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ABSTRACT. For degree±1 harmonic maps from R2 (or S2) to S2, Bernand-Mantel, Muratov
and Simon [2] recently establish a uniformly quantitative stability estimate. Namely, for any
map u : R2 → S2 with degree±1, the discrepancy of its Dirichlet energy and 4π can linearly
control the Ḣ1-difference of u from the set of degree ±1 harmonic maps. Whether a similar
estimate holds for harmonic maps with higher degree is unknown. In this paper, we prove
that a similar quantitative stability result for higher degree is true only in local sense. Namely,
given a harmonic map, a similar estimate holds if u is already sufficiently near to it (modulo
Möbius transform) and the bound in general depends on the given harmonic map. More
importantly, we investigate an example of degree 2 case thoroughly, which shows that it fails
to have a uniformly quantitative estimate like the degree ±1 case. This phenomenon show
the striking difference of degree±1 ones and higher degree ones. Finally, we also conjecture
a new uniformly quantitative stability estimate based on our computation.

1. INTRODUCTION

1.1. Motivation and main results. The analysis of critical points of conformally invariant
Lagrangians has drawn much attention since 1950, due to their important applications in
physics and geometry. One of the prominent examples is harmonic maps u : R2 → S2,
which are critical points of the following Dirichlet energy

E(u) =
1

2

ˆ
R2

|∇u|2dx. (1.1)

It is well-known that the critical points u will satisfy

∆u+ |∇u|2u = 0, in R2. (1.2)

In the special case of mapping from R2 to S2, all the harmonic maps have been classified.
For instance, see [9, 11.6] and [15, Section 2.2]. To state the result, we introduce

Ad = {(p, q) : p/q is an irreducible rational function of z,max{deg p, deg q} = d} (1.3)

for any d ∈ Z≥1. Here z is the complex variable in C = R2. When d ∈ Z≤−1, we also
introduce the notation Ad = {(p̄, q̄) : (p, q) ∈ A|d|}. Throughout this paper, we assume d is
an integer with |d| ≥ 1.
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Proposition 1.1. A map u from R2(= C) to S2 is harmonic if and only if u is holomorphic
or anti-holomorphic. More precisely, if deg(u) = d then u = S(p/q) where (p, q) ∈ Ad.
Here S is the stereographic projection from C→ S2 \ {N} (see (2.5)).

For any pair (p, q) ∈ Ad, we can normalize p to be a monic polynomial such that p/q stays
the same. We call such pair (p, q) to be canonical. Thus we define

Amd = {(p, q) ∈ Ad : p is monic}. (1.4)

Then for any harmonic map Φ : R2 → S2 it can be represented by a unique canonical pair
(p, q) ∈ Amd .

It is also known that harmonic maps from R2 to S2 achieve minimal Dirichlet energy
within its homotopy class by the work of Lemaire [17] and Wood [23] (also see [9, (11.5)]).

Lemma 1.2. Suppose that u : R2 → S2 with E(u) < ∞. Then E(u) ≥ 4π| deg(u)|. The
equality holds if and only if u is harmonic.

A natural question is that whether the discrepancy E(u) − 4π| deg(u)| can quantitatively
control the difference of u from the harmonic maps. Such type of question has been raised
for many other topics. For instance, Brezis and Lieb [4] ask a similar question to the clas-
sical Sobolev inequality on Rn. Later Bianchi and Egnell [3] obtain a quantitative stability
estimate in the spirit of (1.5). (See also recent work of Figalli and Zhang [12].) Fusco et al.
[13] prove a sharp quantitative stability about isoperimetric inequality.

Recently Bernand-Mantel, Muratov, and Simon [2] prove a quantitative stability for degree
±1 harmonic maps from R2 to S2 as reformulated in the following. The proof in [2] has been
simplified by Hirsch and Zemas [16] and Topping [22].

Proposition 1.3. There exists a universal constant C such that for every u : R2 → S2 with
E(u) <∞ and deg(u) = 1, there exists a, b, c, d ∈ C with ad− bc 6= 0 such thatˆ

R2

∣∣∣∣∇u−∇S (az + b

cz + d

)∣∣∣∣2 ≤ C(E(u)− 4π). (1.5)

If deg(u) = −1, then the above statement holds for z̄.

The above theorem leaves us an intriguing question for harmonic maps with higher degree.
We have addressed a similar question for half-harmonic maps in [7]. There we have shown
that a similar quantitative stability for higher degree ones is only true in the local sense. In
this paper, we shall prove that the similar phenomenon happens here. More precisely, given
a harmonic map (or a compact set of harmonic maps), there is a local stability result near to
it. The bound in general will depend on the given harmonic map (or the compact set).

To that end, let us introduce some notations. For any two complex polynomials p, p̃ on
z (or z̄), we define |p − p̃|∞ to be the maximum of all the modulus of each coefficient of
p − p̃. Thus Amd becomes a metric space equipped with the distance | · |∞. When we call
Ω is a compact set of degree d harmonic maps from R2 to S2, it actually means there exists
a compact set of Amd , say AmΩ , such that Ω = S(AmΩ ). Here compact is in the sense of
| · |∞-topology. Namely, for any sequence of (pk, qk) ∈ AmΩ , it has a subsequence (pk′ , qk′)
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and some (p∗, q∗) ∈ AmΩ such that |pk′ − p∗|∞ + |qk′ − q|∞ → 0 as k′ → ∞. For any map
u : R2 → S2, we define the Ḣ1-distance in the following way.

distḢ1(u,Ω) = inf
Φ∈Ω

(ˆ
R2

|∇u−∇Φ|2
) 1

2

. (1.6)

Theorem 1.4 (local stability). Suppose Ω is a compact set of degree d harmonic maps. There
exist two constants η = η(Ω) and C = C(Ω) such that if u : R2 → S2 with distḢ1(u,Ω ◦
F ) < η for some Möbius transformation F : R2 → R2, then there exists a harmonic map Φ
which makes the following holdˆ

R2

|∇u−∇Φ|2 ≤ C(E(u)− 4π| deg(u)|). (1.7)

Moreover, Φ ◦ F−1 is near to Ω in the sense of | · |∞-topology.

For any harmonic map, Proposition 1.1 says that there is a family of harmonic ones near to
it. We take Ω to be a compact neighborhood of a given harmonic map, then the above theorem
indicates that there is a local version of stability. Similar to degree ±1 harmonic maps, one
attempts to remove the dependence on Ω and get a uniformly quantitative stability estimate.
However, the following theorem says that this is not true.

Theorem 1.5 (non-uniform stability). For any large constantM > 0, we can find u : R2 →
S2 with deg(u) = 2 such that for any (p, q) ∈ A2ˆ

R2

|∇(u− S(p/q))|2 > M (E(u)− 8π) . (1.8)

The above theorem indicates that there are some fundamental differences between the
case of degree ±1 and higher degree. To name one, for degree 1 (resp. −1) harmonic maps,
one can compose it with a certain Möbius transformation of R2 such that it becomes the
stereographic projection S : R2 → S2 (resp. S̄, i.e. the conjugate of S). Since both sides
of (1.5) is invariant under Möbius transformations, essentially (1.5) is a quantitative stability
near S (resp. S̄). However, for higher degree ones, one can not transform a harmonic map
to an arbitrary another one by Möbius transformations.

Of course, one wishes to have a uniformly quantitative stability like (1.5) for higher degree
harmonic maps. Since Theorem 1.5 says that this is not possible with the naive extension,
then one probably needs to minus more things in the square on the left hand side of (1.8), or
strengthen the right hand side to some nonlinear expression of E(u)− 4π| deg(u)|. Actually
we make the following conjecture in the higher degree case:

Conjecture. Let |d| ≥ 2. There exists a universal constant C = C(d) such that for every
u : R2 → S2 with E(u) <∞ and deg(u) = d, there exists (p, q) ∈ Ad such thatˆ

R2

|∇(u− S(p/q))|2 ≤ C (E(u)− 4π|d|)
(
1 +

∣∣ log(E(u)− 4π|d|)
∣∣) . (1.9)

This conjecture is based on the explicit computation of the example we construct in the
proof of Theorem 1.5. In that example, one gets r−4 on the left hand side of (1.8) and
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r−4| log r|−1 on its right hand side for some r � 1 (see (4.41) and (4.42)). Plugging these
two facts to (1.9), they exactly make two sides comparable.

To mention a few related works, the sharp quantitative stability of the Euler-Lagrange
equation of Sobolev inequality on Rn also varies according to the number of bubbles and the
dimension n, readers can consult [6, 11, 8]. In a different direction from ours, Topping [21]
uses the torsion of an almost-harmonic map u to control its E(u) − 4π| deg(u)|, which can
be considered as another notion of quantitative stability.

1.2. Comment on proofs. The locally quantitative stability theorem is proved by using the
non-degeneracy result of the harmonic maps (see [14, 5]). The non-degeneracy (also called
integrability) of the linearized operator implies that it has a spectral gap, which can be used
to prove a local stability near one harmonic map. This is also how [2] proves (1.5) for
deg(u) = ±1. We generalize the approach of [2] to higher degree case.

The proof of Theorem 1.5 follows the general framework as the one in our work of half-
harmonic maps [7] with new essential difficulties. First, the Jacobian of the kernels is uni-
formly non-degenerate in [7], while it degenerates as the parameter goes to infinity in the
case of harmonic maps (cf. (4.9)). One needs to expand up to the third order in the com-
putation to observe this fact, which makes the process substantially more involved. Second,
the trick of choosing a vector field corresponds to the rotation in [7] does not work here,
which is the heart of the construction. Fortunately, we leverage the degenerate tendency of
the Jacobian to find a new one (cf. (4.17)). We have not gotten a satisfied explanation about
why such a vector field works.

1.3. Structure of the paper. In the section 2, we give some preliminary of harmonic maps
from R2 to S2. In the section 3, we prove the local stability result. In the section 4, we
construct an example such that (1.8) holds, thus Theorem 1.5 is proved. In the section 5, we
provide some computations which are needed in the previous section.

2. PRELIMINARY

Topological degree of a C1 map u from R2 to S2 can be defined by the de Rham approach

deg(u) =
1

4π

ˆ
R2

u · (uy × ux) =
1

4π

ˆ
R2

ux · (u× uy) . (2.1)

It is well-known that (2.1) is equivalent to the Brouwer’s degree for all C1 maps. See, for
instance, [19, Chapter III]. It is easy to know that the degree is continuous in Ḣ1(R2;S2)
topology. That is, fix any u ∈ Ḣ1(R2;S2), there exists η1(u) such that if v ∈ Ḣ1(R2;S2)
with

‖u− v‖Ḣ1 ≤ η1(u), (2.2)

then deg(v) = deg(u). Moreover, η1(u) can be made uniform to u if u ∈ Ω which is a
compact set of degree d harmonic maps. In this case, one can replace η1(u) by η1(Ω).

As discussed in the introduction, the following lemma is already known. For reader’s
convenience, we provide a direct proof here.
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Lemma 2.1. Suppose that u : R2 → S2 with E(u) < ∞. Then E(u) ≥ 4π| deg(u)|. The
equality holds if and only if u is harmonic.

Proof. By completing square it is easy to establish the following identity

|∇u|2 ± 2u · (ux × uy) = |ux ∓ u× uy|2. (2.3)

Integrating on both sides and noticing (2.1), one obtains E(u) ≥ 4π| deg(u)|. Since Brouwer’s
degree is invariant by homotopy deformations, we find that u is a minimizer in its degree
class. If E(u) = 4π| deg(u)| then u will be a critical point of E(u), thus it is harmonic.

Conversely, suppose that u is a harmonic map from R2 to S2. Recall the Hopf differential

H(z) = uy · uy − ux · ux + 2iux · uy. (2.4)

It is well-known that H is a holomorphic or anti-holomorphic function on C (one can use
(1.2) to verify this directly). Since E(u) < ∞, then H(z) ∈ L1(C). It is easy to show that
H(z) ≡ 0. Thus ux · uy = 0 and |ux| = |uy|. Since |u| = 1, then u ⊥ ux and u ⊥ uy.
Combining these facts, we must have ux = u × uy or ux = −u × uy. In any case, it holds
that E(u) = 4π| deg(u)|. �

Let z = (x, y) ∈ R2 = C and s = (s1, s2, s3) ∈ S2. Define the stereographic projection

S : C→ S2 \ {N} by s1 =
2x

1 + |z|2
, s2 =

2y

1 + |z|2
and s3 =

|z|2 − 1

1 + |z|2
. (2.5)

Alternatively, in complex variable form,

S =
1

1 + |z|2
(2z, |z|2 − 1). (2.6)

Suppose u = S(ψ) where ψ is a meromorphic function on C. Then we have

∂u =
1

(1 + |ψ|2)2

(
2(1 + |ψ|2)∂ψ − 2ψ∂|ψ|2, 2∂|ψ|2

)
. (2.7)

Here ∂ could be ∂x, ∂y or with respect to a real parameter which ψ depends on. It is easy to
see that

|∂u|2 =
4|∂ψ|2

(1 + |ψ|2)2
. (2.8)

In particular, for a harmonic map, i.e. ψ = p/q where (p, q) ∈ Ad, one has

|∇S(p/q)|2 =
4(|∂x(p/q)|2 + |∂y(p/q)|2)

(1 + |p/q|2)2
=

4|∂xpq − p∂xq|2 + 4|∂ypq − p∂yq|2

(|p|2 + |q|2)2
. (2.9)

Since p, q satisfies (1.3), there exists a constant C(p, q) such that

|∇S(p/q)|2 ≤ C(p, q)(1 + |z|)−4, ∀ z ∈ C. (2.10)

Moreover, if (p, q) belongs to a compact setAΩ ofAd, then C(p, q) can be replaced by some
uniform constant C(Ω).

