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Abstract

The relatively simple Ohta-Kawasaki density functional theory for diblock copolymer melts
may be analytically studied in many situations by singular perturbation techniques. We consider
a single sphere pattern that constitutes a cell in the important spherical phase of a diblock
copolymer. We show the existence of the sphere pattern as a solution of the Euler-Lagrange
equation of the free energy. Quantitative properties of the solution are derived, from which we
determine the optimal size of the sphere. Moreover there is a stability threshold so that if the
sphere is larger than the threshold value, the sphere pattern is no longer stable. The same issues
are discussed for a spherical lamellar pattern, which may be viewed as a defective lamellar phase.
Here we reduce the existence and the stability problems to some finite dimensional problems.
Quantitative information on the solution of the original infinite dimensional problem is obtained.

Keywords: Ohta-Kawasaki diblock copolymer theory, sphere pattern, spherical lamellar pattern,
existence threshold, stability threshold.

1 Introduction

A diblock copolymer melt is a soft material, characterized by fluid-like disorder on the molecular
scale and a high degree of order at a longer length scale. A molecule in a diblock copolymer is a linear
sub-chain of A-monomers grafted covalently to another sub-chain of B-monomers. Because of the
repulsion between the unlike monomers, the different type sub-chains tend to segregate, but as they
are chemically bonded in chain molecules, segregation of sub-chains cannot lead to a macroscopic
phase separation. Only a local micro-phase separation occurs: micro-domains rich in A and B
emerge as a result. These micro-domains form morphology patterns/phases.

There are two types of phase separations in a diblock copolymer system: weak segregation and
strong segregation. The weak segregation occurs when the temperature is relatively high. The micro-
domains are small and the there are no clear interfaces separating them. When the temperature is
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lower, strong segregation is observed. The micro-domains become larger and they are separated by
narrow interfaces.

The self-consistent mean field theory [10, 12, 13, 14, 16, 17] is the most successful theory in
modeling and capturing aspects of the phase separation. It consists of five equations for five field
variables: two density fields of A- and B-monomers, two mean fields on A- and B-monomers sim-
ulating the interaction between the molecular chains, and a Lagrange multiplier field. Two of the
five equations are nonlocal, while the remaining three are algebraic [21]. The theory is derived from
a microscopic description of interacting polymer chains. Based on a variational principle, the Gibbs
canonical distribution is approximated by the distribution generated by the mean fields [6]. This
theory is quite complex to which only numerical studies have been done. One of them is the spectral
method of Matsen and Schick [21] that yields predictions with striking resemblances to experiments.

A limitation of such techniques or other test field based methods is that they proceed by assuming
a periodic structure, computing its free energy and then comparing that free energy to the free energy
of other candidate structures [3]. The patterns found by such methods in general do not exactly
solve the self-consistent equations. However finding analytic solutions to these equations is very
difficult due to the complexity of the two integral equations.

The density functional theory of Ohta and Kawasaki [26] is a much simpler model. The free
energy of a diblock copolymer melt is an elegant functional of the A-monomer density field only (2.2).
Unlike an earlier density functional theory of Leibler [19] that only deals with the weak segregation
region, the Ohta-Kawasaki theory deals with both the weak- and strong-segregation phenomena.
The Euler-Lagrange equation of the Ohta-Kawasaki free energy is an integro-differential equation
(2.9), which can also be viewed as a system of two elliptic partial differential equations (2.11-2.12).

A close examination of the derivation of the theory [6] shows that it is a simplified version of
the self-consistent mean field theory. Two approximation steps are used. First the dependence of
the monomer density fields on the mean fields is linearized. The approximation is less accurate if
the temperature is too low. Then this linear dependence is reversed so that the mean fields depend
linearly on the density fields. The second approximation is used here so that only the long wave
and the short wave effects of this dependence (in the Fourier space) are retained. Intermediate wave
effects are ignored.

Despite the shortcomings associated with these approximations, the density functional theory
at least qualitatively captures the properties of diblock copolymers [20, 9]. Although Ohta and
Kawasaki only applied their theory to test fields and did not construct exact solutions of the Euler-
Lagrange equation, we will show that the simplicity of the theory actually makes it possible to study
exact solutions analytically.

The weak segregation regime may be studied by the bifurcation theory rather easily. One starts
with a uniform state and linearizes the Euler-Lagrange equation at the uniform state. For some
parameter values the principal eigenvalue of the linearized problem is zero. Then a non-uniform
state bifurcates from the uniform state. If one can show that this non-uniform state is stable, then
it gives the profile of a weakly segregated pattern.

