
SIGN-CHANGING BLOW-UP SOLUTIONS FOR YAMABE PROBLEM

SHENGBING DENG, MONICA MUSSO, AND JUNCHENG WEI

Abstract: Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3. We are
concerned with the following elliptic problem

∆gu+ hu = |u|
4

n−2
−εu, in M,

where ∆g = −divg(∇) is the Laplace-Beltrami operator on M , h is a C1 function on M , ε is a
small real parameter such that ε goes to 0.

1. Introduction

Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3, where g denotes
the metric tensor. We are interested in the following asymptotically critical elliptic equation

∆gu+ hu = |u|
4

n−2
−εu, in M,(1.1)

where ∆g = −divg(∇) is the Laplace-Beltrami operator on M , h is a C1 function on M , ε is a
small real parameter such that ε→ 0.

If h ≡ n−2
4(n−1)Scalg, the problem

∆gu+
n− 2

4(n− 1)
Scalgu = u2

∗−1−ε in M u > 0 in M,(1.2)

is just the so called prescribed scalar curvature problem with ε = 0, where 2∗ = 2n
n−2 . The

existence of a conformal metric with constant scalar curvature on compact Riemannian manifolds
was studied by Yamabe [26], Trudinger [25], Aubin [1] and Schoen [24]. If u is a solution, then
4(n−1)
n−2 is the scalar curvature of the conformal metric g̃ = u

1
n−2 g.

Recently, nonlinear elliptic equations on compact Riemannian manifold have been brought
much attention. Consider the following problem

(1.3) ε2∆gu+ u = |u|p−2u in M,

where (M, g) is a compact, connected, Riemannian manifold of class C∞ with Riemannian
metric g, dimM = n ≥ 3, 2 < p < 2n

n−2 and ε is a positive parameter. In [4], the authors

proved that the problem (1.3) has a mountain pass solution uε which exhibits a spike layer. In
particular, they proved that the maximum point of uε converges to a maximum point of the
scalar curvature Scalg as ε goes to zero. Multiple solutions were obtained in [2] for the problem
(1.3), the authors showed that multiplicity of solutions to (1.3) depends on the topological
properties of the manifold M . More precisely, they showed that problem (1.3) has at least
cat(M)+1 nontrivial solutions provided ε is small enough. Here cat(M) denotes the Lusternik-
Schnirelmann category of M . In [15] the authors showed that for any stable critical point of
the scalar curvature it is possible to construct a single peak solution, whose peak approaches
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such a point as ε goes to zero. In [6] the authors proved that for any fixed positive integer k,
problem (1.3) has a k−peak solution, whose peaks collapse, as ε goes to zero, to an isolated local
minimum point of the scalar curvature. Recently in [16] the authors proved that the existence of
positive or sign changing multi-peak solutions of (1.3), whose both positive and negative peaks
approach different stable critical points of the scalar curvature as ε goes to zero.

Regarding the asymptotically critical case (1.1) on Riemannian manifolds there are also in-
tensive research on the existence of positive blowing-up solutions: see for instance [3] for the
Yamabe equation, [9], [12], [17] for perturbations of the Yamabe equation, [5], [13] for equa-
tions on the sphere, and the references therein. In terms of sign-changing bubbling solutions,
in [21–23], the authors constructed a new kind of sign-changing bubbling solution to (1.1) by
imposing a negative bubble on the top of a positive solution to the Yamabe problem. In [20]
the authors constructed sign-changing bubbling towers for (1.1).

In all the papers mentioned above, the canonical profile of bubbling is the positive solution
to

(1.4) ∆u+ |u|p−1u = 0 in Rn, p =
n+ 2

n− 2
,

which can be written explicitly

(1.5) Uλ,ξ = cn(
λ

λ2 + |x− ξ|2
)
n−2
2 .