The linear equation of (1.2) is

L[u](v) := ∆v + 2(∇u : ∇v)u+ |∇u|2v (2.11)
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where

∇u : ∇v =
3∑
i=1

∇ui · ∇vi.

We shall use this notation throughout this paper.

Take any harmonic map S(p/q) where (p, q) ∈ Ad. Apparently, changing the coefficients
of p or q continuously yields a family of harmonic maps. Therefore it generates kernel maps
of the linearized operator L[S(p/q)]. For instance, using (2.7) and taking derivative with
respect to the real (or imaginary) part of a coefficient of p or q will produce a kernel map of
L[S(p/q)]. Conversely, this is also true. It is called the non-degeneracy (or integrability) of
harmonic maps.

Proposition 2.2 ([14, 5]). Suppose Φ : R2 → S2 is a harmonic map of degree d. Then
all bounded maps in the kerL[Φ] are generated by harmonic maps near Φ. In particular,
dimR kerL[Φ] = 4|d|+ 2.

Remark 2.3. Furthermore, if Φ = S(p/q), using (2.7), one can see that each kernel map
K ∈ kerL[Φ] is smooth and depends on p, q smoothly. In addition, (2.8) implies that

|∇jK|(z) ≤ CK,j|z|−|d|−j. (2.12)

We have the expansion of Dirichlet energy in the following. One can compare it with the
second variation of Dirichlet energy in [18, page 7] in the smooth setting.

Lemma 2.4. Suppose that Φ : R2 → S2 is a harmonic map. Assume v ∈ Ḣ1(R2;R3) ∩
L∞(R2;R3) with v · Φ = 0. Then for ε > 0 small

E(
√

1− ε2|v|2Φ + εv) = E(Φ) +
1

2
ε2

ˆ
R2

|∇v|2 − |∇Φ|2|v|2 +Ov,Φ(ε3) (2.13)

where |Ov,Φ(ε3)| ≤ C(|v|L∞ , |v|Ḣ1 ,Φ)ε3 as ε→ 0.

Proof. We shall choose ε small so that ε|v| < 1
2
. Denote f =

√
1− ε2|v|2. Then

∂α(εvj + fΦj) = ε∂αv
j + f∂αΦj + ∂αfΦj

for α ∈ {x, y} and j ∈ {1, 2, 3}. Thus

|∇(εv + fΦ)|2 = ε2|∇v|2 + f 2|∇Φ|2 + |∇f |2 + 2εf∇v : ∇Φ + 2ε∂αv
j∂αfΦj. (2.14)

Here we have used Einstein summation convention and ∂αΦjΦj = 0 for α ∈ {x, y}. We
shall integrate the above equation and estimate them one by one. First, note thatˆ

R2

f 2|∇Φ|2 =

ˆ
R2

|∇Φ|2 − ε2

ˆ
R2

|∇Φ|2|v|2. (2.15)

Second, ˆ
R2

|∇f |2 ≤ ε4

ˆ
R2

|v|2|∇v|2

1− ε2|v|2
≤ C(|v|L∞ , |v|Ḣ1)ε4. (2.16)
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Third, since (2.10), we can integrate by parts to getˆ
R2

f∇v : ∇Φ = −
ˆ
R2

v : ∇(f∇Φ) = −
ˆ
R2

fv ·∆Φ + vj∂αf∂
αΦj. (2.17)

The first term on the right hand side is zero because ∆Φ = −|∇Φ|2Φ. For the second one
we apply Hölder’s inequality to get∣∣∣∣ˆ

R2

vj∂αf∂
αΦj

∣∣∣∣ ≤ (ˆ
R2

|∇f |2
) 1

2
(ˆ

R2

|∇Φ|2
) 1

2

|v|L∞ ≤ C(|v|L∞)ε2. (2.18)

Fourth, since ∂αvjΦj = −∂αΦjv
j , we have∣∣∣∣ˆ

R2

∂αv
j∂αfΦj

∣∣∣∣ =

∣∣∣∣ˆ
R2

vj∂αf∂αΦj

∣∣∣∣ ≤ C(|v|L∞)ε2. (2.19)

Combining the above four points, we obtain the conclusion. �

For any u with deg(u) = ±1, Bernand-Mantel et al. [2, Lemma 4.3] prove that the Ḣ1-
distance of u to the set of degree ±1 harmonic maps can be achieved. For higher degree, we
show that this is also true when u is already near to them.

Lemma 2.5. Suppose Ω is a compact set of degree d harmonic maps. There exists a constant
η2(Ω) such that if u : R2 → S2 with distḢ1(u,Ω) < η2(Ω), then the following infimum can
be achieved by some harmonic map Φ ∈ S(Ad) satisfying

inf
∀(p,q)∈Ad

ˆ
R2

|∇u−∇S(p/q)|2 =

ˆ
R2

|∇u−∇Φ|2. (2.20)

Proof. Since the degree is continuous on Ḣ1-topology, we choose η2(Ω) < η1(Ω) so that
deg(u) = d.

Taking a minimizing sequence Φk such that ‖u−S(pk/qk)‖Ḣ1 converges to the infimum.
Either the coefficients of pk, qk are all uniformly bounded, or there exists a subsequence
of them that goes to infinity as k → ∞. In the former case, the infimum is apparently
achieved by Lebesgue’s dominating convergence theorem. In the latter case, since there are
only finitely many coefficients of each pk and qk, there exists a subsequence that one of the
coefficients of pk and qk grows the fastest. Dividing both pk and qk by such a coefficient, we
have three possible consequences, namely there exists a subsequence (which we still denote
as pk, qk) such that |pk/qk|(z)→∞ a.e. C as k →∞, or a subsequence |pk/qk|(z)→ 0 a.e.
as k → ∞, or a subsequence and a rational function p∗/q∗ such that pk/qk → p∗/q∗ locally
uniformly on z ∈ R2 \ {zeros of q∗}. In the first case, S(pk/qk)→ (0, 0, 1) for almost every
z. For any v ∈ C∞c (R2;R3), we haveˆ

R2

∇S(pk/qk) : ∇v = −
ˆ
R2

S(pk/qk) : ∆v → 0, as k →∞. (2.21)

Note that ‖∇S(pk/qk)‖2
L2(R2;R3) = 8π|d| is uniformly bounded. Thus it has a subsequence

weakly converges to 0 in L2(R2;R3). However, this leads to

‖∇u‖L2 = lim inf
k→∞

‖∇(u− S(pk/qk))‖L2 < η2(Ω) (2.22)
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which contradicts to the fact that E(u) ≥ 4π|d| ≥ 4π if η2(Ω) is chosen small enough.

In the second case, one can prove ∇S(pk/qk) → 0 weakly in L2(R2;R3) similar to the
first case. Thus we get contradiction again.

In the third case, we must have 0 ≤ | deg(S(p∗/q∗))| ≤ |d| (see [5, Prop. 2] for how to get
the degree from deg p and deg q). Clearly∇S(pk/qk)→ ∇S(p∗/q∗) weakly in L2(R2;R3).

If | deg(S(p∗/q∗))| < |d|, by the lower semi-continuity of weak convergence,ˆ
R2

|∇u−∇S(p∗/q∗)|2 ≤ lim inf
k→∞

ˆ
R2

|∇u−∇S(pk/qk)|2 < η2
2(Ω). (2.23)

However,

‖u− S(p∗/q∗)‖Ḣ1(R2) ≥‖u‖Ḣ1(R2) − ‖S(p∗/q∗)‖Ḣ1(R2)

=
√

8π|d| −
√

8π| deg(S(p∗/q∗))| ≥
√

8π|d| −
√

8π(|d| − 1),

because | deg(u)| = |d| > | deg(S(p∗/q∗))|. One clearly has a contradiction when η2(Ω) is
small enough.

If | deg(S(p∗/q∗))| = |d|, then ‖∇S(pk/qk)‖L2 =
√

8π|d| = ‖∇S(p∗/q∗)‖L2 for any k ≥
1. Therefore∇S(pk/qk)→ ∇S(p∗/q∗) strongly in L2(R2;R3). Then S(p∗/q∗) achieves the
infimum. �

Lemma 2.6. Suppose Ω is a compact set of degree d harmonic maps. For any ε > 0, there
exists η3(Ω, ε) such that if Φ̃ is a harmonic map with canonical pair (p̃, q̃) ∈ Amd satisfies
‖Φ− Φ̃‖Ḣ1 ≤ η3(Φ, ε) for some Φ ∈ Ω with canonical pair (p, q) ∈ Amd , then

|p̃− p|∞ + |q̃ − q|∞ < ε. (2.24)

Proof. We just prove the case when Ω consists of one harmonic map Φ. The general case
follows from minor modification.

Argue by contradiction. Suppose there exists ε0 such that for any k ≥ 1 there exists
Φk = S(pk/qk) with canonical (pk, qk) ∈ Amd satisfying |pk − p|∞ + |qk − q|∞ ≥ ε0 and
‖Φk − Φ‖Ḣ1 < 1/k.

Since pk, qk are all complex polynomials, as we did for the previous lemma, either all the
coefficients of pk, qk are all uniformly bounded, or at least one of them goes to infinity as
k → ∞. In the former case, there must exist a subsequence (pk′ , qk′) and a canonical pair
(p∗, q∗) ∈ Ad such that |pk′−p∗|∞+|qk′−q∗|∞ → 0. Letting k′ →∞ in ‖Φk′−Φ‖Ḣ1 < 1/k′,
one obtains Φ∗ = Φ and consequently p∗ = p and q∗ = q. This is a contradiction. In the
latter case, we have three possible consequences, namely there exists a subsequence (which
we still denote pk, qk) such that |pk/qk| → ∞ a.e. as k →∞, or a subsequence |pk/qk| → 0
a.e. as k → ∞, or a subsequence and a rational function p∗/q∗ such that pk/qk → p∗/q∗
locally uniformly on R2 \ {zeros of q∗}. Moreover, max{deg p∗, deg q∗} < |d|.

In the first two cases, we have ∇Φk → 0 weakly in L2(R2;R3). Then using the trick in
(2.22), we also obtain a contradiction.

In the third case, we must have | deg(S(p∗/q∗))| < |d|. It can be excluded as before by
making η3 small enough. �
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Roughly speaking, the following corollary shows that the minimizers of (2.20) should be
near to Ω.

Corollary 2.7. Suppose Ω is a compact set of degree d harmonic maps. Then for any ε > 0.
There exists a constant η4(Ω, ε) such that if u : R2 → S2 with distḢ1(u,Ω) < η4(Ω, ε), then
any minimizer Φ̃ of (2.20) has canonical representation (p̃, q̃) ∈ Amd satisfying

|p̃− p|∞ + |q̃ − q|∞ < ε

for some canonical pair (p, q) ∈ Amd such that S(p/q) ∈ Ω.

Proof. Given any ε > 0, we take η4(Ω, ε) = min{η2(Ω), 1
3
η3(Φ, ε)}. It follows from Lemma

2.5 that there exist a minimizer of (2.20). For any minimizer Φ̃ of the infimum, we have

‖Φ̃− Φ‖Ḣ1 ≤ ‖Φ̃− u‖Ḣ1 + ‖u− Φ‖Ḣ1 ≤ 2η4 < η3. (2.25)

Thus we can apply Lemma 2.6 to get the conclusion. �

3. LOCAL STABILITY

In this section, we shall prove the local stability result, i.e. Theorem 1.4. Throughout
this section, we will assume Ω is a compact set of degree d harmonic maps from R2 to S2.
Moreover, Φ always denotes a harmonic map. Define

WΦ(R2) = {v ∈ L1
loc(R2;R3) :

ˆ
R2

|v|2|∇Φ|2 <∞, v · Φ = 0},

HΦ(R2) = {v ∈ H1
loc(R2;R3) :

ˆ
R2

|∇v|2 + |∇Φ|2|v|2 <∞, v · Φ = 0},

ḢΦ(R2) = {v ∈ H1
loc(R2;R3) :

ˆ
R2

|∇v|2 <∞, v · Φ = 0}.