In this paper we use the density functional theory to study the more complex strong segregation
phenomenon. Strongly segregated patterns are too different from the uniform state to be treated as
bifurcation solutions. The appropriate mathematical theory is the singular perturbation theory in
calculus of variations and differential equations. It allows one to go beyond the test field argument
and find exact solutions, or at least leading order terms of exact solutions, to the Euler-Lagrange
equation of the free energy functional [25, 28, 30, 29, 33, 38, 37, 8, 5, 15]. Often these solutions may
be carefully analyzed and their stability in space can be determined [31, 36].



Figure 1: The spherical phase. The dark color indicates the concentration of B-monomers, and the
white color indicates A-monomers. Not reflected in this figure is the body centered cubic pattern in
which the spheres pack.

The first strongly segregated pattern we study is the single sphere pattern. This pattern arises
from the spherical phase of a diblock copolymer. When the monomer fraction is skewed in favor
of A-monomers, the B-monomers form spherical micro-domains, Figure 2. For a wide range of
sphere size we will find a solution to the Euler-Lagrange equation whose shape matches that of a
sphere. After we find the free energy of the solution, we discover that there is an optimal size for
the sphere. The sphere of the optimal size has lower free energy than that of any other sphere.
Then we linearize the Euler-Lagrange equation at the sphere solution and study the spectrum of the
linearized operator. We will show that there is an upper bound for the size of the sphere. Beyond
the upper bound, the sphere can not be stable.

The second pattern is the spherical lamellar pattern. This pattern may be viewed as a defective
lamellar pattern. Other defective patterns are considered in [41] where a model of a forth order
differential equation is used. Given the number of interfaces we look for a solution that consists
of spherical layers of micro-domains separated by narrow interfaces. In this case the existence
and stability problems are drastically reduced to some finite dimensional problems. The reduced
problems are easily solved by computer. Note that here we apply numerical studies to the reduced
finite dimensional problems. They yield far more accurate results compared to direct numerical
studies of the infinite dimensional problems. One obtains quantitative information on the solution.
We again determine the stability threshold. Moreover we find an existence threshold.

We emphasize that all the results presented in this paper are mathematically rigorous. The
informal style adopted here when we describe perturbation expansions can be changed to a strict
mathematical framework, part of which is known as the I'-convergence theory [7, 23, 22, 18].



2 Free energy

The density functional theory of Ohta and Kawasaki views the free energy of a diblock copolymer
melt as a functional of the relative A-monomer density field u(z) where z is a point in a sample
D. The melt is assumed to be incompressible, so the number density of the combined A- and
B-monomers is uniform in space. w(z) is the A-monomer number density at z divided by the
combined A- and B-monomer number density. When u(x) = 1 (or u(z) = 0, respectively), the point
x is occupied by A-monomers (or B-monomers, respectively); if 0 < u(z) < 1, a mixture of A- and
B-monomers occupies . Let N4 be the number of the A-monomers in a chain molecule and Np
be the number of the B-monomers. N = N4 + Ng is the polymerization index. u must satisfy the
constraint

u=a (2.1)
where u = ﬁﬁ Jp u(x) dz is the average of u, and a = N4/N is the A-monomer fraction in a chain
molecule.

In a dimensionless form the free energy is written as
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The physical parameters of the diblock copolymer system include

/D[%W + W) + T (=A)7 (o)) de. (22)

1. The polymerization index N that is the number of all the monomers in a chain molecule. We
consider the ideal situation where this N is the same in all molecules;

2. The A-monomer number N4 and the B-monomer number Np in a chain. Again N4 and Np
are the same in all molecules;

3. The Kuhn statistical length [ measuring the average distance between two adjacent monomers
in a chain molecule, which is the same regardless the monomer types;

4. The dimensionless Flory-Huggins parameter x that measures the repulsion between unlike
MONomers;

5. The volume V of the sample.
The Flory-Huggins parameter x is defined by
Vaa + VBB

x =B(Vap — 5 ) (2.3)

where Vap (and Vaa, Vep respectively) is the energy cost to bring an A-monomer (A-monomer
and B-monomer respectively) and a B monomer (A-monomer and B-monomer respectively) close to
each other. This number is positive because the repulsion force between unlike monomers is stronger
than those between like ones. g is the inverse temperature, and hencey is inversely proportional to
temperature.

In [6] the three dimensionless parameters €, v and a in (2.2) are related to the physical parameters
via

D2/3l2
e - Dl - (2.4)
12a(1 — a)xV
183V
v o= A NIRRT (2.5)
|D|a3/2(1 — a)3/2X1/2N213
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The sample domain D in (2.2) has already been re-scaled. In (2.4) and (2.5) |D| is the volume
of D after re-scaling. One could take it to be 1, but in this paper D will be a ball, so it is more
convenient to have the the radius of D to be 1 and |D| = 4x/3.

