(k1ka-ks)

O( > /RN w2 w? (x = Pjyjyej, + Pk1k2‘~k5)d$>

(§1g2--7s)F#(k1ka-ks)

(5.3) + o(rn]f;).

+
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MOI‘QOVGL for (.j17.j2 e 7js) 7é (klak27' : ka)

|Pj1j2“'js - Pklkz“'ks|2

S o _

= 4r%{sin2 (]12kl)ﬂ] +47‘§[sin2 (]221<;2)7T] 4o 4 4r? {sinZ (72]<:)7T]
i1 —k

= 47’2{Sin2012kl)ﬂsin2¢l sin? g - - - sin® g1

(J2 — k2)m

22
+ sin %

.s B ks
sin? ¢ sin® ¢y - - - cos? g1 + - - - + sin? % cos? ¢1] .

Hence if | P, j,...j, — Priky---k,| is finite
r
(54) |Pj1j2"'js - Pkle“‘ksl ~ s

is large, then

as k — oo. Moreover, if | P;, j,...5, — Phyko---k.
2
(5'5) |P]1]2Ja - PklkZ""ks| ~T

and by the exponential decay of w, the contribution due to exp(—|Pj, j,...;, —
Py kyk,|) is a very small term. Furthermore, there exist B’'(N,p) > 0 and § > 1
such that

(5.6) /RN wP(z)w(z — a)dz = B'Y(|a))a.e, + O(e~01])

where 9(s) = e~*s~"2 and e, is unit vector with n-th coordinate 1 and the other
entries 0. Hence

Z /RN wP(x)w(x — (Pjyjp-jo — Prikyk.))dx

(G1j2gs)#(kika--ks)
(5.7) = kse_%(B+o(1))_

where B is some positive constant. As a result, we obtain

. _ -1 Pl 4
FI) = 50T RN“’+d“(28<¢1,-~¢s—1>rm>

B _Ir 1 _ 27
- 3¢ +O<rm+7>+0(e k>

where A = [,y w?dz. O

6. MAX-PROCEDURE OR MAX-MIN PROCEDURE

Define

k
(61) I< Z lejZ“'js + QDk) = \I/(T', ¢1, cee gf)s,l).

Jijzgs=1

Now we are going to maximize U(r, ¢y, - - - ¢s_1) with respect to r € D and ¢; € R;.
Define the norm on H*(RY) as

1
2

ol 1y = </RN[|V¢|2 + V(x)goz}dx)
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First we write

k k
I( > Wj1j2~--js+@k> = I( > ij---js)+/RNE(U)<Pk+O(||sDkip(uw))

Jijz-gs=1 Jijz2--js=1
Using (4.6) and (3.13) we have
(6.2) [E]l < nr™™ and [Jop[l« < nr™™;
which implies
(6.3) Bl @ry < nk2r~™ and ||kl g @yy < nk3rm™,

Hence we have

k k
I( Z lejQ...js " @k) - I( Z Wj1j2'“js) + O(ksrimn).
Jrgzege=l Jijz-js=1
So we can use Lemma 5.1 to obtain

U(r, 1, fa1) = k8[10+ A _fe—’r+@<1>}

2rmS(¢u, - Ps—1) rmtT

Note that if

A B
(6.4) Zrd1 o) = grsm Ty T ¢ ©

Using Lemma 2.2, there exists (g, ¢1,0,- - ¢s—1,0) such that Z, = Z,, = - =
Zy, . =0and max{Z,,, Zy, 41, s Zp, 1.6s_1 1 < 0 and all the mixed derivatives
are zero at the point (7o, ¢1,0,- - - $s—1,0). Which implies the Hessian associated to
Z is positive definite. Hence U(r, ¢, - ¢ds—1) attains a maximum at an interior
point (7‘0, ¢1,07 s (ZSSfLo) EDXRI XRo---Rs_1.

Furthermore, there exists (ro, ¢1,0, - - ¢s—1,0) such that Z, = Z,, =---=Z,, , =
0, Zp, < 0 and min{Zy, ¢\, , Zp, 1.6..t > 0 and all the mixed derivatives
are zero at the point (7o, ¢1,0, - ¢s—1,0). Which implies the Hessian associated
to Z has both positive and negative eigenvalues. Hence (79, ¢1,0, - Ps—1,0) €
D xRy XxRo---Rs_1 is a saddle point of ¥. This point is actually a max — min
saddle point.

