Orbital stability of bound states of semi-classical
nonlinear Schrodinger equations with critical nonlinearity

Tai-Chia Lin *fand Juncheng Wei *

We consider the orbital stability of single-spike bound states of semi-classical nonlinear
Schrédinger equations with critical nonlinearity and a trap potential. Due to the effect of
the trap potential, we derive the asymptotic expansion formulas and obtain the necessary
conditions for orbital stability and instability of single-spike bound states. Our argument is
applied to two-component systems of nonlinear Schrodinger equations with a common trap
potential, cubic nonlinearity in two spatial dimensions. The orbital stability of bound states
with spikes of these systems is investigated. Our results show the existence of stable spikes in
two-dimensional Bose-Einstein condensates.

1 Introduction

The nonlinear Schrédinger equation (NLS) with a trap potential is central to the understand-
ing of many physical phenomena. For example, it has become a well-known model referred to
as the Gross-Pitaevskii equation governing the evolution of Bose-Einstein condensates (BEC)
given by

0 h?
~ih 2 = T Vit — sl (1.1)

forx € RN, N < 3 and t > 0, where ¢y = ¥(x,t) € C is the wavefunction of BEC, and
Virap = Virap() is the trap potential. Besides, % is Planck constant, m is the atom mass, and
[~ 4%%(1, where a denotes the s-wave scattering length.

In BEC, spikes may occur when the s-wave scattering length is negative and large. Due to
Feshbach resonance, the s-wave scattering length of a single condensate can be tuned over a
very large range by adjusting the externally applied magnetic field. As the s-wave scattering
length of a single condensate is negative and large enough, the interactions of atoms are strongly
attractive and the associated condensate tends to increase its density at the centre of the trap
potential in order to lower the interaction energy (cf. [25]). Under the effect of trap potentials,
spikes of BEC are observable by physical experiments (cf. [6]) so there must have stability to
assure spikes appearing in the condensate wavefunction (cf. [5]). In [19], stable bright solitons
(spikes) of BEC can be observed by numerical simulations, provided that the strength of the
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trap potential exceeds a threshold value. Here we want to develop mathematical theorems to
support the existence of stable spikes in BEC.

To get spikes in BEC, we may assume the s-wave scattering length a i.e. p is negative and
large. Setting h? = h?/(—2mp), Virap(z) = h? V(z) and suitable time scale, the equation (1.1)
with negative and large 1 can be equivalent to a semi-classical NLS given by

L0 2 N
—zha_hAw—Vq/;—i—hp\ v, zeRY,t>0, (1.2)
where 0 < h < 1 is a small parameter and V' = V(z) is a smooth nonnegative function. We
may generalize the equation (1.2) to a NLS having the following form
o

—iha =AY -V + PPy, zeRY,t>0, (1.3)

N ’ ) )

In particular, when N = 2, the equation (1.3) is exactly same as (1.2).
Bound states of (1.3) are of the form (x,t) = e**"u(z), where u satisfies the following
nonlinear elliptic equation

RPAu—V+Nu+u? =0, vwe HRY), u>0 in RV, (1.5)

with zero Dirichlet boundary condition i.e. u(z) — 0 as |x| — oo. When A > 0 is fixed and A
is sufficiently large, one may refer to [8] for the stability problem which is different from our
conditions that A > 0 is fixed and 0 < h < 1 is a small parameter. The existence of single or
multiple spike solutions of (1.5) was first established by Floer-Weinstein [7] in one dimensional
case i.e. N =1 and 1 < p < 5, and later extended by Oh [21]-[22] to higher dimensional case
ie. N>2and 1 <p< % under the condition that the trap potential V' has nondegenerate
critical points. When the trap potential V' becomes degenerate, there have been many works in
recent years. One may refer to [3], [4], [12], [23], [24] [15], [29], [28], [31], [32], and the references
therein.

The trap potential V' may also play a crucial role on the orbital (dynamic) stability of single-
spike bound states. As the trap potential V' is switched off, it is well known that all bound states
of the equation (1.3) with the condition (1.4) are orbitally unstable if the dimension N = 2
(cf. [34]). To stabilize bound states, one has to turn on the trap potential. However, in general,
some nonzero trap potentials may still cause dynamic instability in BEC. For instance, one
may find bending-wave instability of vortex ring dynamics under some nonzero trap potentials
(cf. [14]). Consequently, to get the dynamic stability of single-spike bound states, we have to
choose trap potentials properly. For suitable trap potentials, Oh [22], and Grillakis, Shatah,
Strauss [10] proved that when N = 1, the single-spike bound state (concentrating at local
nondegenerate minimum of the trap potential V') is stable if 1 < p < 1 + % and unstable if
p>1+ %. Generically, the case of p = 1 + % is left open and referred to as critical case
in the literature. In this paper, we give an affirmative answer for such a case by studying
the orbital stability and instability of single-spike bound states when the trap potential V' has
nondegenerate critical points.