The re-scaled free energy (2.2) is

BF
(2.2) T (2.6)
where F is the free energy and pg the average number of monomers per volume [6]. If n is the number
of the molecular chains in the melt, then py = % Hence (2.2) is the free energy per monomer
multiplied by 8/x.
The exact form of W is not given in [26]. In [6] an approximation
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W(u)Z{ u—u? ifu€l0,1] 2.7)

o0 otherwise

is found. A more accurate W should be a smooth double well function of equal depth. It must have
a global minimum value 0 achieved at 0 and 1. It must have the symmetry W(u) = W(1 — u). 0
and 1 are non-degenerate: W' (0) = W"(1) > 0.

Central in (2.2) is the third term in the integrand. It is nonlocal and models the long range
interaction between monomers due to the connectivity of the molecular chains. The operator (—A)~!
is the square root of the inverse of —A with the natural boundary condition. Alternatively one may
write

/D (~A) 2 (u — )2 dar = /D /D (u(®) — )Gz, y) (uly) — a) dady (2.8)

where G is the Green function of —A with the natural boundary condition.

The second term in (2.2) can be regarded as the internal energy field of the system, and the
first and the third terms give the entropy of the system. As mentioned in the introduction we have
only taken the long wave and short wave effects, modeled by the V and (—A)*l/ 2 operators, into
consideration.

The first term in the integrand of (2.2) penalizes any space non-uniformity. The second term
prefers u being either close to 0 or close to 1 everywhere. The best profile for the third term is to
have u close to a everywhere. However this is not a good profile for the second term. The second
best profile for the third term is for u to have many oscillations. Local minimizers of the free energy
result from the three competing effects.

The Euler-Lagrange equation of (2.2) is a nonlinear integro-differential equation:

—2Au+ f(u) + ey(~=A)"H(u—a) =nin D (2.9)
subject to the natural boundary condition
Oyu=0on 0D. (2.10)

Here f = W'. The constant 5 on the right side of (2.9) is a Lagrange multiplier because of the
constraint (2.1). The equation (2.9) may also be written as a system of elliptic partial differential
equations:

—EAu+ flu)+eyw = 7 (2.11)
—Av = u-—a (2.12)



subject to the conditions
Gu=0v=00n0D, u—a=v=0. (2.13)

Note that (2.9) always has the uniform solution u(z) = a. When ¢ is large, corresponding to
high temperature, this solution is stable and it models the disordered phase. One may decrease € to
a value so that the principal eigenvalue of the linearized problem at u(z) = a becomes 0. Then one
finds a non-uniform solution bifurcating out of the uniform solution. This bifurcation solution gives
the profile in the weak segregation regime and the corresponding € identifies the parameter range
for weak segregation.

However in the strong segregation regime € is much smaller. In this case the free energy (2.2) is
mostly easily analyzed in the parameter range

e < 1 (2.14)
vy o~ 1L (2.15)

Here the uniform solution u(x) = a has much higher free energy than those of many other states and
is hence thermodynamically un-favored. Under (2.14-2.15), we are in the strong segregation regime
and have taken the size of the sample to be of order

V ~a®?(1 - a)* 22 N2, (2.16)

We will see that in the parameter range (2.14-2.15) the number of micro-domains is of order 1.
Therefore the right side of (2.16) also predicts the size of a micro-domain.

Having a small € makes (2.9) a singular perturbation problem. Although the singular perturba-
tion theory is much harder and less mature than the regular perturbation theory, a great deal of
quantitative properties of solutions to (2.9) can be obtained, using the existing theoretical techniques
in the theory. Some problems are solved exactly in the leading order, and some other problems are
reduced to much simpler finite dimensional problems and are accurately solved with the help of
computer.

3 Sphere pattern

When the monomer fraction a is close to 1, the diblock polymer typically exists in the spherical
phase. B-rich micro-domains form spheres and pack in a body centered cubic pattern. Here we
study a single sphere based on the model (2.2).

3.1 Existence

When one takes the domain D to be a unit ball, a radially symmetric solution u(r) of (2.9) is found
where 4 now is a function of r = |z|, Figure 2. A narrow interface, whose thickness is of order e,
exists at some 71 where u(r;) = 1/2. The leading order of r; is determined by (2.1):

ri = (1-a)/? + O(e). (3.17)

Inside the interface u(r) is close to 0 and outside u(r) is close to 1. The profile of u near r; is
described by H(™) where H is a function that solves

—H" + f(H) =0 (3.18)



Figure 2: A single sphere solution with the natural boundary condition in the unit ball.

with the conditions H(—o00) = 0, H(o0) = 1, and H(0) = 1/2.
With more effort we find the next term in the inner asymptotic expansion of u. Denote this term
by P so that

u(r):H(r_erl)+€P(r_r1)+0(€2)' (319)

P is the solution of ofH! 2
—P'+ fI(H)P — ——+ T—T =0, P(0) =0. (3.20)

1 1

The definition of P involves 1. Because 1/ry is the mean curvature of the interface, we see that
the curvature affects the inner expansion of u in the € order but not in the leading order, for H is
independent of 7.