ThenWΦ is a Hilbert space with inner product (v1, v2)WΦ
=
´
R2 v1 ·v2|∇Φ|2. HΦ is a Hilbert

space with inner product (v1, v2)HΦ
=
´
R2 ∇v1 : ∇v2 + |∇Φ|2v1 · v2. Similar to Proposition

A.1 and A.2 in [11], we can prove the following two lemmas.

Lemma 3.1. There exists a constant C(Φ) such that

‖v‖WΦ(R2) ≤ C(Φ)‖v‖HΦ(R2).

ConsequentlyHΦ(R2) ↪→WΦ(R2). Moreover, this embedding is compact. If Φ belongs to a
compact set Ω, then C(Φ) can be replaced by C(Ω).

Proof. Fix R > 0 and denote BR = B(0, R) the ball of radius R centered at the origin. It is
easy to see ḢΦ →WΦ(BR) is a compact embedding.

Fix any bounded sequence {fk} ⊂ ḢΦ(R2). Using a diagonal argument, we can extract
a subsequence and a function f ∈ ḢΦ(R2) such that for any R > 0 it holds fk → f in
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WΦ(BR)-norm. We want to prove that fk → f in WΦ(R2)-norm. By Hölder and Sobolev
inequalities, we get

lim sup
k→∞

‖fk − f‖2
WΦ

= lim sup
k→∞

‖fk − f‖2
WΦ(BR) + lim sup

k→∞
‖fk − f‖2

WΦ(Bc
R)

≤ lim sup
k→∞

‖fk − f‖1/2

L4(R2)‖∇Φ‖1/2

L4(Bc
R)

≤‖∇fk −∇f‖1/2

L2(R2)‖∇Φ‖1/2

L4(Bc
R) → 0 as R→∞.

(3.1)

Here we have used (2.10) to get
´
R2 |∇Φ|4 <∞. Therefore the embedding is compact. The

rest conclusion is easy to see. �

Lemma 3.2 (Poincaré type inequality). Fix any harmonic map Φ, 1 ≤ p <∞, there exists a
constantCΦ,p > 0 such that for any v ∈ Ḣ1(R2;R3) = {v ∈ H1

loc(R2;R3) :
´
R2 |∇v|2 <∞}

with
´
R2 v|∇Φ|2 = 0 one has(ˆ

R2

|v|p|∇Φ|2
) 1

p

≤ CΦ,p

(ˆ
R2

|∇v|2
) 1

2

. (3.2)

Moreover, if Φ ∈ Ω a compact set of harmonic maps, then CΦ,p can be replaced by some
uniform constant CΩ,p.

Proof. We can repeat the proof of Lemma 3.1 to see that Ḣ1(R2;R3) is compactly embedded
in {v ∈ H1

loc(R2;R3) :
´
R2 |v|p|∇Φ|2 < ∞}. Our conclusion follows from a standard

contradiction argument. For instance, one can see [10, section 5.8.1] and the argument in the
following Lemma 3.4. �

Lemma 3.3. The inverse operator (|∇Φ|−2∆)−1 is a well-defined and continuous mapping
fromWΦ(R2) intoHΦ(R2).

Proof. Let g ∈ HΦ(R2) and f ∈ WΦ(R2). Applying Hölder and Sobolev inequalities, we
obtain,

〈f, g〉WΦ
=

ˆ
R2

f · g|∇Φ|2 ≤
(ˆ

R2

f 2|∇Φ|2
)1/2(ˆ

R2

|∇Φ|4
)1/4(ˆ

R2

g4

)1/4

≤ C‖f‖WΦ
‖∇g‖L2(R2).

(3.3)

As a consequence,

f 7→ 〈f, ·〉WΦ
∈ (HΦ)′

is continuous and injective. By Riesz theorem, there exists a unique continuous linear map
T :WΦ(R2)→ HΦ(R2) such that for any f ∈ WΦ and g ∈ HΦˆ

R2

f · g|∇Φ|2 =

ˆ
R2

∇T (f) : ∇g = −
ˆ
R2

∆T (f) · g. (3.4)

Thus −∆T (f) = f |∇Φ|2, which implies (|∇Φ|−2∆)−1 = −T satisfies the conclusion. �
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Lemma 3.4. Suppose Ω is a compact set of degree d harmonic maps. There exists µ =
µ(Ω) > 1 such that for any Φ ∈ Ωˆ

R2

|∇v|2 ≥ µ

ˆ
R2

|∇Φ|2|v|2, v ∈ (kerL[Φ])⊥ ⊂ HΦ. (3.5)

Here the orthogonality is with respect to (·, ·)HΦ
.

Proof. Lemma 2.1 says that each harmonic map achieves minimal Dirichlet energy in its
homotopy class, therefore the second variation of E(u) is non-negative. It follows from
(2.13) that a density argument thatˆ

R2

|∇v|2 − |∇Φ|2|v|2 ≥ 0, v ∈ HΦ(R2). (3.6)

The equality holds if and only if v ∈ kerL[Φ]. Thus

inf
v∈HΦ

´
R2 |∇v|2´

R2 |∇Φ|2|v|2
= 1. (3.7)

Using Lemma 3.1 and Lemma 3.3, (|∇Φ|−2∆)−1 : WΦ → WΦ is a compact self-adjoint
operator, thus its spectrum is discrete. By the min-max characterization of eigenvalues, there
exists µ2(Φ) > 1 such thatˆ

R2

|∇v|2 ≥ µ2(Φ)

ˆ
R2

|∇Φ|2|v|2, v ∈ (kerL[Φ])⊥. (3.8)

Here the orthogonality is with respect to (·, ·)HΦ
.

Next, we want to show that ∃µ > 1 such that µ2(Φ) > µ for all Φ ∈ Ω. Suppose not, then
there exists a sequence of Φk = S(pk/qk) ∈ Ω, vk ∈ (kerL[Φk])

⊥ such thatˆ
R2

|∇vk|2 ≤ (1 +
1

k
)

ˆ
R2

|∇Φk|2|vk|2. (3.9)

Since Ω is a compact set, going to a subsequence if necessary, we can assume pk → p∗
and qk → q∗. After rescaling, we assume that ‖vk‖HΦk

= 1 and Φ∗ = S(p∗/q∗). Then
(3.9) implies vk ∈ Ḣ1(R2) for any k ≥ 1. Similar to Lemma 3.1, Ḣ1(R2) is compactly
embedded inW = {v ∈ L1

loc(R2;R3) :
´
R2(1 + |z|)−4|v|2 < ∞}. Therefore vk all belong

to the weighted space H defined in (4.10). Then there exists v∗ ∈ H such that, going to a
subsequence if necessary, vk → v∗ weakly inH and strongly inW . Recall that (2.9) implies
|∇Φ| ≤ C(1 + |z|)−2 uniformly for all Φ ∈ Ω. Then v∗ ∈ HΦ∗ . Since pk → p∗ and qk → q∗
then∇Φk → ∇Φ∗ a.e. Therefore by dominated convergence theorem,ˆ

R2

|∇Φ∗|2|v∗|2 = lim
k→∞

ˆ
R2

|∇Φk|2|vk|2. (3.10)

Taking limit in (3.9), we obtain from the above fact thatˆ
R2

|∇v∗|2 =

ˆ
R2

|∇Φ∗|2|v∗|2 =
1

2
. (3.11)

Thus v∗ ∈ kerL[Φ∗] and v∗ 6= 0. On the other hand, it follows from the non-degeneracy of
L[Φk] (see Lemma 2.2) that kerL[Φk] consists of smooth vector fields obtained from taking
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derivative of coefficients of pk and qk. Moreover, Remark 2.3 concludes that these vector
fields depend smoothly on pk, qk and thus converges to a vector field in kerL[Φ∗] as k →∞.
Since vk ∈ (kerL[Φk])

⊥ meansˆ
R2

∇vk : ∇Kk + |∇Φk|2vk ·Kk = 0, Kk ∈ kerL[Φk]. (3.12)

Letting k → ∞, we obtain (v∗, K∗)HΦ∗
= 0 for some K∗ ∈ kerL[Φ∗]. Conversely for

any K∗, we can choose a sequence of vector fields in kerL[Φk] converging to it. Therefore
v∗ ∈ (kerL[Φ∗])

⊥. This contradicts the previous fact. The lemma is proved. �

The following Lemma is crucial for our local stability theorem. The proof here is a slight
modification of that in [2] for degree ±1 case.

Lemma 3.5. Suppose Ω is a compact set of degree d harmonic maps and p > 1. There exist
two constants η5(Ω) and CΩ,p such that if u ∈ Ḣ1(R2;S2) and ‖u−Φ‖Ḣ1 ≤ η5(Ω) for some
harmonic map Φ ∈ Ω, then

ˆ
R2

|u− Φ|p|∇Φ|2 ≤ CΩ,p

(ˆ
R2

|∇(u− Φ)|2
) p

2

. (3.13)

Proof. We will prove the theorem assuming u is smooth. By a density result of Schoen and
Uhlenbeck [20] it holds for any u ∈ Ḣ1(R2;S2). Using (2.3), we have |∇u|2 ≥ 2|u · (ux ×
uy)|. Thus we obtain∣∣∣∣ˆ

R2

u
(
2|u · (ux × uy)| − |∇u|2

)∣∣∣∣ ≤ ˆ
R2

(
|∇u|2 − 2|u · (ux × uy)|

)
≤min

{ˆ
R2

(
|∇u|2 + 2u · (ux × uy)

)
,

ˆ
R2

(
|∇u|2 − 2u · (ux × uy)

)}
= 2[E(u)− 4π| deg(u)|].

(3.14)

Take η5(Ω) = min{η1(Ω), 1/100} (see (2.2)), then we have deg(u) = deg(Φ). Notice that

2[E(u)− 4π| deg(u)|] =

ˆ
R2

|∇u|2 − |∇Φ|2 =

ˆ
R2

|∇(u− Φ)|2 + 2∇(u− Φ) : ∇Φ.

Since |∇Φ| ≤ C(1 + |z|)−2 as z →∞, we can apply integration by parts for the last term to
see that

2

ˆ
R2

∇(u− Φ) : ∇Φ = 2

ˆ
R2

Φ · (u− Φ)|∇Φ|2 = −
ˆ
R2

|u− Φ|2|∇Φ|2, (3.15)

where we have used the fact 2Φ · (u− Φ) = −|u− Φ|2 in the last step. It follows that

2[E(u)− 4π| deg(u)|] =

ˆ
R2

|∇(u− Φ)|2 − |u− Φ|2|∇Φ|2. (3.16)

Plugging this back to (3.14), we obtain∣∣∣∣ˆ
R2

u
(
2|u · (ux × uy)| − |∇u|2

)∣∣∣∣ ≤ ˆ
R2

|∇(u− Φ)|2. (3.17)
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Since u · ux = 0 and u · uy = 0, the two vectors u and ux × uy are parallel. Therefore, we
have

|u · (ux × uy)|2 = |ux × uy|2 = |ux|2|uy|2 − (ux · uy)2. (3.18)

Thus if we think of u as a mapping from R2 to R3, then |u · (ux × uy)| is the modulus of the
Jacobian of u. By the coarea formula (see Theorem 2.17 in [1]), one hasˆ

R2

u|u · (ux × uy)| =
ˆ
S2

zH0({u−1(z)})dµS2 (3.19)

where H0 is the 0-dimensional Hausdorff measure, i.e. counting the number of points.
By Sard’s theorem, for almost all z ∈ S2, z is a regular value of u. For such z, one has
H0({u−1(z)}) ≥ | deg(u)| (see [19, pg 95]). By symmetry of sphere we get∣∣∣∣ˆ

S2

zH0({u−1(z)})dµS2

∣∣∣∣ =

∣∣∣∣ˆ
S2

z
(
H0({u−1(z)})− | deg u|

)
dµS2

∣∣∣∣
≤
ˆ
S2

(
H0({u−1(z)})− | deg u|

)
dµS2 .