In [21]-[22], up, a single-spike bound state solution of (1.5) can be obtained, provided the trap
potential V' is of class (V'), and fulfill other conditions. Hereafter, we set u;, as a single-spike
bound state constructed in [21]-[22] and satisfying (1.5). Of course, the trap potential V' is also
of class (V), and fulfill other conditions in [21]-[22]. Hence 1 (z,t) = /" uy(z) may form an
orbit of (1.3). From [10], the orbital stability of 1;’s is defined as follows: For all € > 0, there
exists & > 0 such that if ||1)g — up||lgn < & and ¢ is a solution of (1.3) in some interval [0, %)
with ;g = 1y, then 9 (t,-) can be extended to a solution in 0 < ¢ < co and

sup inf [|99(-,¢) — ¢n(-, 8)[|m <e.
0<t<oo 5€ER
Otherwise, the orbit 1, is called orbitally unstable. To check the orbital stability of v, we use
the linearized operator defined by

4
Ly =hA =V + X+ pub, p=1+. (1.6)
Observe that u, may depend on the variable \. Moreover, we assume u; to be nondegenerate
due to [13]. Let n(Ly) be the number of positive eigenvalues of L, and

h? 1 1
d()\) = /RN {?|Vuh|2 + §(V + Nup — muﬁﬂ . (1.7)
Assume that d is nondegenerate, i.e, d' # 0. Let p(d' ) =1ifd > 0and p(d' ) =0ifd" < 0.
According to general theory of orbital stability of bound states (cf. [10],[11]), up is orbitally
stable if n(Ly) = p(d"), and orbitally unstable if n(Ly) — p(d") is odd (see page 309 of [11]).
It is remarkable that if V =C and p =1+ %, then d () = 0 i.e. the function d becomes
degenerate, where C' is a positive constant. Consequently, we may assume the trap potential V'
has nondegenerate critical points in order to derive the asymptotic expansion formulas for the
operator L, and the function d as the parameter h goes to zero. These formulas are crucial to
obtain the orbital stability and instability of single-spike bound states as follows:

Theorem 1.1. Let N be a positive integer and p = 1 + %. For 0 < h <1, let up be a bound
state of (1.3) concentrating at a nondegenerate critical point xo of the potential V' such that
AV (z9) # 0. Let m denote the number of negative eigenvalues of the matriz (V2V (x0)). Sup-
pose the parameter h is sufficiently small. Then uy, is orbitally stable if o is a nondegenerate lo-
cal minimum point of the potential V. Furthermore, uy is orbitally unstable if m— %(14‘ @1‘;&30
s even.

Another motivation of studying the equation (1.3) in the critical case may come from two-
component systems of nonlinear Schrédinger equations which describe a double condensate
i.e. a binary mixture of Bose-Einstein condenstaes (cf. [25]). To get stable spikes of a double
condensate with two spatial dimensions, we study orbitally stable bound states with spikes of
a two-component system of nonlinear Schrodinger equations given by

—ih%2 = h2AD — VO + [D2P + B|T[?D, (1.8)
—ihgl = R2AT — VU + |U]20 + 3]@[2 T, '



for x € R? and ¢ > 0, where V = V(z) is a smooth nonnegative function, 5 € R is a
nonzero constant, and 0 < h < 1 is a small parameter. Bound states of (1.8) are of the
form ®(z,t) = e*/hu(x) and ¥(z,t) = e v(z), where (u,v) satisfies the following nonlinear
elliptic system
RAu—(V+XNu+u®+ pfuv* =0 , zeR
RPAv—(V+XNv+v3+6u?v=0 , zeRe, (1.9)
u(z),v(z) > 0,u,v € H (R?).