In (3.20) we have introduced a constant 7, which is known as the interface tension. For a general

w,
T:/ V2W (s)dz, (3.21)
0

and for (2.7) we have

Vo

=5

This value of 7 differs from the one obtained in [11] by a mean field theory.
The free energy of this solution may be viewed as a sum of two parts. The first part comes from

the two local terms of (2.2) and is equal to

T

(3.22)

drrite + O(€?). (3.23)

Note that the first term on the right side is the area of the interface times 7 times e.
The second part of the free energy comes from the nonlocal term of (2.2) and is equal to

273 (r3 — 3r1 + 2)ve

T + O(€). (3.24)




a .5 | 525 | .55 | .BT75 6| 625 | 65| .675 | .7 |.725
Yo | 140 | 130 | 122 | 115 | 109 | 104 | 100 97 | 95 93

a|.75|.7T75 | 8| .825 | .85 | .875 9 1.925 | 95 | 975
Yo | 92 92 | 93 95| 99| 106 | 117 | 137 | 176 | 290

Table 1: The values of v, for various a.

Note that the free energy of the disordered phase modeled by the uniform solution u(z) = a is
W (a)|D|, a quantity of order 1, which is much larger than the free energy of the sphere pattern
solution which is of order e. We are assured that (2.14-2.15) give an ordered phase.

3.2 Optimal size

There is a sphere pattern solution of (2.9) for any 7 as long as € is sufficiently small. This means
that there is a solution for a wide range of V' of the sample (the volume of the B-monomer sphere in
the middle is then (1 — a)V). It is natural to ask for which value of V' the sphere pattern is mostly
energetically favored. Intuitively we know that V' can not be too large or too small. By (2.4-2.5) we
write € = €V ~1/3 and 4 = 4V so that ¢ and 4 no longer depend on V. Then by (3.23-3.24) we find
that the leading term of the re-scaled free energy of a sphere pattern is

27ry (r$ — 3ry + 2)7€V2/3

dmrireV /3 4 E (3.25)
With respect to V', (3.25) is minimized at
15
V=V,= T (3.26)

r3(r} —3r1 +2)7°

The optimal size of the sample is now given by (3.26). It is more convenient to express this in
terms of the dimensionless . The optimal v is denoted by 7, which is just

157

= ~ = —= - -2
Yo =Vo r(r} — 3r1 +2) (3:27)

Table 1 reports the values of ~, for various a.

3.3 Stability

We return to a sphere pattern solution with a general v which is not necessarily equal to 7,. Although
a sphere solution of (2.9) is found for any ~, we will see that it is stable only if ~ is not too large. A
stable solution of (2.9) is a free energy local minimizer, which corresponds to a meta-stable state of
the physical system. An unstable solution can not be observed in experiments.

The stability analysis requires that we solve the eigenvalue problem

—€Ap + f'(u)p = f'(w)p + ev(=A) 1o = Ap. (3.28)



The left side of (3.28) comes from linearizing the Euler-Lagrange equation (2.9) at a sphere pat-
tern solution u. The eigenvalues A are classified into A\; where [ = 0,1,2,... is the mode. The
eigenfunctions take the form

(@) = 61 (r)Yim (6,0) (3.20)

where m = 0,41, ..., £1, and the Y},,,’s are the spherical harmonics. An eigenvalue either approaches
0, a critical eigenvalue, or stays positively away from 0 when ¢ — 0. Hence we will only consider the
critical eigenvalues.

For the [ = 0 mode there is one critical eigenvalue of order e. It is of multiplicity 1 and has the
form . )

3f'(0)rie
o = 3/ (O)rie + O(€?). (3.30)
T

This eigenvalue is positive, and [ = 0 is a stable mode. The eigenfunction associated with this
eigenvalue is radially symmetric. We write it as ¢o(r). It has the expansion

do(r) = H'("—4) + P () = [H'(— —

) +€P'(

)]+ O(€). (3.31)

Here H' and P’ are the derivatives of H and P, defined in (3.18-3.19), respectively.
For [ = 1 there is one critical eigenvalue of order €2. Tt is of multiplicity 3 and has the form

yrie?