7. PROOF OF THEOREM 1.1

By section 6, there exists kg € N such that for all k > kg there exists a C! map
such that for any r € D, ¢; € R; there associates ¢j, with

k N k
SK > lejzwjd-%ﬁk)}:z: S ChadinZiviaiun;

Jijz-js=1 n=1ji1j2-js=1

(7.1)
/ (ijle‘.andl’ =0
RN

for some constant ¢, j,...;., € R¥'N. Here S is defined in (2.5). We are going to
prove Theorem 1.1 by showing that c;, j,...;,n = 0 for all 1 < 71,79, ,js < k and
1 <n < N. This will imply

SK zk: Wj1jz~--js+<ﬁk>]=0

J1jz-js=1
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which will in fact prove that

k
> Wisj, + ¢k
Jija-js=1
is a solution of (1.3). By the previous section, we know that there exists a critical
point (1o, ¢1,0, - ¢ps—1,0) of ¥in D X Ry X Ry ---Rs_1 such that
\P(r05¢1,07"'¢s—1,0) = max \II(Tv ¢1,07"'¢s—1,0)
(ryd1,hs—1)

or

\I](TO7¢1,03"'¢871,0):m’?x( min )‘1’(7”7¢1,0,"'</)571,0)-

17"'¢571

Let that point be P;, j,...;, where the maximum or the max — min is attained. Then
we must have

(7.2) Dp,

J1i2---dsm

¥ =0.
P=Pjjy-js

Choose

9

k
0
Mjrga-jen (T) = CTE ( > Wigewy + @k)
1J2°)sN

Jijz2-js=1 P=P

J1d2-Js

then (7.2) reduces to

VupVnj, jyewjon () + /RN V(@)urnj, jy- jon ()

RN P=Pj iy js P=Pj jy-js
Py, . —
[ o) ~0.
R P=Pj j-js
As a result, we must have
N k
(73) E E Cji1jo--jsn /N ZjljZ'“jsnnklk2'“ksq =0
n=1ji1ja2--js=1 R P=Pjjy-js

where 1 < ky,ky-- ks < k and 1 < ¢ < N. Note that (7.3) is a homogeneous
system of equations. Now we are going to show that (7.3) is a diagonally dominant
system. This will allow us to invert the matrix system. Then we can prove that

Cjrjarjon = 0 for all 1 < jy, ja, -+, js <kand 1 <n < N.
From the orthogonality assumption, we have
(7'4) / SOijl]é"'jsndx =0.

RN

But this implies that

Doy
————— 7 ipeindr
/]RN aPklkzmkrsq J1J2Js

07 ..
75 — _/ & J1J2::)sn dx
( ) RN 4 apk1k2~~~ksq

P=Pj, j;...js

=0

P=P,

Jj1d2-ds
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whenever (j1,j2 ce ,js) ?é (kl, ko ks)
Furthermore, when (ji,jo - ,js) = (k1, k2 -+ k)

0 ioeedam
/ LZjlva”»jsndz = 7/ @kﬂd‘r
RN OPj, jyooe jeg P=Pj, 0 jams rY O OPjjajia lp—p, .
(7.6) Cllgkl« = OF™™).
Whenever (41,72 ,Js) # (k1,ka - , ks) we obtain

OWji4yj
7.7 / e g iandT
(7.7) ey 0P, pyokg 12700

07

IN

_ O(efanjljz«‘«js*Pklkz---ks|).

P=Pjjyjs

But for (j1,52-+ ,Js) = (k1,ka- -, ks), we have

OWiiigoi
(7.8) A Ly jaeejund

2 —

P = dng . w, dr+O0(e™")
J1J2"7sq P:Pj1_7‘2...j5:1 R

where 0,4 is the Kronecker delta function. As a result, the off-diagonal term

(J1, 72, js,n) of (7.3) can be written as

E / ZjijorjonTlerks-koq T E / Zj1ja-jenTja--
N ]RN

(Gogzeee o) Ak koo o) © (G132 ds)ma
= OFr™™)=0(1)
which is obtained by using (7.5), (7.6) and (7.7).
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