Note that in R?, the nonlinearity u®, v® are critical nonlinearity by simple algebra p = 3 =

1+ & with N = 2. The system (1.9) admits a bound state solution (muh, \/11+—ﬂuh), where
B > —1 and uy, satisfies the equation (1.5). Generically, such a solution may not be either a
unique positive solution or a ground state solution. Thus the stability problem is nontrivial.
Here we want to get the orbital stability of such a solution using suitable trap potentials V’s.
To study the orbital stability of such a bound state solution, we set the linearized operator of

(1.8) around (\/Wu’“ i lh ) given by

Ly ( ¢ ) = ( W2AG = (V +N)é + 5uie + 1+ﬂuh¢ ) (1.10)

W WA — (V + Ny + 2ty + 5l
Furthermore, we also need a function defined as follows:
h? Viz)+ A+ X\ 1
d(A1, Az) :/11@ 7|Vuh,)\1,)\2|2 + 5 Up i o — 4/ B
h? V(z)+ A+ X 1
‘*’/R2 E|V7}h,)\1,/\2|2 + 5 ZAI,,\Q Z/RQ Uﬁ,,\l,,\Q
_b / u; ; (1.11)
2 h,)\l,)\zvh,)\l,)\z ’ .
R2

where (%px as> Vhay )z, ) 18 the solution of

{hQAu— (VAA+A)u+ud+ fur?=0, inR2, 119
( .

RPAv—(V+ A+ M)v+v2+ Bu’v =0, inR?,

such that (wnx ass Vnagpe) — (\/Tﬂuh’ \/11-1-71“1) as ||+ [A2] = 0.

Suppose the solution (muh, Wirw il h) is nondegenerate, i.e. the operator L, has no
zero eigenvalue. Let n(L,) denote the positive eigenvalues of Ly, and set p as the number
of positive eigenvalues of the Hessian matrix (V2d(0,0)). From [10]-[11], we know that the

solution ( muh, \/W h) is orbitally stable if n(L;,) = p, and orbitally unstable if n(Ly,) —

is odd. The parameter 8 may affect the orbital stability of the solution ( \/_ﬂuh’ \/—ﬂuh>

Now we state our result as follows:

Theorem 1.2. For0 < h < 1, let uy be a single spike solution concentrating at a local minimum
point of the function V. Suppose the parameter h is sufficiently small. Then (muh, muh)
is orbitally stable to (1.8) if 0 < 3 # 1.



Remark: The orbital instability of (=, rgua) for —1 < 3 < 0 can also be investigated.
However, the condition is quite complicated so we may omit it here. On the other hand,
as f =1, the system (1.9) may have infinitely many solutions with the form (u,v) = (w,nw)
for n # 0, where w is the solution of A*Aw — (V + N)w + (1 + n*)w® = 0 in R?. This may
provide a reason to ignore the case # =1 in Theorem 1.2.

For the existence of other bound states to the system (1.9), one may refer to [1], [2], [9],
[16], [17], [20], [27], and the references therein. Our result here seems to be first in studying
the orbital stability of (1.9) with a trapping potential.

The argument of Theorem 1.2 is applicable to study another two-component system of
nonlinear Schrédinger equations having symbiotic bright solitons (cf. [18] and [26]) given by

(1.13)

—ih%2 = R2AD — VO — |90 + 3|U[*D,
—ihZr = B2AT — VU — V20 + 3|00,

for € R? and ¢ > 0, where V = V(z) is a smooth nonnegative function, 3 € R is a nonzero
constant, and 0 < h < 1 is a small parameter. It is remarkable that the coefficients of the terms
|®2® and | P[>V of the system (1.13) have opposite sign to those of the system (1.8). As for the
system (1.9), bound states of (1.13) are of the form ®(z,t) = ¥ u(z) and ¥ (z,t) = e y(z),
where (u,v) satisfies the following nonlinear elliptic system

RPAu—(V+Nu—ud+ pur?=0 , z€R?
RAv—(V+ A —v*+Bu*v=0 , zeR (1.14)
u(z),v(z) > 0,u,v € H(R?).

It is easy to check that the system (1.14) has a solution (oz—un, z—un) for § > 1. As for
Theorem 1.2, we may have

Corollary 1.3. For 0 < h < 1, let up, be a single spike solution concentrating at a lo-
cal minimum point of the function V. Suppose the parameter h is sufficiently small. Then

(ﬁuh, ﬁuh) is orbitally stable to (1.13) if > 1.

The proof of Corollary 1.3 is quite similar to that of Theorem 1.2 so we may neglect the detail
proof here.