A1 +O(é%). (3.32)

This mode is again stable. The eigenfunctions associated with this eigenvalue are (x/7)¢(r),
(y/r)¢1(r), and (z/r)¢1(r) where ¢; has the expansion

r—nmnr

é1(r) = H'( )+eP'(%) +0(e). (3.33)

€

For each [ greater than 1, there is one critical eigenvalue of order €2. It is of multiplicity 2/ + 1
and has the form

A= V€% + O(e3). (3.34)

(I+1)-2 l(r‘f —r (14 1)r2H? 1
r? T 3 1(20+1) 204+1

The quantity in (3.34) may not always be positive. One finds a threshold s so that when v < s
all the eigenvalues in (3.34) are positive, but when v > ~, at least for one [ the eigenvalue )\; in
(3.34) is negative. Therefore the sphere solution v is stable if v < «; and unstable if v > ~,. The
eigenfunctions associated with \; are ¢;(r)Yy,, with m = 0,=%1, ..., £l. ¢; has the same expansion as
in (3.33).

The leading order of «, is determined from (3.34) following these steps:

1. For each I > 2, set the leading term

40 =2 3o (0
1

2 3 1(20+1) 204+ 1

) (3.35)
L5

in (3.34) to be 0, and solve for v. Denote the solution for v by ;. If this 4; is less than or
equal to 0, the mode [ does not yield a zero eigenvalue. Discard such #;.



a .5 | 525 | .55 | 675 .6 | 625 | .65 | .675 7725
vs | 463 | 425 | 372 | 336 | 312 | 296 | 276 | 250 | 234 | 225
l 5 5 4 4 4 4 3 3 3 3

a| .75 | .775 .8 .825 | .85 | .875 91 .925 | 95| .975
vs | 222 | 225 | 232 | 216 | 209 | 215 | 237 | 283 | 387 | 714
l 3 3 3 2 2 2 2 2 2 2

Table 2: The (leading order) values of «y, for various a and the corresponding mode .

Figure 3: A perfect lamellar pattern.

2. Minimize the remaining 4;’s from the last step with respect to I. The minimum is achieved at
a 4, which is the leading order of ~;.

Table 2 reports s for various a. At y = -y, the smallest eigenvalue is 0. The mode [ of this eigenvalue
is also given in Table 2.

We compare the stability threshold 7, to the optimal size 7, in Table 1. All the v,’s are signif-
icantly less than the corresponding v,’s. Hence, not surprisingly, the optimal size is in the stable
region.

4 Spherical lamellar pattern

When a is close to 1/2, the diblock copolymer exists in the lamellar phase. The perfect lamellar
pattern consists micro-domains separated by parallel flat planes, Figure 3. However one often
observes the lamellar pattern in defective forms. The spherical lamellar pattern, Figure 4, is one of
them.

Because it involves many interfaces, the study in this section is more complex. Nevertheless we
will show that by singular perturbation argument, solving the Euler-Lagrange equation (2.9) and
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Figure 4: A cross section of a spherical lamellar pattern with two interfaces.

analyzing the stability of the solution are reduced to studying some finite dimensional problems.
These reduced finite dimensional problems can be easily and accurately solved by computer.

4.1 Existence

Unlike the existence problem for the sphere pattern where no condition on + is needed, the existence
of a spherical lamellar pattern as a solution of (2.9) requires that +y is not too small. We now have
an existence threshold vk .. Given the number of interfaces K > 2 a K-interface spherical lamellar
pattern solution of (2.9) exists if v > vk,e. If ¥ < vk, no K-interface spherical lamellar solution
can exist.

When v > vk, and a K-interface solution w exists, we define the interfaces r;, j = 1,2,..., K,
to be such that u(r;) = 1/2. They have the expansion

rj =13 +0(e). (4.36)
The leading order r;.”s are determined by solving a system of K + 1 nonlinear equations
T (=1)y o
,,«_0+ 9 V(T?;T?,Tg,,”,roK) = (—1)‘77]0, J :1,2,”‘,}{
J
K
. 1—(=1 K
N (4.37)
j=1

for 9, r9,...r%, and n°. Here 7° is a Lagrange multiplier. The quantity V in (4.37) is defined as

follows. Given 72, r9.....r% . one solves the equation
17 "2 " K»

_p"_ %V =U—a, V'(0)=V'(1)=0,V =0, (4.38)

where
Ur) =0, if r € (0,r9), =1ifr € (#2,79), ... (4.39)
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a S| 825 | .55 | 675 .6 | 625 | .65 | .675 J)725
Yoo | 171 | 175 | 180 | 186 | 194 | 204 | 216 | 230 | 249 | 271

a | .75 | .775 8| .825 | 85| .875 9] .925 95 | 975
Yo, | 300 | 337 | 386 | 453 | 549 | 694 | 932 | 1379 | 2432 | 6590

Table 3: The leading order values of v, . for various a.