(3.20)

Using coarea formula againˆ
S2

(
H0({u−1(z)})− | deg u|

)
dµS2 =

ˆ
R2

|u · (ux × uy)|dx− 4π| deg(u)|

≤ 1

2

ˆ
R2

|∇u|2 − 4π| deg(u)|
(3.21)

where we used (2.3). Now one concatenates (3.19), (3.20), (3.21) and (3.16) to get∣∣∣∣ˆ
R2

u|u · (ux · uy)|
∣∣∣∣ ≤ 1

2

ˆ
R2

|∇(u− Φ)|2. (3.22)

Using (3.22) and (3.17), we get∣∣∣∣ˆ
R2

u|∇u|2
∣∣∣∣ ≤ 2

ˆ
R2

|∇(u− Φ)|2. (3.23)

Applying |∇u|2−|∇Φ|2 = 2∇Φ : ∇(u−Φ)+ |∇(u−Φ)|2 and Cauchy-Schwarz inequality,
one gets∣∣∣∣ˆ

R2

u(|∇u|2 − |∇Φ|2)

∣∣∣∣ ≤ 4
√

2π

(ˆ
R2

|∇(u− Φ)|2
) 1

2

+

ˆ
R2

|∇(u− Φ)|2. (3.24)

Since
´
R2 |∇(u− Φ)|2 < η5(Ω) ≤ 1/100, then∣∣∣∣ˆ

R2

u|∇Φ|2
∣∣∣∣ ≤ 8

√
π

(ˆ
R2

|∇(u− Φ)|2
) 1

2

. (3.25)

Since
´
R2 Φ|∇Φ|2 =

´
R2 ∆Φ = 0, then∣∣∣∣ˆ
R2

(u− Φ)|∇Φ|2
∣∣∣∣ ≤ 8

√
π

(ˆ
R2

|∇(u− Φ)|2
) 1

2

. (3.26)
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Now we apply Lemma 3.2 to getˆ
R2

|u− Φ|p|∇Φ|2 ≤ CΩ,p

(ˆ
R2

|∇(u− Φ)|2
) p

2

+ CΩ,p

∣∣∣∣ˆ
R2

(u− Φ)|∇Φ|2
∣∣∣∣p . (3.27)

Inserting (3.26), one gets (3.13). �

Now we can prove the local stability as claimed in the introduction. Our proof follows
closely to the one in [2, Lemma 4.4].

Proof of Theorem 1.4. Since the Dirichlet energy is invariant under Möbius transforma-
tions, without loss of generality we assume F = idR2 . Otherwise one can work with u◦F−1.

Since Ω is a compact, then AmΩ = {(p, q) : p is monic and S(p/q) ∈ Ω} is a compact
subset of Ad. Therefore there exists a ε1(Ω) such that the following subset is also compact.

(AmΩ )ε1 = {(p̃/q̃) : ∃ (p, q) ∈ AcΩ such that |p̃− p|∞ + |q̃ − q|∞ ≤ ε1}. (3.28)

Denote Ωε1 = S((AmΩ )ε1). It is a compact set of degree d harmonic maps. We shall take

η̃(Ω) = min{η2(Ωε1), η3(Ωε1 , ε1), η4(Ωε1 , ε1), η5(Ωε1)}. (3.29)

It follows from Lemma 2.5 that the infimum can be achieved. Let us assume it is achieved at
Φ. Then Corollary 2.7 and Lemma 2.6 imply that Φ ∈ Ωε. Denote δ =

´
R2 |∇(u−Φ)|2. We

decompose ζ = u− Φ into three parts

ζ‖ = (ζ · Φ)Φ, ζK = projkerL[Φ](ζ − ζ‖), ζ∗ = ζ − ζ‖ − ζK . (3.30)

Here the projection is with respect to the inner product ofWΦ. Consequentlyˆ
R2

ζK · ζ∗|∇Φ|2 = 0. (3.31)

Since ζK satisfies ∆ζK + 2(∇Φ : ∇ζK)Φ + |∇Φ|2ζK = 0, the above orthogonality is also
equivalent to the orthogonality in Ḣ1.ˆ

R2

∇ζK : ∇ζ∗ = 0. (3.32)

Claim 1. Assume δ < η̃(Ω). There exists C = C(Ω) such thatˆ
R2

|ζ|2|∇Φ|2 ≤
ˆ
R2

|ζ∗|2|∇Φ|2 + Cδ4. (3.33)

Indeed, the observation starts from the following identityˆ
R2

|ζ|2|∇Φ|2 =

ˆ
R2

(|ζ‖|2 + |ζK |2 + |ζ∗|2)|∇Φ|2 (3.34)

which follows from (ζK + ζ∗) · ζ‖ = 0 and (3.31).

First, using the smallness assumption δ < η̃(Ω) ≤ η5(Ωε1) and ζ‖ = −1
2
|ζ|2Φ, we can

apply Lemma 3.5 to getˆ
R2

|ζ‖|2|∇Φ|2 =
1

4

ˆ
R2

|u− Φ|4|∇Φ|2 ≤ Cδ4. (3.35)
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Second, since ‖u − Φ‖Ḣ1 achieves the infimum at Φ, one has
´
R2 ∇ζ : ∇ζK = 0. Since

ζ = ζ‖ + ζK + ζ∗ and (3.32), this is equivalent toˆ
R2

|∇ζK |2 = −
ˆ
R2

∇ζK : ∇ζ‖. (3.36)

Since ζK is smooth and decay fast (see Remark 2.3), we may do integration by parts for the
right hand side and use the facts ζK ∈ kerL[Φ] and ζK · ζ‖ = 0 to getˆ

R2

|∇ζK |2 = −2

ˆ
R2

(ζ‖ · Φ)(∇Φ : ∇ζK) =

ˆ
R2

|u− Φ|2(∇Φ : ∇ζK). (3.37)

We apply Hölder’s inequality to the above equation and (3.35) to getˆ
R2

|∇ζK |2 ≤ Cδ4. (3.38)

Now Lemma 3.1 implies that ˆ
R2

|ζK |2|∇Φ|2 ≤ Cδ4. (3.39)

Inserting (3.35) and (3.39) into (3.34), we can prove the Claim 1.

Claim 2. Assume δ < η̃(Ω). There exists C = C(Ω) such thatˆ
R2

|∇ζ|2 =

ˆ
R2

|∇ζ‖|2 + |∇ζK |2 + |∇ζ∗|2 + 2∇ζ‖ : ∇(ζ − ζ‖) (3.40)

and ∣∣∣∣ˆ
R2

2ζ‖ : ∇(ζ − ζ‖)
∣∣∣∣ ≤ Cδ3. (3.41)

Indeed, the first identity follows from (3.32). From ζ‖ = −1
2
|ζ|2Φ, we have ∂αζ l‖ =

−1
2
|ζ|2∂αΦl − 1

2
Φl∂α|ζ|2, where α ∈ {x, y} and l ∈ {1, 2, 3}. Using this identity, we haveˆ

R2

2∇ζ‖ : ∇(ζ − ζ‖) = −
ˆ
R2

|ζ|2∂αΦl∂α(ζ − ζ‖)l + Φl∂α|ζ|2∂α(ζ − ζ‖)l

=

ˆ
R2

(ζ − ζ‖)l∂α|ζ|2∂αΦl − |ζ|2∂αΦl∂α(ζ − ζ‖)l
(3.42)

where we have used ∂α[Φ · (ζ − ζ‖)] = 0. Since |∇Φ| ≤ C(1 + |z|)−2, we may integrate by
parts for the first term to getˆ

R2

(ζ − ζ‖)l∂α|ζ|2∂αΦl = −
ˆ
R2

|ζ|2∂αΦl∂α(ζ − ζ‖)l. (3.43)

Therefore, ˆ
R2

2∇ζ‖ : ∇(ζ − ζ‖) = −2

ˆ
R2

|ζ|2∂αΦl∂α(ζ − ζ‖)l. (3.44)

Since ∂αΦl∂
αζ l‖ = −1

2
∂αΦl∂

α[|u− Φ|2Φl] = −1
2
|u− Φ|2||∇Φ|2,ˆ

R2

2∇ζ‖ : ∇(ζ − ζ‖) =− 2

ˆ
R2

|ζ|2∇Φ : ∇ζ +

ˆ
R2

|u− Φ|4|∇Φ|2. (3.45)
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Using Hölder’s inequality and Lemma 3.5, we obtain∣∣∣∣ˆ
R2

2∇ζ‖ : ∇(ζ − ζ‖)
∣∣∣∣ ≤ 2δ

(ˆ
R2

|ζ|4|∇Φ|2
) 1

2

+ Cδ4 ≤ Cδ3. (3.46)

Thus Claim 2 is proved.

Now we can use these two claims to prove the theorem. Recall (3.16) and Lemma 3.4.

E(u)− 4π| deg(u)| =
ˆ
R2

|∇ζ|2 − |ζ|2|∇Φ|2

≥
ˆ
R2

|∇ζ∗|2 − |ζ∗|2|∇Φ|2 +

ˆ
R2

|∇ζ‖|2 + |∇ζK |2 − Cδ3 − Cδ4

≥ (1− µ−1)

ˆ
R2

|∇ζ∗|2 +

ˆ
R2

|∇ζ‖|2 + |∇ζK |2 − Cδ3 − Cδ4

≥ (1− µ−1)

ˆ
R2

|∇ζ|2 − Cδ3 − Cδ4 = (1− µ−1)δ2 − Cδ3 − Cδ4.

Choosing η(Ω) = min{η̃(Ω), 1
4C

(1 − µ−1)} where C is obtained from the above line. If
δ < η(Ω), then

E(u)− 4π| deg(u)| ≥ 1

2
(1− µ−1)δ2 =

1

2
(1− µ−1)

ˆ
R2

|u− Φ|2. (3.47)

The theorem is proved. �

4. COUNTEREXAMPLE WITH DEGREE 2

In this section, we shall construct some example to fulfill (1.8) and thus Theorem 1.5 is
established. The process starts with a particular degree 2 harmonic map S((z − r− i r)(z +
r+i r)). Here r will be chosen large enough to satisfy various conditions. We shall introduce
some notations firstly. Denote ~α = (αi) ∈ R10 and

Ψ[~α](z) =
(α1 + iα2)z2 + (α3 + iα4)z + (α5 + iα6)

1− (α7 + iα8)z − (α9 + iα10)z2
. (4.1)

We also define Ki = Ki[~α](z), for i = 1, · · · , 10, as

Ki[~α](z) =rβi∂αi
S(Ψ[~α])(z)

=
rβi

(1 + |Ψ|2)2

(
2(1 + |Ψ|2)∂αi

Ψ− 2Ψ∂αi
|Ψ|2, 2∂αi

|Ψ|2
)

[~α](z)
(4.2)

where βi = 0 if i ∈ {1, 2, 5, 6}, βi = −1 if i ∈ {3, 4, 7, 8}, βi = −2 if i ∈ {9, 10}. The
reason why we divide some Ki by r or r2 is to make sure that Jij (see (4.5)) is bounded
above by some constant. It will be clear in Lemma 5.5. The non-degeneracy result implies
dimR kerL[S(Ψ[~α])] = 10 when Ψ[~α](z) is an irreducible rational function. Actually we can
prove directly {Ki : i = 1, · · · , 10} are linearly independent, therefore kerL[S(Ψ[~α])] =
SpanR{K1, · · · , K10}.

Lemma 4.1. Suppose ~α satisfies that Ψ[~α](z) is an irreducible rational function and α1 +
iα2 6= 0. Then {Ki : i = 1, · · · , 10} is linearly independent.
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Proof. Suppose
∑10

i=1 ciKi[~α](z) = 0 for some constants ci ∈ R. Using the expression of
Ki in (4.2), it implies that for all such z

10∑
i=1

ci∂αi
|Ψ|2[~α](z) = 0,

10∑
i=1

ci∂αi
Ψ[~α](z) = 0. (4.3)

Dividing the second equation by Ψ, we get
10∑
i=1

ci
∂αi

Ψ

Ψ
[~α](z) = 0, z ∈ C \ {zeros and poles of Ψ[~α]}. (4.4)

That is
(c1 + i c2)z2 + (c3 + i c4)z + (c5 + i c6)

(α1 + iα2)z2 + (α3 + iα4)z + (α5 + iα6)
+

(c7 + i c8)z + (c9 + i c10)z2

1− (α7 + iα8)z − (α9 + iα10)z2
= 0.

Suppose {ζ1, ζ2} are the roots of (α1 + iα2)z2 + (α3 + iα4) + (α5 + iα6) = 0. Consider the
roots of 1− (α7 + iα8)z− (α9 + iα10)z2 = 0. It possibly has two roots, say {ζ3, ζ4}, or one
root, or no root. In the first case, since Ψ[~α](z) is irreducible, then {ζ1, ζ2} ∩ {ζ3, ζ4} = ∅.
Let z → ζ3 or ζ4, then we must have c7 + i c8 = c9 + i c10 = 0. Consequently c1 + i c2 =
c3 + i c4 = c5 + i c6 = 0. The other two cases are similar to prove. �

Denote J [~α] = (Jij)1≤i,j≤10 where

Jij[~α] =

ˆ
R2

|∇S(Ψ[~α])|2Ki[~α] ·Kj[~α]. (4.5)

Lemma 4.2. Suppose ~α satisfies that Ψ[~α](z) is an irreducible rational function and α1 +
iα2 6= 0. Then J [~α] is a positive definite matrix for any r > 0.