The rest of this paper is organized as follows: In Section 2, we figure out the properties of
up, and the spectrum of the linearized operator L, as the parameter h goes to zero. Then we
state the proof of Theorem 1.1 in Section 3. Finally, we provide the proof of Theorem 1.2 in
Section 4.

Acknowledgments: The research of the first author is partially supported by a research Grant
from NSC of Taiwan. The research of the second author is partially supported by an Earmarked
Grant from RGC of Hong Kong.

2 Properties of uy

In this section, we study the properties of u;, which is a single spike solution concentrated
at a nondegerentate critical point zq of V' (z). Let z; be the unique local maximum point of
up. So xp — xo. Let us recall the following results of Grossi [13].
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Lemma 2.1. (1) z, =z0+o0(h) ;

(2) uy is unique and nondegenerate, i.e. Ly has no zero eigenvalue.

Proof. (1) follows from Lemma 5.4 of [13], while (2) follows from Theorem 1.1 of [13].

We need the following two lemmas. The first one is asymptotic behavior of up:
Lemma 2.2.
un(zn + hy) = (V(@n) + )7 w(y/V(wn) + Ay) + h2o + o(h?),
where w is the unique positive solution of

Aw—w+w7’:0,w(0):ma§w(y)aw>0 n Rva_)O as ‘y‘ — +00,
yeR

o satisfies

1
Do = (V(wn) + N +put, " do — 5 > Viy(w0)yiyjtea, =0,

Y]
with
e, (v) = (V () + 27T w(y/Viwn) +2).
Proof. Note that for fixed s, w,(y) satisfies
Awg — (V(s) + A)ws +w? = 0.
Let ¢n(y) = up(xn + hy) — wy, (y). Then |¢y| — 0 uniformly and ¢, satisfies
Ay — (V(xn + hy) + Aoy + pw?, 'én + N(n) — (V(zh + hy) — V(2p))wg, =0,
where N(¢p) = (wgy, + ¢n)? — w, — pwl—"¢,. Note that V,(0) = 0 and
(V(zh + hy) — V(zp)) =(VV (2))hy + % > Vij(@n)hyiy; + O(R*|y )
Y]

1
=o(h*)lyl + 5 D Vis(ao) iy + okl ).

1,J

Here we have used Lemma 2.1(1).

(2.1)

(2.2)

(2.7)

Now we claim that |@,| < ch®. In fact, suppose not. We may assume that |¢p|rch™ — 0o .

Let qNSh = % Then ¢, satisfies

[ |Loo

Ao — (V + N+ pur 13y + o) (Von #1) = Vign)Jwey _
" [z | P | Lo

(2.8)



Note that by (2.7),

|V (zn + hy) = V(za)||ws,| _ R |y wg, |
|n|Loo = |énlpeo

< o(1)|yl*ws,| (2.9)

for |y| > 1. Let y;, be the global maximum point of on ie. ah(yh) = max |zh‘(y) = 1. Then by
Y h|Lo>®

(2.8)—(2.9) and the Maximum Principle, we have |y,| < C. Here we have used the fact that
V >0and A > 0. B B B
By usual elliptic regularity theory, we may take a subsequence ¢, — ¢,, where ¢, satisfies

Ady — (V(zo) + Ay + pwls'dy = 0, Vg, (0) = 0. (2.10)
Since V@,(0) = 0, we see that ¢, = Zjvzl cj 3;; ’;0, and hence ¢; = 0. Consequently ¢, = 0. This

may contradict to the fact that 1 = ah(yh) — ¢o(yo) for some y,. Therefore [¢p| < ch?. Now
we let ¢y = h%¢y + h?¢,. Then as for previous argument, we may have ¢, = o(1) and complete
the proof of Lemma 2.2. O

As in Proposition 3.6 of [15], one may get two lemmas as follows:
Lemma 2.3. For each s € RV, the map
Lyo = D6 — (V(s) + N+ pul ™o (2.11)

is invertible from K- to Ci-, where

ki=loem®)| [ 6% way=0.j=1,-- N} c H®)
RN 8y]
ci={ser®@)|[ o5 Mdy=0.i=1. N | c P®Y)
RN ayj
Lemma 2.4. The map
Lod i= Ad — (V{(wo) + N + pu' (2.12)
admits the following eigenvalues
A >0, Ao = ... :)‘N—I—l =0, )\N+2 <0,

where the kernel of Ly is spanned by ag;’;o, j=1,..,N.
Our main result in this section is the following
Theorem 2.5. The eigenvalue problem
Lppn = At (2.13)
admits eigenvalues
Aht > Ap2 > oo > A N4l > AnN+2 (2.14)