Denote this solution by V(r;r?,...,7%) where we emphasize in its arguments that V depends on
79, In (4.37) this V is evaluated at r9.

We have observed that the determination of r;, an infinite dimensional problem, is reduced to
the determination of 79, the leading order of r;. The equations in (4.37-4.37) for r form a much
easier finite dimensional problem.

The system (4.37-4.37) is the Euler-Lagrange equations of the minimizer of the function

K 1
3
J(q17 q2, aqK) =37 E ql2c + _’y/ Vl(r;qla ...,qK)2'f'2d'f' (440)
k=1 2 Jo

subject to the constraint

2, 3 k3 1=(=1D%
—gGi+ @+ -+ (D) g + —y = (4.41)

In the mathematics literature J is known as the T-limit of (47e/3) 1. Note that for each K, J is
a finite dimensional problem. The I'-limit theory often reduces the study of the infinite dimensional
problem I to the study of J [28, 29].

Whether J has a minimizer depends on . In general J has a minimizer if « is large, and J does
not have a minimizer if  is small. The border line is exactly the leading order of yx .. Hence the
leading order of vk, is found by analyzing J. For K = 2, Table 3 reports the leading order of v, .
for various a.

Let us consider the K = 2 case in more detail. We introduce y so that

y=q, y+a=g. (4.42)

J can be viewed as a function of y only without the constraint (4.41). Take a = 1/2. For v = 100,
J is monotonically increasing in y, Figure 5. In this case of v < 72, since y2 . & 171 from Table
3, there is no 2-interface spherical lamellar solution of (2.9). When v = 180 > 72, J is no longer
monotone, Figure 6. In this case J has a local minimum, and (2.9) has a 2-interface spherical lamellar
solution. If we further increase v to 200, the local minimum of .J becomes a global minimum, Figure
7. The spherical lamellar solution continues to exist.

We now return to the general solution with K interfaces. Near each interface r; the solution u
again has a profile

r—=rj r—rj

)+ €P;( ) 4+ O(€?) (4.43)

€
when j is odd and

T—Tj T—Tj

)+ Py (———10) 4 0(e) (4.44)
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Figure 5: J as a function of y is increasing when a = 1/2 and v = 100.

Figure 6: J as a function of y has a local minimum when a = 1/2 and -y = 180.

Figure 7: J as a function of y has a global minimum when a = 1/2 and ~ = 200.

13



when j is even. H is the same function defined in (3.18) and P; is define by (3.19) with r; replaced
by Tj.
The free energy of this solution is

471'7'27‘ + 2y / VI(r)*r? drle + O(e2). (4.45)

4.2 Stability

Similar to the sphere pattern solution, a K-interface spherical lamellar solution is stable only if ~
is not too large. More precisely for any given number of interfaces K, there is a stability threshold
YK,s, which is larger than the existence threshold vk ., such that the K-interface spherical lamellar
solution is stable if yx . < v < vK,s. The solution becomes unstable if v > yx 5.

To verify these statements and determine yx s we again turn to the linearized problem (3.28).
But this time w is the K-interface spherical lamellar solution found in Section IVA. The eigenvalues
are classified into A;, I = 0,1, .... For each [ the non-critical eigenvalues all stay positively away from
0, so one needs only to find the critical eigenvalues to determine whether w is stable.

When [ is equal to 0, there exist K critical eigenvalues. One of them is of order € and has the
expansion

' K 0\2
/\0 — 3f (O) Ek:l(rk) €+O(€2), (446)
T
which is positive. This eigenvalue is of multiplicity 1. The associated eigenfunction is
K
do(r) = YA+ ep) () () + P 1 0. (@47)
j=1

2

The remaining K — 1 I = 0 mode critical eigenvalues are of order ¢* and of multiplicity 1. Let

us expand them as
Ao = M0€2 + 0(63). (448)

The determination of pg is more complex.
First we define a K by K matrix M whose kj-entry is

(~F + 1DV D) +1Gor D) i k= w1)
vGo(ry,r3) if k#j
where G is a Green function:
s2r? 952 st :
s 4s—2+% if r<s
Go(r, s) = 5 2 . 4.50
R Eaen S o
Then we set a non-standard inner product
K
(A,B) =" AxBy(r9)>. (4.51)
k=1



Let ey, ea,..., ex be an orthonormal basis with respect to the inner product (4.51) and

1,1,...,1
e = ( (it i) ) . (452)
VI{((,1,...,1),(1,1,...,1))
The pg’s are determined from a K — 1 dimensional eigenvalue problem:
K
> dm N = po7dn, n=2,3,..., K. (4.53)

m=2

The K — 1 by K — 1 matrix N is obtained by projecting the K by K matrix M into the K —1
dimensional subspace spanned by es, es, ..., ex:

Ny = (Mep,e,), m,n=2,3,.... K. (4.54)

The inner product in (4.54) is the one defined in (4.51).