Proof. Assume not, then there exists some ~c = (c1, · · · , c10) such that

0 ≥
10∑

i,j=1

Jij[~α]cicj =

ˆ
R2

|∇S(Ψ[~α])|2|ciKi[~α]|2. (4.6)

This implies
∑10

i=1 ciKi = 0. However, this contradicts to the linear independence ofKi. �

Since L[S(Ψ[~α])](Ki[~α]) = 0 and Ki · S(Ψ[~α]) = 0, one hasˆ
R2

∇Ki[~α] : ∇Kj[~α] =

ˆ
R2

|∇S(Ψ[~α])|2Ki[~α] ·Kj[~α] = Jij[~α]. (4.7)

For any r > 0, we denote ~αr = (1, 0, 0, 0, 0, 2r2, 0, 0, 0, 0). Then

Ψ[~αr](z) = (z − r − i r)(z + r + i r).

We will write Kr
i = Ki[~αr] and J r = J [~αr] for short. In the following, one will see that

J r plays an important role in the analysis near the harmonic map S(Ψ[~αr]). It is necessary
to have a more detailed knowledge of each entries of J r, at least the leading orders of them
as r →∞.
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Proposition 4.3. After some row and column permutation, we can represent J r as a block
diagonal matrix.

J r ∼ 16π

3
diag{A1, A2, A3, A4} (4.8)

with

A1 =

 2 −4 α0

−4 λ3 γ0

α0 γ0 4

+O(r−6), A2 =

 2 4 −α0

4 λ3 γ0

−α0 γ0 4

+O(r−6),

A3 =

(
λ1 β0 − r−2

β0 − r−2 λ2

)
+O(r−6), A4 =

(
λ1 r−2 − β0

r−2 − β0 λ2

)
+O(r−6),

whereA1 corresponds to i, j ∈ {1, 10, 6},A2 corresponds to i, j ∈ {2, 9, 5},A3 corresponds
to i, j ∈ {3, 8}, and A4 corresponds to i, j ∈ {4, 7}. Here α0 ≈ β0 ≈ γ0 = O(r−

9
2 ),

λ1 = 8 + 1
4
r−4, λ2 = 4 + 1

2
r−4 and λ3 = 8 + 4r−4.

Remark 4.4. One can compute the determinant of J r.

detJ r =
1610π10

310
(detA1)(detA2)(detA3)(detA4)

=
1610π10

310

(
32r−4 +O(r−6)

)2 (
32 + 4r−4 +O(r−6)

)2

=
260π10

310
r−8 +O(r−10).

(4.9)

One can see the degenerate tendency of J r as r →∞.

The proof of this lemma needs some involved integration. We need to expand the integrand
to the third order to prove the result. Instead of diving into massive computations, we defer
the proof of it to the next section and continue the main thread of our construction. Let

H = {u ∈ H1
loc(R2;R3) :

ˆ
R2

|∇u|2 + (1 + |z|)−4|u|2 <∞}. (4.10)

It is easy to see thatH is a Hilbert space.

Proposition 4.5. Fix any r > 0, there exists a ε2(r) and η6(r) such that for any u : R2 → S2

with ‖u− S(Ψ[~αr])‖H < η6(r), then there exists a unique ~α = ~α(u) satisfying ‖~α− ~αr‖ <
ε2(r) and ˆ

R2

∇u : ∇K = 0, for K ∈ kerL[S(Ψ[~α])]. (4.11)

Proof. Define the following map

F : H× R10 → R10

(u, ~α) 7→
(ˆ

R2

∇u : ∇K1[~α], · · · ,
ˆ
R2

∇u : ∇K10[~α]

)
.

(4.12)

Such map F is well-defined because u ∈ H. It is easy to see F is smooth on ~α because Ki

depends on ~α smoothly. F is at least C1 on u.
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For any r > 0, there exists ε2(r) such that if ‖~α − ~αr‖ < ε2(r), then α satisfies the
assumption of Lemma 4.1. Therefore

´
R2 |∇S(Ψ[~α])|2 = 16π. Differentiating on ~α, it infers

that ˆ
R2

∇S(Ψ[~α]) : ∇Ki[~α] = 0, i = 1, · · · , 10. (4.13)

Equivalently, this is F (S(Ψ[~α]), ~α) = 0 and F (u, ~α) = F (u − S(Ψ[~α]), ~α). We intend to
apply implicit function theorem to F at (S(Ψ[~αr]), ~αr). The Jacobian matrix with respect to
~α at (S(Ψ[~αr]), ~αr) is

∂F

∂~α
((S(Ψ[~αr]), ~αr)) =

(ˆ
R2

∇Kr
i : ∇Kr

j

)
1≤i,j≤10

= J r. (4.14)

Here we have used (4.7). Lemma 4.2 says that such Jacobian is non-degenerate. Therefore,
using the implicit function theorem, there exist η6(r) and ε2(r) small enough such that if
‖u − S(Ψ[~αr])‖H < η6(r), then there exists a unique ~α = ~α(u) such that |~α − ~αr| < ε2(r)
and F (u, ~α) = 0 . �

Introduce the cut-off function

Θr(z) =


1 |z| < r

1
2 ,

2− 2 log(|z|)/ log r r
1
2 ≤ |z| ≤ r,

0 |z| > r.

(4.15)

Define

f r(x, y) = Θr(x+ i y − r − i r)−Θr(x+ i y + r + i r) (4.16)

and

Kr = 2Kr
2 −Kr

9 . (4.17)

See the explicit formulae of Kr
2 , K

r
9 in section 5.

Lemma 4.6. For r > 0 large enough, we haveˆ
R2

|∇(f rKr)|2 =
64π

3
r−4 +O(| log r|−1r−4), (4.18)

ˆ
R2

|∇S(Ψ[~αr])|2|f rKr|2 =
64π

3
r−4 +O(r−6). (4.19)

Denote

pj =

ˆ
R2

∇(f rKr) : ∇Kr
j dxdy. (4.20)

Lemma 4.7. We have

p1 = −2p10 = O(r−
13
2 ), p2 = O(r−6), p3 = −p4 = O(r−

9
2 ), p5 = O(r−

9
2 ),

p6 = O(r−
9
2 ), p7 = p8 = −16π

3
r−4 +O(r−6), p9 = O(r−6).
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Consider the solution ~c = (c1, · · · , c10)T of J r~c = ~p where ~p = (p1, · · · , p10)T ,

c1 = 2c10 +O(r−
13
2 ) = O(r−

5
2 ), c5 = O(r−

9
2 ),

c2 = −2c9 +O(r−6) = O(r−2), c6 = O(r−
9
2 ),

c3 = −c4 = O(r−
9
2 ), c7 = c8 = −1

4
r−4 +O(r−6).

(4.21)

Lemma 4.6 and Lemma 4.7 are crucial for our construction. Since it requires technical
computations, we also postpone the proofs of them to the next section.

Proposition 4.8. For any r > 0, there exists ε3(r) with the following significance. For any
ε < ε3(r), there exists {h1, · · · , h10} which are Ḣ1(R2) ∩ L∞(R2) functions and depend on
ε, r continuously such that u = εhiKr

i +
√

1− ε2|hiKr
i |2S(Ψ[~αr]) satisfiesˆ

R2

∇u : ∇Kr
i = 0, i = 1, · · · , 10. (4.22)

Furthermore,ˆ
R2

|∇(hiKr
i )|2 =

64π

3
r−4 +O(| log r|−1r−4) +O(ε), (4.23)

ˆ
R2

|∇(hiKr
i )|2 −

ˆ
R2

|∇S(Ψ[~αr])|2|hiKr
i |2 = O(| log r|−1r−4) +O(ε). (4.24)

Proof. We can take ~h = (h1, · · · , h10) where

hiKr
i = f rKr − ciKr

i (4.25)

with ci to be determined. Here we use Einstein summation convention for i. Define a map

F : R+ × R10 → R10 (4.26)

(ε,~c )→
(ˆ

R2

∇v : ∇Kr
1 , · · · ,

ˆ
R2

∇v : ∇Kr
10

)
(4.27)

where

v = hiKr
i −

ε|hiKr
i |2√

1− |εhiKr
i |2 + 1

S(Ψ[~αr]). (4.28)

The map F is well-defined because Kr
i and S(Ψ[~αr]) both belong to Ḣ1(R2). For ε and |~c|

small, F is a smooth map.

At ε = 0, F (0,~c) = 0 if and only if

J r~c = ~p (4.29)

where ~p = (p1, · · · , p10), where pj is defined in (4.20). Since J r is non-degenerate, us-
ing Lemma 4.7, the above equation has a unique solution (4.21). We denote it as ~c∗ =
(c∗1, · · · , c∗10). The Jacobian of F at (0,~c∗) with respect to ε is

(∂ciF
j)(0,~c∗) = −J r. (4.30)
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By the implicit function theorem, there exists ε3(r) such that for any 0 ≤ ε < ε3(r) there
exists ~c = ~c(ε) = ~c∗+O(ε) satisfies F (ε,~c) = 0. Since (4.25) and f r ∈ Ḣ1(R2)∩L∞(R2),
then hi ∈ Ḣ1(R2) ∩ L∞(R2) for 1 ≤ i ≤ 10. Using the form of v, one readily check
u = εhiKr

i +
√

1− ε2|hiKr
i |2S(Ψ[~αr]) satisfies (4.22).

To establish (4.23), we compute explicitly
ˆ
R2

|∇(hiKr
i )|2 =

ˆ
R2

|∇(f rKr)|2 − 2
10∑
i=1

ci

ˆ
R2

∇(f rKr) : ∇Kr
i +

10∑
i,j=1

cicjJ r
ij

=
64π

3
r−4 − 2

10∑
i=1

c∗i pi +
10∑

i,j=1

c∗i c
∗
jJ r

ij +O(| log r|−1r−4) +O(ε)

(4.31)

where we have used Lemma 4.6 and ~c = ~c∗ +O(ε). By Lemma 4.7, we have

2
10∑
i=1

c∗i pi = O(r−8). (4.32)

To compute
∑
c∗i c
∗
jJ r

ij , we shall use Proposition 4.3 to see that J r can written as a block
diagonal matrix. Combining (4.21), Proposition 4.3, we have∑

i,j∈{1,6,10}

c∗i c
∗
jJ r

ij = (c∗1)2J r
11 + 2c∗1c

∗
10J r

1,10 + (c∗10)2J r
10,10 +O(r−8)

=
32π

3

(
(c∗1)2 − 2(c∗1)2 + (c∗1)2

)
+O(r−8) = O(r−8)

(4.33)

where we have used c∗1 = 2c∗10 + O(r−
13
2 ) = O(r−

5
2 ) in the second line. Similarly one can

use (4.21), Proposition 4.3 and c∗2 = −2c∗9 +O(r−6) = O(r−2) to derive∑
i,j∈{2,9,5}

c∗i c
∗
jJ r

ij = O(r−8),
∑

i,j∈{3,8}

c∗i c
∗
jJ r

ij =
∑

i,j∈{4,7}

c∗i c
∗
jJ r

ij = O(r−8). (4.34)

Plugging the equations (4.32)-(4.34) to (4.31), we can get (4.23).

To establish (4.24), we shall use hiKr
i = f rKr − ciKr

i and Kr
i ∈ kerL[S(Ψ[~αr])] to

deriveˆ
R2

|∇(hiKr
i )|2 −

ˆ
R2

|∇S(Ψ[~αr])|2|hiKr
i |2 =

ˆ
R2

|∇(f rKr)|2 − |∇S(Ψ[~αr])|2|f rKr|2.

Then (4.24) just follows from Lemma 4.6. �

Proposition 4.9. For any r > 0, there exists a ε4(r) such that for ε < ε4(r) there ex-
ists {h1, · · · , h10} which are Ḣ1(R2) ∩ L∞(R2) functions and depend on ε, r continuously
such that for u = εhiKr

i +
√

1− ε2|hiKr
i |2S(Ψ[~αr]) the following infimum is achieved at

S(Ψ[~αr]).

inf
(p,q)∈A2

‖u− S(p/q)‖2
Ḣ1 = ‖u− S(Ψ[~αr])‖2

Ḣ1 = ε2‖hiKr
i ‖2

Ḣ1 +Or(ε
3). (4.35)

Here |Or(ε
3)| ≤ C(r)ε3 as ε→ 0.
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Proof. First we choose ε4(r) < ε3(r). Then it follows from Proposition 4.8 that one can find
{h1, · · · , h10} which are Ḣ1(R2) ∩ L∞(R2) functions and depend on ε, r continuously such
that u = εhiKr

i +
√

1− ε2|hiKr
i |2S(Ψ[~αr]) satisfiesˆ

R2

∇u : ∇Kr
i = 0, i = 1, · · · , 10. (4.36)

Taking ε4(r) even smaller, we can make

‖u− S(Ψ[~αr])‖H < min{η2(r), η6(r), η4(r, ε2(r)/100)}. (4.37)

It follows from Lemma 2.5 that the infimum (4.35) can be achieved , say Φ̃ = S(p̃/q̃) for
some canonical (p̃, q̃) ∈ A2. Corollary 2.7 implies that all minimizers are near S(Ψ[~αr]).
More precisely

|p̃− (z − r − i r)(z + r + i r)|∞ + |q̃ − 1|∞ ≤
ε2(r)

100
. (4.38)

Thus we can assume Φ̃ = S(Ψ[~α]) for some ~α satisfies ‖~α− ~αr‖ < ε2(r).