satisfying as h — 0, Ap1 = A1 > 0, Apvio = Avg2 <0 and

Moy vy, § =2, N +1, (2.15)

where ¢y is a negative constant and v;’s are eigenvalues of the Hessian matriz (V*V (zy)).
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Proof. We follow the proofs given in Section 5 of [33]. Assume that ||ts]|2 = 1. It is easy to
see that for eigenvalues A\, € [%)‘N-I-?a %/\1], as h | 0, Ay, — A; for some j, where );’s are given in
Lemma 2.4. Now we focus on the case A\p; — 0,i.e. A, — 0 as h | 0. Then the corresponding
eigenfunctions can be written as

N

bnlon +hy) =3 cf";;jw R (2.16)

=1

where [y 8;;" Yi-(y)dy =0, j =1,2,...,N. Hence by (2.13) and (2.16), ¢;- may satisfy

A — (V(zp + hy) + ik + pwr~ (y)vir + p(ul (2 + hy) — w2 (y)) it

ow, Owy (2.17)
+ E ] h— )\ h
F G 0y, " ( 8 wh

Using (2.1) and (2.7) of Lemma 2.2, we have

ow ow ow ow
Lyt =N V(zh + hy) + A +pul (zh + hy)
g =0 (G ) = o)+ 0T )
ow, _ Oowy
=(V (n) =V (an + hy)) 52 + p(uf™ (an + hy) = () 5
Yj Yj
=0(h?). (2.18)

From Lemma 2.3, the map L, = A — (V(z4) + A) + pw? " is invertible in the space K. . Thus
by (2.1), (2.7) and (2.18), (2.17) may give

[0n 1z < (B + Ml) D legl - (2.19)

J

Now we set z;(y) = a;)?fjh (y) for j =1,---, N. Then multiplying (2.17) by z; and integrating

over RV it is obvious that

/RN (th/)h 2 dy + Zc]/ (Lh ﬁwxh) zpdy = Ay (Z Cy/ zgzk> dy . (2.20)

Here we have used the fact that ¢; € K, . Using (2.18), (2.19), Ay = o(1) and integration by
parts, we obtain

/ (thbé') Zp = 1/),th2';€ = O(h2) y (221)
RN RN
and

[, @ea= [ @) =Vanrmzan [ @ - 2

N

I, + Iy, (2.22)



where
I = / (V(2n) — V(2 + hy)) 22
RN

h2
~o(1?) = 5 3 Vin(on) | v
lym

h2
=—5VY (l“h)/ YiZiYzk - (2.23)
2 -

Here we have used (2.7) to get (2.23). For I, we use Lemma 2.2:

I, =p(p — 1)A? /RN gbowgfzjzk + o(h?)

0%w
=— K2 / L ( ) + o(h?

0w

— _ p2 2
=1 [ (L) 5o ol

2

h? 0w
=~ m mWzy, 3 & h2
5 l%m Vim (1) /RN YW " By;0ur + o(h?)

h? 0 ,
—E %n: ‘/lm(xh) - 8—yj(ylymw:ch)zk + O(h )

h? h?
:E‘/}k(l‘h)/ YiYrzjzr — ?‘/}k(ﬂih)/ wﬁh + 0(h2) . (224)
RN RN

Here we have used the following identity:

0
/ — (YYmWg, )2k = / 5jlymwwhzk+/ (5jmylwwhzk+/ YiYm?Zj 2k
RN ayj RN RN RN
1 0 1 0
= §/RN 5jlyma—yk(w§h) + 5[@ 6jmyla—yk(w§h) +/RN YiYmzj 2k
1
= —(5jl5km+5jm5lk)—/ wgh—i-/ YYmZj 2k
2 RN RN

Combining (2.23) and (2.24), we have

h2
Litl=-= (Th) /RN w? +o(h?) (2.25)
Substituting (2.21) and (2.25) into (2.20), we may obtain % — covj for j =1,---, N, where
2
o= —% is a negative constant. The rest of the proof follows from a perturbation result,
RN %
similar to page 1473-1474 of [33]. We may omit the details here. O

From Theorem 2.5, we may deduce that



Theorem 2.6. uy is smooth in A. Moreover, let Ry, = %n  Then Ry satisfies

oA’
Lth — Up = 0, (226)
and
N
Rh = Z C?'Zj + R() + 0(1) y (2.27)
7j=1

where Ry = Zw,, = (V(zp) + A)7! (zﬁwmh + 1y~ Vwmh) and |c}| = O(1) for j=1,--- ,N.