These critical eigenvalues turn out to be all positive. This follows as a consequence of Section
IVA. That N is positive definite is equivalent to the fact that 9 minimizes .J, defined in (4.40). The
latter condition is fulfilled when v > vk .. Hence | = 0 is a stable mode. To each one of these k —1
Ao’s, the corresponding eigenfunction ¢ (r) is given with the help of the eigenvector (da, ds, ..., dk)
of (4.53):

ZCJ[H'

( . S+ o), (4.55)

where

K
(¢1,¢2, -y CK) = Zdnen. (4.56)
n=2

When [ is greater than 0, there are K critical eigenvalue for each {. All of them are of order €2.
If we write
A =€+ O(e%), (4.57)

then the y;’s are found by solving the K-dimensional eigenvalue problem

K

I(1+1)-2

% + (=) W(Ed)er + fyZGl(rg,r?)cj =wrer, k=1,2,.., K (4.58)
k

=1

[

where G is another Green function:

+ ()57 ylif r<s

(2l 1 lZl 1
Gi(r,s) = { e L (4.59)
2+ (T 2l+1 + l(glir);”)) if r>s

These critical eigenvalues are not always positive. There exists a stability threshold g, so that
when vk, < v < Vk,s, all the critical eigenvalues are positive and hence the K-interface solution u
is stable, and when v > vk 5 at lease one critical eigenvalue is negative and the K-interface solution
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a .5 | .525 .55 | 575 .6 | 625 | .65 | .675 7]0.725
V2,5 | 1162 | 1067 | 1002 | 956 | 931 | 919 | 924 | 943 | 951 | 939

a | .75 | .775 8| .825 .85 | .875 9] .925 95 975
Yo,s | 952 | 999 | 1077 | 1199 | 1393 | 1711 | 2241 | 3254 | 5684 | 15454
l 2 2 2 2 2 2 2 2 2 2

Table 4: The (leading order) values of v , for various a and the corresponding mode I.

u is unstable. To each ); the corresponding eigenfunctions are ¢;(r)Y,, m = 0,+1,...,+l. ¢ is
determined with the help of the eigenvectors ¢, in (4.58):
X r—r; r—r;
u(r) = ch[H’(T’) +eP;(TJ)] + 0(é?). (4.60)

j=1
Table 4 reports the stability threshold values for various a. Note that the v, ,’s are greater

than the corresponding 72 .. Hence there is a range (y2,¢,72,5) for v where the 2-interface spherical
lamellar pattern is stable.

5 Discussion

The single sphere pattern studied in Section 3 only gives a limited picture of the spherical phase of
a diblock copolymer, where multiple spheres co-exist. Moreover the spheres are observed to pack in
the body centered cubic pattern. An analytic study of such a multi-sphere pattern requires more
refined singular perturbation techniques. The main difficulty is that the spheres in such a phase are
only approximately round. The following argument illustrates this point.

It is known that even in a general domain, which we call Q, (2.9) has a singular limit as e — 0
[28]. The leading order outer expansion u° of u, a solution of (2.9), has the property that for a.e.
r € Qul(z) =0o0ru’(z) =1 and u9 = a. Let S be the union of the interfaces that separate
the regions u® = 0 (B-rich micro-domains) from the regions 4® = 1 (A-rich micro-domains), and
v? = (=A)~}(u® — a). In the singular limit the thickness of the interfaces is 0. Then one requires
that at every z € S

7k(z) +y0°(z) = n° (5.61)

where k(z) is the mean curvature of S at x viewed from the u® = 1 side, and 7° is a Lagrange
multiplier to be determined. This is the generalization of (4.37). The constraint (4.37) is replaced
by u® = a. If the free boundary problem (5.61) admits an isolated stable solution u°, then near
u® there exists a local minimizer solution u of (2.9). However (5.61) is still a challenging nonlocal
geometric problem. Even though Figure 1 (3) suggest that we look for solutions with multiple
spheres, (5.61) implies that for such a solution the curvature of the interface of a sphere is in general
not constant (there is the impact of v°), i.e. the spheres are not exactly round, unless we deal with
the one sphere or the spherically lamellar solutions in a ball as in this paper.
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Figure 8: A cross section of a wiggling sphere solution, and a cross section of a wriggled spherical
lamellar solution with two interfaces.

Nevertheless if we consider the situation where a is close to 0 (or 1), then 19 is near constant
throughout €2 and hence k becomes close to a constant and the spheres are approximately round.
The spherical phase in Figure 1 is thus heuristically explained.