In this paper we are interested in gluing more complicated sign-changing solutions of (1.6)
on Riemannian manifolds. More precisely the canonical profile is the sign-changing solution to
(1.1) on the canonical sphere constructed in [7]. In [7] it is proven that there exists an integer
K0 such that for any integer K ≥ K0, a solution solution Q = QK to Problem

(1.6) ∆u+ |u|p−1u = 0 in Rn, p =
n+ 2

n− 2
,

exists. Moreover, if we define the energy by

(1.7) E(u) =
1

2

ˆ
Rn

|∇u|2 dy − 1

p+ 1

ˆ
Rn

|u|p+1 dy,

we have

E(QK) =

 (K + 1)Sn
(
1 +O(K2−n)

)
if n ≥ 4 ,

(K + 1)S3
(
1 +O(K−1| logK|−1

)
if n = 3

as K → ∞, where Sn is a positive constant, depending on n. The solution Q = QK decays at
infinity like the fundamental solution, namely

(1.8) lim
|y|→∞

|y|n−2QK(y) =

(
4

n(n− 2)

)n−2
4

2
n−2
2 (1 + cK)

where

cK =

 O(K−1) if n ≥ 4 ,

O(K−1| logK|2) if n = 3
as K → ∞.

Furthermore, the solution Q = QK has a positive global non degenerate maximum at y = 0. To
be more precisely we have

(1.9) Q(y) = [n(n− 2)]
n−2
4

(
1− n− 2

2
|y|2 +O(|y|3)

)
as |y| → 0,
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and also there exists η > 0, depending on K0, but independent of K, so that

(1.10) η ≤ Q(y) ≤ Q(0) for all |y| ≤ 1

2
,

for any K. Another property for the solution Q = QK is that it is invariant under rotation of
angle 2π

K in the y1, y2 plane, namely

(1.11) Q(e
2π
K ȳ, y′) = Q(ȳ, y′), ȳ = (y1, y2), y′ = (y3, . . . , yn).

It is even in the yj-coordinates, for any j = 2, . . . , n

(1.12) Q(y1, . . . , yj , . . . , yn) = Q(y1, . . . ,−yj , . . . , yn), j = 2, . . . , n.

It respects invariance under Kelvin’s transform:

(1.13) Q(y) = |y|2−nQ(
y

|y|2
).

These solutions are non-degenerate, as proved in [18], in the sense precisely in Section 6.2. More
precisely, the dimensional of the kernels of the linearized operator at Q

−∆ϕ = p|Q|p−1ϕ

is shown to be 3n.
In this paper, we will use QK to construct sign changing solutions to problem (1.1). It was

used to construct sign-changing blowing-up solutions for supercritical Bahri-Coron’s problem in
a bounded domain of Rn in the recently work [19].

For ξ ∈M , we define the function,

φ(ξ) = h(ξ)− n− 2

4(n− 1)

(
1 +

n− 4

3n
K

)
Scalg(ξ).(1.14)

We have the validity of the following result.

Theorem 1.1. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 5. Let
h be a C1 function on M such that the operator ∆g + h is coercive, and let ξ0 be a C1−stable
critical point of the function φ(ξ), and φ(ξ)sign(ε) > 0. Then there exists an integer K0 such
that for any integer K ≥ K0, there exists εK , such that for any ε ∈ (0, εK), the problem (1.1)
has a sign changing solution uε.

This paper is organized as follows. In Section 2, we we introduce some framework and
preliminary results. The proof of the main result is given in Section 3. Section 4 is devoted to
perform the finite dimensional reduction. Section 5 contains the asymptotic expansion of the
reduced energy. In Appendix, we will recall the construction of sign changing solution QK and
its non-degenerate, and we also give some useful technical estimates.

2. Some preliminary results

Let M be a compact Riemannian manifold of class C∞. On the tangent bundle of M it is
defined the exponential map exp : TM →M which has the following properties:

(i) exp is of class C∞;
(ii) there exists a constant r > 0 such that expξ

∣∣
B(0,r)

: B(0, r) → Bg(ξ, r) is a diffeomorphism

for all ξ ∈M .
where B(0, r) denotes the ball in Rn centered at 0 with radius r and Bg(ξ, r) denotes the ball
in M centered at ξ with radius r with respect to the distance induced by the metric g.

Geodesic normal coordinates
expξ : TξM ⊃ V →M
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and an isomorphism
E : RN → TξM

given by any basis of the tangent space at the fixed basepoint ξ ∈M . If the additional structure
of a Riemannian metric is imposed, then the basis defined by E may be required in addition
to be orthonormal, and the resulting coordinate system is then known as a Riemannian normal
coordinate system.