Proof. Since uy, is unique and L, is invertible, it is easy to see that uy is smooth in A and R,
satisfies (2.26). Now we decompose R), as

N
Rh = ZC?ZJ' + R() +Eh,
7j=1
where [ox 2R, =0, j=1,..,N. Then R, satisfies

LiRy, — up + LRy + i C;LLth = 0. (2.28)
j=1
As for the proof of Theorem 2.5, we have
|Rulla2 < c (|c’-l\h2 + ||LaRo — up)|12) - (2.29)
From (2.4) and (2.5), it is easy to check Ry = Zw,, = (V(zs) + )™ (ﬁwzh +2y- Vwmh)
and L,, Ry = w,, by differentiating (2.5) with respect to A. Hence
LyRo — up = p(ul " (zh + hy) — wgzl(y))Ro — (V(zn + hy) — V(xn)) Ry + wey, — up -
Consequently, by Lemma 2.2 and (2.7), we obtain
| LnRo — un||> = O(h?), (2.30)
and then by (2.29),
[ Rullm= = (1 + |c})O(R?). (2.31)

To estimate c?’s, we may multiply (2.28) by z; and integrate over RY. Then

N
Zcf/ (Lnzj) 2 -|—/ (LnRo — up) 2 +/ (LnBp)er = 0. (2.32)
j=1 RV RY R

Hence by (2.22) and (2.25), (2.32) may imply

‘Ch‘ < 5 (‘/ (LnRo — up) 2k

Using integration by parts and (2.18), we have

/R . (Lth)Zk

) , (2.33)

/ (Lhﬁh)zk = / (Lhzk)ﬁh = ||Eh||L2 O(hz) . (234)
RN RN

Therefore by (2.30), (2.31), (2.33) and (2.34),we may obtain || = O(1) and complete the
proof. O
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3 Proof of Theorem 1.1

Let p=1+ %. By Theorem 2.5, L, has m + 1 positive eigenvalues and no zero eigenvalue,
where m is the number of negative eigenvalues of the matrix (V?V (z,)). Let us now compute
d ().

From (1.7), it is easy to get

1
0 =g / 2
RN

d”()\):/ %U}lZ/ Rhuh.
RN 8 RN

and hence

By direct computations,

1 1 1
Ly (p —Unt §hy . Vuh) = ihy < VV (zh + hy)up + (V(zh + hy) + X)up. (3.1)

Consequently,

(V) +3) [

R

; Rpup = /RN R,(V(zp) — V(xp + hy))up + /R Ry(V(zh + hy) + Nup,

N

— /RN Ru(V(zp) = V(zh + hy) — %hy - VV(xp + hy))up

1 1
+ /RN Rth (p — 1uh -+ §hy . V’U,h> . (32)

Using integration by parts and (2.26), we may obtain

1 1 1 1
/RN Rth (p — 1’U,h + Ehy . Vuh) :/RN (Lth) (p — 1uh + ihy . V’U,h)
1 1
=/ Up, ( up + =hy - Vuh)
RN pP— 1 2

:<ﬁ_g)/ﬂwui:0, (3:3)

11



since p=1+ 4. So by (2.7), (3.2), (3.3), Lemma 2.2 and Theorem 2.6, we have
1 1
d"(\) = / Ry (V(zp) — V(zp + hy) — ihy - VV (xp + hy))up,

V(.@h) + A RN
h2
= R —Vij(n)y:
V(l‘h) =+ A /RN h ; J $h)y y]

h? h 2 2
:V(T)'f‘)\ /IRN (;Cl 21 +R0+0 ) (Z V;J Th yzyg) (wmh +O(h )) +O(h )

h2 2 2
—_— W ; Vii(xh)/ Roy; wy, + o(h®)

Up 4+ o0 (hZ)

RN

h2 1 1
:‘?V651KV§:W*“X@N(;r?%w+¥fvw“>ﬁ”“+°m%

e ) S v [ v o)

h? )
=5 AV 2,2 2 _1a A
2(V (xg) + A)2 (20) /]RN y;w,, +o(h”) (becausep =1+ N)

(3.4)