The stability threshold 75 (or vk,s) is related to a strong segregation bifurcation phenomenon
(not to be confused with the bifurcation analysis in the weak segregation regime). When ~y passes
vs (or vk,s) a second solution bifurcates out of the sphere (or spherical lamellar) solution. The new
solution differs from the old one by a quantity which is roughly proportional to the eigenfunction of
the 0 principal eigenvalue at v = 7, (or vk,s). Because the eigenfunction has the form (3.29), the
new solution has a wiggling interface (or interfaces). The wiggles are determined by the spherical
harmonics Y}, in (3.29), Figure 8. Such a wiggling interface solution can be regarded as another
defective pattern.

We did not discuss the dynamics of a diblock copolymer system. The purpose of studying the
critical eigenvalues of a solution of (2.9) in this paper is to determine whether the solution is a local
minimizer of (2.2). However the same critical eigenvalues also determine the local dynamics, near
the solution, of the evolution equation

uy = €Au — f(u) — ey(=A)H(u —a) + f(u) (5.62)

with the boundary condition 0,u = 0 on 8D. The eigenfunctions of the critical eigenvalues give
the directions along which the dynamics of (5.62) runs slowly (the eigenfunctions of the non-critical
eigenvalues are directions of fast dynamics).

The critical eigenvalues in this context admit geometric interpretations. For the sphere pattern
the eigenfunction of the critical eigenvalue )¢ in (3.30) is radially symmetric. So the dynamics in
this direction involves only the shape change of u in the radial direction. The eigenfunctions of the
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critical eigenvalue A1 in (3.32) have the forms (z/r)¢1(r), (y/r)é1(r) and (z/r)¢p1(r). They lead to
translations of u in z, y, or z directions in the dynamics. Finally the eigenfunctions of the critical
eigenvalues \;, [ > 1, in (3.34) give rise to oscillations of the interfaces. The same interpretations
are also valid for the spherical lamellar pattern. Because all these eignenfunctions concentrate at
the interface r; by (3.31), (3.33), (4.47), (4.55) and (4.60), the dynamics along the directions of the
critical eigenvalues is localized to the motion of the interfaces.

However (5.62) is only one of many dynamical laws one can associate to a diblock copolymer
system. A more realistic one is the forth-order partial differential equation [2]

ug = A(—=?A + f(u)) — ey(u — a) (5.63)

subject to the boundary conditions d,u = 9,Au = 0 on 8D. (5.63) generalizes the well-known
Cahn-Hilliard equation [4]. An even more complex dynamical law considers a diblock copolymer
melt as a fluid. It adds the velocity field and couples (5.63) to the Navier-Stokes equation of the
velocity field [2].

We are mainly interested in stable solutions of (2.9). However there also exist unstable spherical
lamellar solutions even for v € (Yk,e,7k,s). In Figures 6 and 7 when v > 7, . in addition to the
minimum of J there also exists a local maximum of J. This maximum point corresponds to a unstable
spherical lamellar solution. This unstable solution exists for v > v , as well. The instability of this
solution is caused by the m = 0 mode.

In the functional (2.2) the key ingredient is the nonlocal term. It describes a long range interac-
tion. Many other important physical systems that exhibit self-organization and pattern formation
share the same phenomenon [40]. Examples include charged Langmuir monolayers [1], and smectic
liquid crystal films [39]. Many of the singular perturbation techniques presented here may be applied
to these problems [27, 32, 35, 34]. In all the examples we find periodic structures that consist of
micro-domains delineated by narrow interfaces.

The nonlocal interaction in (2.2) is of Coulomb type [24]. Some of the above mentioned problems
have different nonlocal interactions. In the charged monolayer problem the nonlocal term is written
as

/ / Ge(e, ) (u(y) — a) ddy (5.64)

which assumes the same form as (2.8) does. However the kernel G, is different. If D is a square, i.e.
(0,1)2, with the periodic boundary condition, then G. is translation invariant so that G.(z,y) =
G.(x — y). The Fourier series of G, is

N 1

Ge(§) = I (5.65)
Note that for the diblock copolymer problem the corresponding G on a square is

A 1

G(§) = A (5.66)

Hence as |£| — oo, (5.66) has a faster decay rate than (5.65) does. Many properties, such as the
optimal size discussed in Section ITIB, are sensitive to the decay rates. In general with a slower
decay rate, one finds smaller micro-domains [32].

In the smectic liquid crystal film problem, the nonlocal interaction comes from a coupling effect
with the director field. In this case, because of the unit length constraint on the director field, the
nonlocal interaction is no longer quadratic [34].
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