Since the infimum achieved at S(Ψ[~α]), then one has the orthogonality conditionˆ
R2

∇u : ∇K = 0, ∀K ∈ kerL[S(Ψ[~α])]. (4.39)

However, Proposition 4.5 says that such ~α is unique if ‖~α − ~αr‖ < ε2(r). Our choice of ~h
from Proposition 4.8 makes sure that ~α has to be ~αr.

Finally, since hiKr
i is smooth and bounded on R2, we can compute explicitly

‖u− S(Ψ[~αr])‖2
Ḣ1 = ‖εhiKr

i +O(ε2|~h|2)‖2
Ḣ1 = ε2‖hiKr

i ‖2
Ḣ1 +Or(ε

3). (4.40)

�

Finally we can prove the main theorem of this section.

Proof of Theorem 1.5. We shall take u from Proposition 4.9. Since hiKi ∈ Ḣ1(R2;R3) ∩
L∞(R2;R3), we shall apply Lemma 2.4 to get

E(u)− 4π| deg(u)| = 1

2
ε2

ˆ
R2

|∇(hiKr
i )|2 − |∇S(Ψ[~αr])|2|hiKr

i |2 +Or(ε
3)

= ε2O(| log r|−1r−4) +Or(ε
3)

(4.41)

where we have used (4.24) in the last step.

On the other hand, it follows from Proposition 4.9 and (4.23) that

inf
(p,q)∈A2

‖u− S(p/q)‖2
Ḣ1 =

64π

3
r−4ε2 +Or(ε

3) +O(ε2r−6). (4.42)

Now for any M > 0, we choose r large such that 64π/(3M) > O(| log r|−1). Fixing such
r, we can choose ε small such that

inf
~α∈R10

‖u− S(Ψ[~α])‖2
Ḣ1 > M(E(u)− 4π| deg u|). (4.43)

Thus the theorem is proved. �
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5. EXPLICIT COMPUTATION OF THE JACOBIAN

In this section, we shall compute the Jacobian J r explicitly and give proofs of Proposition
4.3, Lemma 4.6, and Lemma 4.7.

Now consider Ψ[~α] defined in (4.1). Identifying C5 = {(a, b, c, d, e)} and R10 = {~α} in
the way of a = α1 + iα2, b = α3 + iα4, etc. In this notation, we rewrite it as

Ψ[~α](z) =
az2 + bz + c

1− dz − ez2
.

Also we rewrite ~αr = (1, 0,−(r + i r)2, 0, 0) ∈ C5, and denote Ψ[~αr] = ψr for short

ψr(z) = (z − r − i r)(z + r + i r) = x2 − y2 + i (2xy − 2r2).

We always assume that r is large enough. We want to compute the vector fieldsKi defined in
(4.2) at ~αr explicitly. One needs to differentiate S(Ψ[~α]) with respect to real and imaginary
part of a, b, c, d, e at ~αr. Therefore we need to compute ∂Ψ[~α] and ∂|Ψ[~α]|2 at ~αr. It is easy
to see

∂a1Ψ[~αr] = ψr, ∂a2Ψ[~αr] = iψr, ∂b1Ψ[~αr] = z, ∂b2Ψ[~αr] = i z, ∂c1Ψ[~αr] = 1,

∂c2Ψ[~αr] = i , ∂d1Ψ[~αr] = zψr, ∂d2Ψ[~αr] = i zψr, ∂e1Ψ[~αr] = z2ψr, ∂e2Ψ[~αr] = i z2ψr.

Note that ∂|ψ|2 = ∂(ψψ̄) = 2Re (ψ∂ψ̄) = 2Re (ψ∂ψ). Then

∂a1|Ψ[~αr]|2 = 2|ψr|2, ∂a2|Ψ[~αr]|2 = 0,

∂b1|Ψ[~αr]|2 = 2(x3 − 2r2y + xy2), ∂b2|Ψ[~αr]|2 = 2(y3 − 2r2x+ x2y),

∂c1|Ψ[~αr]|2 = 2x2 − 2y2, ∂c2|Ψ[~αr]|2 = 4xy − 4r2,

∂d1|Ψ[~αr]|2 = 2x|ψr|2, ∂d2|Ψ[~αr]|2 = −2y|ψr|2,
∂e1|Ψ[~αr]|2 = 2(x2 − y2)|ψr|2, ∂e2|Ψ[~αr]|2 = −4xy|ψr|2.

Then we have

Kr
1 := ∂a1u = ζ

(
(1− |ψr|2)ψr, 2|ψr|2

)
,

Kr
2 := ∂a2u = ζ

(
(1 + |ψr|2)iψr, 0

)
,

Kr
3 := r−1∂b1u = ζr−1

(
(1 + |ψr|2)z − 4(x3 − 2r2y + xy2)ψr, 4(x3 − 2r2y + xy2)

)
,

Kr
4 := r−1∂b2u = ζr−1

(
(1 + |ψr|2)i z − 4(y3 − 2r2x+ x2y)ψr, 4(y3 − 2r2x+ x2y)

)
,

Kr
5 := ∂c1u = ζ

(
(1 + |ψr|2)− 4(x2 − y2)ψr, 4(x2 − y2)

)
,

Kr
6 := ∂c2u = ζ

(
(1 + |ψr|2)i − 8(xy − r2)ψr, 8(xy − r2)

)
,

Kr
7 := r−1∂d1u = ζr−1

(
(1 + |ψr|2)zψr − 2x|ψr|2ψr, 2x|ψr|2

)
,

Kr
8 := r−1∂d2u = ζr−1

(
(1 + |ψr|2)i zψr + 2y|ψr|2ψr,−2y|ψr|2

)
,

Kr
9 := r−2∂e1u = ζr−2

(
(1 + |ψr|2)z2ψr − 2(x2 − y2)|ψr|2ψr, 2(x2 − y2)|ψr|2

)
,

Kr
10 := r−2∂e2u = ζr−2

(
(1 + |ψr|2)i z2ψr + 4xy|ψr|2ψr,−4xy|ψr|2

)
.
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where ζ = 2(1 + |ψr|2)−2. We will introduce the notation Irij = 1
4
(1 + |ψr|2)2Kr

i · Kr
j to

denote the inner product of Kr
i and Kr

j . We have

Ir11 = |ψr|2 = Ir22, Ir12 = 0, Ir13 = r−1(x3 − 2r2y + xy2),

Ir14 = r−1(y3 − 2r2x+ x2y), Ir15 = (x2 − y2), Ir16 = 2(xy − r2), Ir17 = r−1x|ψr|2,
Ir18 = −r−1y|ψr|2, Ir19 = r−2(x2 − y2)|ψr|2, Ir1,10 = −2r−2xy|ψr|2,
Ir23 = r−1[2r2x− x2y − y3)], Ir24 = r−1[(x3 − 2r2y + xy2)], Ir25 = 2(r2 − xy),

Ir26 = (x2 − y2), Ir27 = r−1y|ψr|2, Ir28 = r−1x|ψr|2,
Ir29 = 2r−2xy|ψr|2, Ir2,10 = r−2(x2 − y2)|ψr|2.

Ir33 = r−2(x2 + y2) = Ir44, Ir34 = 0, Ir35 = r−1x,

Ir36 = r−1y, Ir37 = r−2(x4 − y4), Ir38 = 2r−2(r2 − xy)(x2 + y2),

Ir39 = r−3(x2 + y2)(x3 + 2r2y − 3xy2), Ir3,10 = −r−3(x2 + y2)(2r2x− 3x2y + y3),

Ir45 = −r−1y, Ir46 = r−1x, Ir47 = −r−2(r2 − xy)(x2 + y2), Ir48 = r−2(x4 − y4),

Ir49 = −r−3(x2 + y2)(2r2x− 3x2y + y3), Ir4,10 = r−3(x2 + y2)(x3 + 2r2y − 3xy2).

Ir55 = 1 = Ir66, Ir56 = 0, Ir57 = r−1(x3 + 2r2y − 3xy2), Ir58 = r−1(2r2x− 3x2y + y3),

Ir59 = r−2(x4 + 4r2xy − 6x2y2 + y4), Ir5,10 = 2r−2(r2 − 2xy)(x2 − y2),

Ir67 = r−1(2r2x− 3x2y + y3), Ir68 = r−1(x3 + 2r2y − 3xy2),

Ir69 = 2r−2(r2 − 2xy)(y2 − x2), Ir6,10 = r−2(x4 + 4r2xy − 6x2y2 + y4).

Ir77 = r−2(x2 + y2)|ψr|2, Ir78 = 0,

Ir79 = r−3x(x2 + y2)|ψr|2, Ir7,10 = −r−3y(x2 + y2)|ψr|2,
Ir88 = r−2(x2 + y2)|ψr|2, Ir89 = r−3y(x2 + y2)|ψr|2, Ir8,10 = r−3x(x2 + y2)|ψr|2,
Ir99 = r−4(x2 + y2)2|ψr|2, Ir9,10 = 0, Ir10,10 = r−4(x2 + y2)2|ψr|2.

The calculations here and later are a little bit tedious but still manageable by bare hands.
To make the life easier, we perform them with the help of Mathematica1.

Using (2.7), we get

|∇S(Ψ[~αr])|2 =
4|∂xψr|2 + 4|∂yψr|2

(1 + |ψr|2)2
=

32(x2 + y2)

(1 + |ψr|2)2
. (5.1)

Thus (4.5) implies that

J r
ij =

ˆ
R2

128(x2 + y2)

(1 + |ψr|2)4
Irijdxdy. (5.2)

1https://www.wolframcloud.com/obj/bingomat/Published/deg2-HM-final.nb
A link for source code.

https://www.wolframcloud.com/obj/bingomat/Published/deg2-HM-final.nb
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Lemma 5.1. The following entries of J r are all equal to 0.

J r
12,J r

13,J r
14,J r

15,J r
17,J r

18,J r
19,J r

23,J r
24,J r

26,J r
27,J r

28,J r
2,10,

J r
34,J r

35,J r
36,J r

37,J r
39,J r

3,10,J r
45,J r

46,J r
48,J r

49,J r
4,10,

J r
56,J r

57,J r
58,J r

5,10,J r
67,J r

68,J r
69,J r

78,J r
79,J r

7,10,J r
89,J r

8,10,J r
9,10.

Proof. These facts follow from the symmetries. The integrand of J r
13 is odd with respect to

the operation (x, y)→ (−x,−y) while the integration domain is even. Thus it is equal to 0.
The same symmetry holds for

J r
14,J r

17,J r
18,J r

23,J r
24,J r

27,J r
28,J r

35,J r
36,J r

39,J r
3,10,

J r
45,J r

46,J r
49,J r

4,10,J r
57,J r

58,J r
67,J r

68,J r
79,J r

7,10,J r
89,J r

8,10.

On the other hand, if we switch x and y, then we get J r
15 = −J r

15. The same symmetry holds
for

J r
19,J r

26,J r
2,10,J r

37,J r
48,J r

5,10,J r
69.

It is easy to see J r
12 = J r

34 = J r
56 = J r

78 = J r
9,10 = 0 since Ir12 = Ir34 = Ir56 = Ir78 =

Ir9,10 = 0. �

To compute other terms of J r
ij , we need the following lemma.

Lemma 5.2. Suppose p(x, y, r) is a homogeneous polynomial on x, y, r with degree k ≥ 0.
Assume l ≥ 3 and l > k

4
+ 1

2
. For r large, one has

ˆ
R2

p(x, y, r)

(1 + |ψr|2)l
=

π

8(l − 1)
[p(1) + p(−1)]rk−2 +

π[∆x,yp(1) + ∆x,yp(−1)]

256(l − 1)(l − 2)
rk−6

+
π[−px(1)− py(1) + px(−1) + py(−1) + p(1) + p(−1)]

128(l − 1)(l − 2)
rk−6

+O(rk−8)

where 1 = (1, 1, 1) and −1 = (−1,−1, 1).