If zo is a local minimum point, then m = 0 and n(Ly) = 1. Since the Hessian matrix
(V2V (z0)) is positive definite, then

d"(A\) >0, p(d (\) =1, (3.5)

which implies that uy, is orbitally unstable by the orbital stability criteria of [10]-[11].
If 2 is not a local minimum, then m > 1 and n(Ly) > 2. In this case, by the formula (3.4),

p(d (\) = $(1+ @gggg‘). By the instability criteria of [11], we conclude that uy is orbitally

) AV
unstable if m — %(1 + \Avggg\

) is even. This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Let (\/—ﬂuh, \/11Tﬁ“h> be a solution of (1.9). The linearized operator of (1.8) around (muh, mm)

is

¢\ _ [ h*Dé—(V(x)+ Mo+ 15 2¢+16uhw
M<w>‘(h%w—wm) Ny + Sty B | (4.

We first define a sequence of numbers 3; € (—1,0): By Lemma 4.2 of [30], the eigenvalue
problem

D) — (V (o) + N)p + puoytp = 0 (4.2)

admits eigenvalues

M1 = 1, Mo = ... = UN41 = 3, UNy2 > 3. (43)
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We then define ; by:
3 — I
L4 gy

The following lemma shows the nondegeneracy of L:

B = , j=1,2---. (4.4)
Lemma 4.1. L, has no zero eigenvalue if 8 # B, =1,...,....
Proof. Let L, (Z):(g) Then by an orthonormal transformation it is equivalent to

L6 =0, (4.5)
Loy = 0, (4.6)

where Lh,l = Lh, Lh,g = hQA — (V(wh + hy) + )\) 1+ﬁ

that qz = 0. It remains to consider the equation (4.6). As h — 0, the equation (4.6) may tend
to the limiting equation given by

3842, By Theorem 2.5, we may conclude

At — (V(z0) + N + %wgow 0. (4.7)

Since 3 # f;i.e. 2 8 5 £ u;, then by Lemma 4.2 of [30], (4.7) has only trivial solution. Therefore,
@b = 0 and we may complete the proof. O

The next lemma computes the Morse index of ( muh, \/11?%“’2) Here the Morse index is

defined to be the number of positive eigenvalues of Ly, which is just n(Ly).

Lemma4.2. If-1 <3< 0and B & {B2,---, 0B, - -}, then the Morse Index of(
s at least N +2. If 0 < 3 < 1, then the Morse Index of(
then the Morse Index of( 5 Un; muh) is one.

U i)

uh,m )zstwo If 6 > 1,

Proof. The eigenvalue problem L (f;): 5\(¢) can be decomposed to

P
Lh,la = 5‘57 (48)
Lyt = M. (4.9)

By Theorem 2.5, Lj; has only one positive eigenvalue. It remains to consider the spectrum
of Lyo. If B <0, then the eigenvalue problem

Ay — (V(zo) + Ny + %wm?ﬁ =\ (4.10)

has at least N + 1 positive eigenvalues. We may define a space of functions by

Owy

V = span {wmo,ﬁ'“, j=1,..,N, }
J
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Since —1 < 3 < 0, we have 3 m > 3. Hence

2 /6 2 42
/RN [v¢| + (V(zo) + \)¢® — 1+5“’w0¢ <0, Vo eV, (4.11)

Thus by the variational characterization of the eigenvalues to (4.10),we see that Ayy; > 0.
Moreover, by the perturbation argument, (4.9) has at least N + 1 positive eigenvalues.

So when (8 < 0, L, has at least N 4 2 positive eigenvalues.

When 0 < f<1,1< ‘;’ +g < 3, (4.10) has only one positive eigenvalue. So the Morse index
is two.

When § > 1, (4.10) has no positive eigenvalue. So the Morse index is one. O

Since L, is invertible, ( \/Tﬂuh’ \/Tﬂ h) is nondegenerate. Thus the equation

RAu— (V(z)+ A+ M)u+u?+ fuv? =0, inRY, (4.12)
RPAv— (V(z)+ A+ X)v+v3+ Bu?v =0, inRY, .
has a solution (up x; x., U ai,0,) Satisfying
(Wnrnes Vrsins) = [ ety ) + O ((IMe] + [Aal)h™) (4.13)
h,A1,A29 Vh,A1,A2 m h,m h 1 2 .
as ‘Al‘ + ‘)\2| << 1.
Let us define
Vi) + A+ M\ 1
d()\h)\Q) / 2 |VU/h >\1;>\2| + 2 f21,)\1,)\2 4/ ;Ll)\l,)\g
RN
h? Vi(z) 4+ A+ A 1
+/ 5 — | Vur el + 5 i)\l,Az 1/ Uﬁ,,\l,,b
RN RN
p
- 5 RN U’?L,)\l,/\zvi,)\l,Az' (414)
It is easy to see that
od _1 / 2 od _ / NS
8)\1 ) hyA1,A20 8)\% - BN hyA1, A2 O )
od _1 / 22 % _ / o O
Ny 2 E VAR )
82d / 3uh,,\1,>\2
= u e
ONONs  Jen T BN,
Now we may define functions as ®; = au;g% and U, = Ou%% .
! ()‘17’\2):(070) 2 (’\17’\2):(0’0)

Then by (4.12), (q’i) satisfies

Ly, < ii > = ( “héo’(’ ) . (4.15)



.. . OVh A1 A OUR A1,
Similarly, if we set ®; = —1=2 and U, = —xLb=2 , then by (4.12), we
Y LT =00 LT =00 y (412)

have
\I/Q @1, @2 = \Ifl. (416)

Let B =(, _}). Then (4.15) is equivalent to

O] Ly, (@1 + Ty) Uh,0,0
BL = ' = o . 4.17
" < oy ) ( Lh,2(q>1 - \Ill) Up,0,0 ( )
So
(I)]_ + \II]_ = Rh,l and @1 — \I/]_ = Rh,?; (418)
where
R L g d R L, ( ! ) (4.19)
= — an = —uy | . .
h,l \/m h h,2 h,Q m h
Now we compute the Hessian matrix
(VZd ‘ _ \/ﬁfRN U’h(pl \/ﬁfRN U/hlpl
(A1,22)=(0,0) \/Tf ’U,h\I/l \/TIRN ’U,h(I)l
1
B (V2d)| g = Vi e Wl i Je ( D )
)‘1=>‘2) ( ) WIRN Uth2 _W fRN ’U,th2 ]. _1
0 Vii8 fRN upRp,

By the results in Section 3, ﬁfu@f up Ry, = ﬁ fRN up Ry > 0. It is enough to compute
V148 [on unRpy = [pn uhL;é(uh). Note that as h — 0+,

/ un Ly 5(up) — Wao L, (way)
RN RN

where

Lyp = Db — (V(xo) + N)¢ + pw ¢, (4.20)
with p = 1+g
Let p(p) = [gn WaoL, (we,) and let ¢, be the unique solution of A¢, — (V(z0) + )¢, +

pWZ bu = W, 1.€. L@y = way for p# pij, 5 =1,2,---. Then 3(% satisfies

Ly, <%> - _wfcoﬁbua Le. % = —L;l(wiogbu).
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Hence

, 0 i
pu = [ Gt == [ a6
- [ Lwa)w,6)

:_/Nw20¢i<0 for /’l’?é/'l’]>]:152a
R

i.e.

Due to (4.3), p is smooth on (—o00,1) U (1,3) U (3,00) \ {g; : j =N +2,N+3,---}. On the
other hand, as y — 3,

_ 1 1
¢u - LO lwwo = szo + 53/ : Vwa?oa

1 1
p(p) — g Wag <§wz0 + V- sz()) = 0.

Here we have used the fact that N = 2 and p = 3. Thus for 1 < p < 3, p() > 0. This implies
that for 0 < # <1, [, upRp2 > 0 and thus (V2d(0,0)) has two positive eigenvalues.

Now we consider p € (—o0,1) i.e. 3 > 1. By the standard maximal principle, ¢, < 0 in R?
for u < 0. Consequently, p(u) < 0 for 4 < 0. Hence by (4.21), p(u) < 0 for p € (—o0,1) i.e.
B > 1. This implies that [, upRp2 < 0 and thus (V2d(0,0)) has only one positive eigenvalue.

In conclusion, we see that the matrix (V2d(0,0)) has two positive eigenvalues when 0 <
B < 1 and one positive eigenvalue when 3 > 1. That isp =2 when 0 < f <1l and p =1
when 3 > 1. By Lemma 4.1 and 4.2, we also deduce that n(L,) = 2 when 0 < # < 1 and

n(Ly) = 1 when § > 1. Hence for § > 0,3 # 1, we have n(L,) = p. Therefore, we conclude
that (un0,0,Un00) = (ﬁuh, ﬁvﬁ is orbitally stable if 0 < 3, 3 # 1. This completes the
proof of Theorem 1.2.
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