Proof. Let

Ω1 = {(x, y) : (x− r)2 + (y − r)2 < r},
Ω2 = {(x, y) : (x+ r)2 + (y + r)2 < r},
Ω3 = {(x, y) : (x− r)2 + (y − r)2 ≥ r, |y|+ |x| ≤ 3r, x+ y ≥ 0},
Ω4 = {(x, y) : (x+ r)2 + (y + r)2 ≥ r, |y|+ |x| ≤ 3r, x+ y ≤ 0},

and Ωout = R2 − Ω1 − Ω2 − Ω3 − Ω4 ⊂ {(x, y) : |x| ≥ r, |y| ≥ r}. We shall reserve the
notations of Ωi for the rest of paper. See Figure 1 for illustration. Denote

Int(Ωi) =

ˆ
Ωi

p(x, y, r)

(1 + |ψr|2)l
dxdy.
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FIGURE 1. Integration domains Ωi.

On Ω1, making a change of variable x = r + r−1x̃, y = r + r−1ỹ, we have Ω1 = {(x̃, ỹ) :
x̃2 + ỹ2 < r3}. Since |ψr|2 = [(x− r)2 + (y − r)2][(x+ r)2 + (y + r)2], we rewrite it as

|ψr|2 =(x̃2 + ỹ2)[(2 + r−2x̃)2 + (2 + r−2ỹ)2]

=(x̃2 + ỹ2)[8 + 4r−2(x̃+ ỹ) + r−4(x̃2 + ỹ2)].
(5.3)

Denote x̃2 + ỹ2 = ρ2 and A = 1 + 8(x̃2 + ỹ2) = 1 + 8ρ2. Since r−2|x̃| ≤ r−1/2 and
r−2|ỹ| ≤ r−1/2 in Ω1, then 4r−2(x̃ + ỹ) + r−4(x̃2 + ỹ2) � 8. Then we can make the
following expansion.

(1 + |ψr|2)−l =
(
A+ 4r−2ρ2(x̃+ ỹ) + r−4ρ4

)−l
= A−l − lA−l−1[4r−2ρ2(x̃+ ỹ) + r−4ρ4] +

l(l + 1)

2
A−l−2[4r−2ρ2(x̃+ ỹ) + r−4ρ4]2

+O(A−l−3r−6ρ6(|x̃|3 + |ỹ|3)).

(5.4)

Since p is a homogeneous polynomial and r−2|x̃| ≤ r−1/2 and r−2|ỹ| ≤ r−1/2, then

p(x, y, r) = rkp(1 + r−2x̃, 1 + r−2ỹ, 1)

= rkp(1) + rk−2[px(1)x̃+ py(1)ỹ] +
1

2
rk−4[pxx(1)x̃2 + pxy(1)x̃ỹ + pyy(1)ỹ2]

+O(rk−6(|x̃|3 + |ỹ|3)).

(5.5)

Here we write (1, 1, 1) as 1 for short. Now we combine (5.4) and (5.5) to get

p(x, y, r)

(1 + |ψr|2)l
= rk

p(1)

[1 + 8ρ2]l
+ rk−2B1 + rk−4B2 +O(rk−6A−l(|x̃|3 + |ỹ|3)), (5.6)

where

B1 =
px(1)x̃+ py(1)ỹ

[1 + 8ρ2]l
− 4p(1)lρ2(x̃+ ỹ)

[1 + 8ρ2]l+1
(5.7)
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and

B2 =
[pxx(1)x̃2 + pxy(1)x̃ỹ + pyy(1)ỹ2]

2[1 + 8ρ2]l
− 4ρ2l(x̃+ ỹ)[px(1)x̃+ py(1)ỹ]

[1 + 8ρ2]l+1

− p(1)lρ4

[1 + 8ρ2]l+1
+

8p(1)l(l + 1)ρ4(x̃+ ỹ)2

[1 + 8ρ2]l+2
.

(5.8)

Making a change of variable x̃ = ρ cos θ, ỹ = ρ sin θ, we have

Int(Ω1) = 2πrk−2

ˆ r
3
2

0

p(1)ρ

[1 + 8ρ2]l
dρ+ rk−6

ˆ
Ω1

B2dx̃dỹ +O(rk−8)

ˆ r
3
2

0

ρ3

[1 + 8ρ2]l
dρ

= 2πp(1)rk−2

ˆ r
3
2

0

ρ

(1 + 8ρ2)l
dρ+ rk−6

ˆ
Ω1

B2dx̃dỹ +O(rk−8).

Here we have used the assumption l ≥ 3 and
´

Ω1
B1dx̃dỹ = 0. One can compute

ˆ
Ω1

B2dx̃dỹ =
π

2
∆x,yp(1)

ˆ r
3
2

0

ρ3

[1 + 8ρ2]l
dρ− 4π[px(1) + py(1)]l

ˆ r
3
2

0

ρ5

[1 + 8ρ2]l+1
dρ

− 2πp(1)l

ˆ r
3
2

0

ρ5

[1 + 8ρ2]l+1
dρ+ 16πp(1)l(l + 1)

ˆ r
3
2

0

ρ7

[1 + 8ρ2]l+2
dρ.

Now some elementary integration shows

ˆ r
3
2

0

ρ

[1 + 8ρ2]l
dρ =

1

16(l − 1)
+O(r−6),

ˆ r
3
2

0

ρ3

[1 + 8ρ2]l
dρ =

1

128(l − 1)(l − 2)
+O(r−3),

ˆ r
3
2

0

ρ5

[1 + 8ρ2]l+1
dρ =

1

512l(l − 1)(l − 2)
+O(r−3),

ˆ r
3
2

0

ρ7

[1 + 8ρ2]l+2
dρ =

3

4096(l + 1)l(l − 1)(l − 2)
+O(r−3).

Plugging in these identities to
´

Ω1
B2dx̃dỹ to get

ˆ
Ω1

B2dx̃dỹ

=
π∆x,yp(1)

256(l − 1)(l − 2)
− 2π[px(1) + py(1)] + πp(1)

256(l − 1)(l − 2)
+

3πp(1)

256(l − 1)(l − 2)
+O(r−3)

=
π[∆x,yp(1)− 2px(1)− 2py(1) + 2p(1)]

256(l − 1)(l − 2)
+O(r−3).
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Therefore

Int(Ω1) =
πp(1)

8(l − 1)
rk−2 +

π[∆x,yp(1)− 2px(1)− 2py(1) + 2p(1)]

256(l − 1)(l − 2)
rk−6 +O(rk−8).

(5.9)

By symmetry, we have a corresponding equality for Int(Ω2),

Int(Ω2) =
πp(−1)

8(l − 1)
rk−2 +

π[∆x,yp(−1) + 2px(−1) + 2py(−1) + 2p(−1)]

256(l − 1)(l − 2)
rk−6 +O(rk−8)

(5.10)

where p(−1) = (−1,−1, 1).

Now in Ω3, we have r−2|x̃| + r−2|ỹ| ≤ C and |ψr|2 ≥ C−1r2[(x − r)2 + (y − r)2] for
some uniform constant C. Let x = r + r−1x̃ and y = r + r−1ỹ, one gets

|Int(Ω3)| ≤ Crk
ˆ

Ω3

|ψr|−2ldxdy ≤ Crk−2

ˆ ∞
r

3
2

[x̃2 + ỹ2]−ldx̃dỹ

≤ Crk−2

ˆ +∞

r
3
2

ρ−2l+1dρ ≤ Crk−2r−3l+3 = O(rk−8).

(5.11)

The same estimate holds for Int(Ω4). In Ωout, we make a change of variable x = rx̃, y = rỹ,

|Int(Ωout)| ≤
ˆ

Ωout

|p(x, y, r)||ψr|−2ldxdy

≤
ˆ
|x̃|≥1,|ỹ|≥1

|p(x̃, ỹ, 1)|rk−4l+2

[((x̃− 1)2 + (ỹ − 1)2)((x̃− 1)2 + (ỹ − 1)2)]l
dx̃dỹ

≤ rk−4l+2

ˆ
|x̃|≥1,|ỹ|≥1

|x̃|k + |ỹ|k + C

[x̃2 + ỹ2]2l
dx̃dỹ ≤ Crk−4l+2 = O(rk−10)

(5.12)

provided 4l > k + 2.

Collecting the results of Int(Ωi), i = 1, 2, 3, 4 and Int(Ωout), we get

Int(R2) =
π

8(l − 1)
[p(1) + p(−1)]rk−2 +

π[∆x,yp(1) + ∆x,yp(−1)]

256(l − 1)(l − 2)
rk−6

+
π[−px(1)− py(1) + px(−1) + py(−1) + p(1) + p(−1)]

128(l − 1)(l − 2)
rk−6

+O(rk−8).

(5.13)

This proves our conclusion. �
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Corollary 5.3. Suppose p(x, y, r) is a homogeneous polynomial on x, y, r with degree k ≥ 0.
Assume l ≥ 4 and l > k

4
+ 3

2
. For r large, one hasˆ

R2

p(x, y, r)|ψr|2

(1 + |ψr|2)l

=
π

8(l − 1)(l − 2)
[p(1) + p(−1)]rk−2 +

π[∆x,yp(1) + ∆x,yp(−1)]

128(l − 1)(l − 2)(l − 3)
rk−6

+
π[−px(1)− py(1) + px(−1) + py(−1) + p(1) + p(−1)]

64(l − 1)(l − 2)(l − 3)
rk−6 +O(rk−8).

(5.14)

Proof. Notice the following equalityˆ
R2

p(x, y, r)|ψr|2

[1 + |ψr|2]l
=

ˆ
R2

p(x, y, r)

[1 + |ψr|2]l−1
−
ˆ
R2

p(x, y, r)

[1 + |ψr|2]l
, (5.15)

one can apply Lemma 5.2. �

Next we shall prove that if p(1, 1, 1) = p(−1,−1, 1) = 0 then the remainder of term in
(5.13) could be improved.

Lemma 5.4. Suppose that p(x, y, r) is a homogeneous polynomial on x, y, r with degree
k ≥ 0. Assume p(1, 1, 1) = p(−1,−1, 1) = 0, l ≥ 3, l > k

4
+ 1

2
, thenˆ

R2

p(x, y, r)

(1 + |ψr|2)l
dxdy

=
π[∆x,yp(1) + ∆x,yp(−1)− 2px(1)− 2py(1) + 2px(−1) + 2py(−1)]rk−6

256(l − 1)(l − 2)
+O(rk−

17
2 ).

Proof. We shall use the notations in the proof of Lemma 5.2 and refine the proof there. In
Ω1,

(1 + |ψr|2)−l =
(
A+ 4r−2ρ2(x̃+ ỹ) + r−4ρ4

)−l
=A−l − lA−l−1[4r−2ρ2(x̃+ ỹ) + r−4ρ4] +

l(l + 1)

2
A−l−2[4r−2ρ2(x̃+ ỹ) + r−4ρ4]2

− l(l + 1)(l + 2)

6
A−l−3[4r−2ρ2(x̃+ ỹ) + r−4ρ4]3 +O(A−l−4r−8ρ8(|x̃|4 + |ỹ|4)|).

(5.16)

Using our assumption, one has

p(x, y, r) = rkp(1 + r−2x̃, 1 + r−2ỹ, 1)

=rk−2[px(1)x̃+ py(1)ỹ] +
1

2
rk−4[pxx(1)x̃2 + pxy(1)x̃ỹ + pyy(1)ỹ2]

+
1

6
rk−6Q+O(rk−8(|x̃|4 + |ỹ|4))

(5.17)

where

Q = pxxx(1)x̃3 + 3pxxy(1)x̃2ỹ + 3pxyy(1)x̃ỹ2 + pyyy(1)ỹ3. (5.18)
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Now we combine (5.16) and (5.17) to get

p(x, y, r)

(1 + |ψr|2)l
= rk−2B1 + rk−4B2 + rk−6B3 +O(rk−8A−l(|x̃|4 + |ỹ|4)) (5.19)

where

B1 =
px(1)x̃+ py(1)ỹ

[1 + 8ρ2]l
,

B2 =
[pxx(1)x̃2 + pxy(1)x̃ỹ + pyy(1)ỹ2]

2[1 + 8ρ2]l
− 4ρ2l(x̃+ ỹ)[px(1)x̃+ py(1)ỹ]

[1 + 8ρ2]l+1
,

B3 =
Q

6[1 + 8ρ2]l
− lρ4[px(1)x̃+ py(1)ỹ] + 2lρ2(x̃+ ỹ)[pxx(1)x̃2 + pxy(1)x̃ỹ + pyy(1)ỹ2]

[1 + 8ρ2]l+1
.

Using
´

Ω1
B3dx̃dỹ = 0 =

´
Ω1
B1dx̃dỹ, we can get the following estimate

Int(Ω1) =
π[∆x,yp(1)− 2px(1)− 2py(1)]

256(l − 1)(l − 2)
rk−6 +O(rk−10). (5.20)

Similar equality hold for Int(Ω2). In Ω3, using our assumption,

|Int(Ω3)| ≤ Crk−2

ˆ
Ω3

(|x̃|+ |ỹ|)|ψr|−2ldxdy ≤ Crk−4

ˆ ∞
r

3
2

[x̃+ ỹ][x̃2 + ỹ2]−ldx̃dỹ

≤ Crk−4

ˆ +∞

r
3
2

ρ−2l+2dρ ≤ Crk−4r−3l+ 9
2 = O(rk−

17
2 ).

The same estimate holds for Int(Ω4). For Ωout, (5.12) still holds. Collecting the results of
Int(Ωi), i = 1, 2, 3, 4 and Int(Ωout), we get the conclusion. �

Lemma 5.5. We have

J r
11 = J r

22 =
32π

3
+O(r−6), J r

1,10 = −64π

3
+O(r−6),

J r
16 = −J r

25 = O(r−
9
2 ), J r

29 =
64π

3
+O(r−6),

J r
33 = J r

44 =
128

3
π +

4π

3
r−4 +O(r−6), J r

38 = −J r
47 = −16π

3
r−2 +O(r−

9
2 ),

J r
55 = J r

66 =
64π

3
+O(r−6), J r

59 = J r
6,10 = O(r−

9
2 ),

J r
77 = J r

88 =
64π

3
+

8π

3
r−4 +O(r−6),

J r
99 = J r

10,10 =
128π

3
+

64π

3
r−4 +O(r−6).

Proof. Recall (5.2). Applying Corollary 5.3 with k = 2, l = 4 and p(x, y, r) = 128(x2 +y2),
we have

J r
11 =

ˆ
R2

128(x2 + y2)|ψr|2

(1 + |ψr|2)4
dxdy =

32π

3
+O(r−6). (5.21)

In the same way, one can compute J r
1,10,J r

22,J r
29,J r

33,J r
44,J r

55,J r
66,J r

77,J r
88,J r

99,J r
10,10.
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Applying Lemma 5.4 with k = 4, l = 4 and p(x, y, r) = 256(x2 + y2)(xy − r2), we have

J r
16 =

ˆ
R2

256(x2 + y2)(xy − r2)

(1 + |ψr|2)4
dxdy = O(r−

9
2 ). (5.22)

In the same way, one can compute J r
25,J r

38,J r
47,J r

59,J r
6,10. �

Next, we give proofs of Proposition 4.3 and two key lemmas required in section 4.

Proof of Proposition 4.3. Combining Lemma 5.1 and Lemma 5.5, we know that J r has the
specific form. �

Proof of Lemma 4.7. It is easy to see thatˆ
R2

∇(f rKr
i ) : ∇Kr

j dxdy =

ˆ
R2

|∇S(Ψ[~αr])|2f rKr
i ·Kr

j dxdy, 1 ≤ i, j ≤ 10. (5.23)

We shall adopt the notation

Intij(Ω) =

ˆ
Ω

|∇S(Ψ[~αr])|2f r(x, y)Kr
i ·Kr

j dxdy. (5.24)

Recall the definition of pj in (4.20). Then

pj = 2

(
4∑

k=1

Int2j (Ωk) + Int2j
(
Ωout

))
−

(
4∑

k=1

Int9j (Ωk) + Int9j
(
Ωout

))
where Ω1,Ω2,Ω3,Ω4 and Ωout defined in the proof of Lemma 5.2.

It follows from symmetry that p1 = −2p10, p3 = −p4, and p7 = p8. Indeed, using the
expression of Irij , we haveKr ·Kr

1(x, y) = −2Kr ·Kr
10(x, y),Kr ·Kr

3(x, y) = −Kr ·Kr
4(y, x)

and Kr ·Kr
7(x, y) = Kr ·Kr

8(y, x). Since Θr is a radial function, then f r(x, y) = f r(y, x).
It follows from (5.2) that p1 = −2p10, p3 = −p4, and p7 = p8.

It is easy to see that Int21 (R2) = 0 since Ir21 = 0. We have

Int91

(
R2
)

=
1

r2

ˆ
R2

128(x4 − y4)|ψr|2f r(x, y)

(1 + |ψr|2)4
dxdy

=
1

r2

ˆ
R2

(
128(x4 − y4)

(1 + |ψr|2)3
− 128(x4 − y4)

(1 + |ψr|2)4

)
f r(x, y)dxdy.

Now let p(x, y, r) = 128(x4 − y4), it holds that p(1, 1, 1) = p(−1,−1, 1) = 0. Then we
shall refine the proof of Lemma 5.4 to compute Int91 (R2). Since f r = 1 on Ω1, similar to
(5.20) with k = 4, l = 3, 4 and p(x, y, r) = 128(x4 − y4), we have

Int91(Ω1) =
π[∆x,yp(1)− 2px(1)− 2py(1)]

128 · 3 · 2 · 1
r−4 +O(r−8) = O(r−8). (5.25)

Note that f r = −1 on Ω2, we also have

Int91(Ω2) = − π[∆x,yp(−1) + 2px(−1) + 2py(−1)]

128 · 3 · 2 · 1
r−4 +O(r−8) = O(r−8). (5.26)
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Note that |f r| ≤ 1, similar to (5.11) and (5.12), we have

|Int91 (Ω3)|+ |Int91 (Ω4)|+
∣∣Int91

(
Ωout

)∣∣ = O(r−
13
2 ). (5.27)

From (5.25), (5.26) and (5.27), we get p1 = −2p10 = O(r−
13
2 ). Using the same method, we

have

p3 = −p4 = O(r−
9
2 ), p5 = O(r−

9
2 ), p6 = O(r−

9
2 ). (5.28)

We have

Int22(R2) =

ˆ
R2

128(x2 + y2)|ψr|2f r(x, y)

(1 + |ψr|2)4
dxdy

=

ˆ
R2

(
128(x2 + y2)

(1 + |ψr|2)3
− 128(x2 + y2)

(1 + |ψr|2)4

)
f r(x, y)dxdy.

We shall refine the proof of Lemma 5.4 to compute Int22 (R2). As before, similar to (5.9)
with k = 2, l = 3, 4 and p(x, y, r) = 128(x2 + y2), we have

Int22 (Ω1) =
πp(1)

8 · 3 · 2 · 1
+
π[∆x,yp(1)− 2px(1)− 2py(1) + 2p(1)]

128 · 3 · 2 · 1
r−4 +O(r−6)

=
16π

3
+O(r−6).

(5.29)

Note that f r = −1 on Ω2, similar to (5.10), we have

Int22 (Ω2) = − πp(−1)

8 · 3 · 2 · 1
− π[∆x,yp(−1) + 2px(−1) + 2py(−1) + 2p(−1)]

128 · 3 · 2 · 1
r−4 +O(r−6)

= − 16π

3
+O(r−6).

(5.30)

Similar to (5.11) and (5.12), we have

|Int22 (Ω3)|+ |Int22 (Ω4)|+
∣∣Int22

(
Ωout

)∣∣ = O(r−6). (5.31)

From (5.29),(5.30) and (5.31), we have Int22 (R2) = O(r−6). Similarly, we can also get
Int92 (R2) = O(r−6). Then p2 = O(r−6). Using the same method, we have

p7 = p8 = −16π

3
r−4 +O(r−6), p9 = O(r−6).

Next, we want to solve the linear system J r~c = ~p. To that end, we shall use the expression
of J r in (4.8) after some row and column switching. It is reduced to solve each block
independently. For instance, we solve A1(c1, c10, c6)T = (p1, p10, p6)T . Using Cramer’s rule
and (5.28),

c1 =
1

detA1

∣∣∣∣∣∣
p1 J r

1,10 J r
16

p10 J r
10,10 J r

10,6

p6 J r
6,10 J r

6,6

∣∣∣∣∣∣ ≈ r4

∣∣∣∣∣∣
O(r−

13
2 ) 1 O(r−

9
2 )

O(r−
13
2 ) 1 O(r−

9
2 )

O(r−
9
2 ) O(r−

9
2 ) 1

∣∣∣∣∣∣ = O(r−
5
2 ). (5.32)
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Using the same method, we have c10 = O(r−
5
2 ) and c6 = O(r−

9
2 ). Moreover, one can verify

that

c1 − 2c10 =
1

detA1

∣∣∣∣∣∣
p1 J r

1,10 + 2J r
11 J r

16

p10 J r
10,10 + 2J r

1,10 J r
10,6

p6 J r
6,10 + 2J r

16 J r
6,6

∣∣∣∣∣∣ ≈ r4

∣∣∣∣∣∣
O(r−

13
2 ) O(r−6) O(r−

9
2 )

O(r−
13
2 ) r−4 O(r−

9
2 )

O(r−
9
2 ) O(r−

9
2 ) 1

∣∣∣∣∣∣
= O(r−

13
2 ).

(5.33)

To solve A2(c2, c9, c5)T = (p2, p9, p5)T , we use Cramer’s rule to obtain

c2 =
1

detA2

∣∣∣∣∣∣
p2 J r

29 J r
25

p9 J r
99 J r

95

p5 J r
59 J r

55

∣∣∣∣∣∣ ≈ r4

∣∣∣∣∣∣
O(r−6) 1 O(r−

9
2 )

O(r−6) 1 O(r−
9
2 )

O(−9
2
) O(r−

9
2 ) 1

∣∣∣∣∣∣ = O(r−2) (5.34)

and c9 = O(r−2), c5 = O(r−
9
2 ). Furthermore, similar to the approach of (5.33), we can

derive c2 + 2c9 = O(r−6).

To solve A3(c3, c8)T = (p3, p8)T ,

c3 =
1

detA3

∣∣∣∣p3 J r
38

p8 J r
88

∣∣∣∣ ≈ ∣∣∣∣O(r−
9
2 ) r−2

r−4 1

∣∣∣∣ = O(r−
9
2 ),

c8 =
1

detA3

∣∣∣∣J r
33 p3

J r
83 p8

∣∣∣∣ = −1

4
r−4 +O(r−6).

(5.35)

Using p3 = −p4, p7 = p8 and J r
38 = −J r

47, we obtain c4 = −c3 and c7 = c8. �

Proof of Lemma 4.6. Making the following expansionˆ
R2

|∇(f rKr)|2 =

ˆ
R2

|∇f r||Kr|2 + (f r)2|∇Kr|2 + 2f r∂αf
rKri · ∂αKri . (5.36)

Integration by partsˆ
R2

2f r∂αf
rKri · ∂αKri =

ˆ
R2

∂α(f r)2Kri · ∂αKri = −
ˆ
R2

(f r)2[Kr ·∆Kr + |∇Kr|2].

Since Kr ∈ L[S(Ψ[~αr])], we haveˆ
R2

(f r)2Kr ·∆Kr = −
ˆ
R2

|∇S(Ψ[~αr])|2|f rKr|2. (5.37)

Inserting the above two equations back to (5.36), we getˆ
R2

|∇(f rKr)|2 − |∇S(Ψ[~αr])|2|f rKr|2 = −
ˆ
R2

|∇f r|2|Kr|2. (5.38)

Next we want to compute the right hand side. Recall that Kr = 2Kr
2 −Kr

9 . Then

|Kr|2 = 4|Kr
2 |2 − 4Kr

2 ·Kr
9 + |Kr

9 |2 =
4|ψr|2

(1 + |ψr|2)2

[
4− 8xy

r2
+

(x2 + y2)2

r4

]
=

4|ψr|4

r4(1 + |ψr|2)2
.

(5.39)
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Introduce the notation A1 = {(x, y) : r ≤ (x− r)2 + (y− r)2 < r2} and A2 = {(x, y) : r <
(x+ r)2 + (y + r)2 < r2}. Recall that f r is defined in (4.16). Then

|∇f r|2 =
4

| log r|2
1

(x− r)2 + (y − r)2
χA1 +

4

| log r|2
1

(x+ r)2 + (y + r)2
χA2 (5.40)

where χA1 is the characteristic function of set A1. Thenˆ
A1

|∇f r|2|Kr|2 ≤ 16

| log r|2r4

ˆ
A1

1

(x− r)2 + (y − r)2

|ψr|4

(1 + |ψr|2)2

=
16

| log r|2r4

ˆ
A1

[(x+ r)2 + (y + r)2]|ψr|2

(1 + |ψr|2)2

≤ 16

| log r|2r4
C| log r| = C

| log r|r4
,

(5.41)

for some uniform constant C. Similar estimate holds on A2. Thereforeˆ
R2

|∇f r|2|Kr|2 =

ˆ
A1

|∇f r|2|Kr|2 +

ˆ
A2

|∇f r|2|Kr|2 = O(
1

| log r|r4
). (5.42)

On the other hand, applying Corollary 5.3, one getsˆ
R2

|∇S(Ψ[~αr])|2|f rKr|2 =

ˆ
Ω1∪Ω2

|∇S(Ψ[~αr])|2|Kr|2 +

ˆ
Ω3∪Ω4

|∇S(Ψ[~αr])|2|f rKr|2

= 4J r
22 − 4J r

29 + J r
99 +O(r−6) =

64π

3
r−4 +O(r−6).

�
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