Normal coordinates exist on a normal neighborhood of a point ξ inM . A normal neighborhood
U is a subset ofM such that there is a proper neighborhood V of the origin in the tangent space
TξM and expξ acts as a diffeomorphism between U and V . Now let U be a normal neighborhood
of ξ in M then the chart is given by:

φ := E−1 ◦ exp−1
ξ : U → RN

The isomorphism E can be any isomorphism between both vectorspaces, so there are as many
charts as different orthonormal bases exist in the domain of E.

Fix such an r in this paper with r < ig/2, where ig denotes the injectivity radius of (M, g).
Let C be the atlas on M whose charts are given by the exponential map and P = {ψω}ω∈C be
a partition of unity subordinate to the atlas C. For u ∈ H1

g (M), we haveˆ
M

|∇gu|2 dυg =
∑
ω∈C

ˆ
ω
ψω(x)|∇gu|2 dυg,

where dυg =
√
det g dz denotes the volume form on M associated to the metric g. Moreover, if

u has support inside one chart ω = Bg(ξ, r), then

ˆ
ω
|∇gu|2 dυg =

ˆ
B(0,r)

 n∑
a,b=1

gabξ (z)
∂u(expξ(z))

∂za

∂u(expξ(z))

∂zb

 |gξ(z)|
1
2 dz,

where gξ denotes the Riemannian metric reading in B(0, r) through the normal coordinates

defined by the exponential map expξ at ξ. We denote |gξ(z)| := det(gξ(z)) and (gabξ )(z) is the

inverse matrix of gξ(z). In particular, it holds

gabξ (0) = δab, gξ(0) = Id,

where δab is the Kronecker symbol and

∂gabξ
∂zc

(0) = 0 for any a, b, c.

Since M is compact, there are two strictly positive constants C and C̃ such that

∀ ξ ∈M, ∀ ν ∈ TξM, C∥ν∥2 ≤ gξ(ν, ν) ≤ C̃∥ν∥2.
Hence, we have

∀ ξ ∈M, Cn ≤ |gξ| ≤ C̃n.

Let Lq be the Banach space Lq(M) with the norm

|u|q =
(ˆ

M
|u|q dυg

)1/q

.

Since the operator ∆g + h is coercive, the Sobolev space H2
1 (M) is endowed with the scalar

product ⟨·, ·⟩h defined by

⟨u, v⟩h =

ˆ
M
⟨∇u,∇v⟩gdυg +

ˆ
M
huvdυg(2.1)
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for all u, v ∈ H2
1 (M). We let ∥ · ∥h be the norm induced by ⟨·, ·⟩h, this norm is equivalent to the

standard norm on H2
1 (M).

It is clear that the embedding i : H2
1 (M) ↪→ L2∗(M) is a continuous map. We let i∗ :

L2n/(n+2)(M) ↪→ H2
1 (M) be the adjoint operator of the embedding i, the embedding i∗ is a

continuous map such that for any w in L2n/(n+2)(M), the function u = i∗(w) in H2
1 (M) is the

unique solution of the equation ∆gu+hu = w inM . By the continuity of the embedding H2
1 (M)

into L2∗(M), we have

∥i∗(w)∥h ≤ C|w|2n/(n+2)(2.2)

for some positive constant C independent of w.
In order to study the supercritical, by the standard elliptic estimates (see [11]), given a real

number s > 2n/(n − 2), that is ns/(n + 2s) > 2n/(n + 2), for any w in Lns/(n+2s)(M), the
function i∗(w) belongs to Ls(M) and satisfies

|i∗(w)|s ≤ C|w|ns/(n+2s)(2.3)

for some positive constant C independent of w. For ε small, we set

sε :=

{
2∗ − n

2 ε if ε < 0;
2∗ if ε > 0,

and set Hε = H2
1 (M) ∩ Lsε(M) be the Banach space provided with the norm

∥u∥h,sε = ∥u∥h + |u|sε .
If ε > 0, the subcritical case, the space Hε is the Sobolev space H2

1 (M), and the norm ∥ · ∥h,sε
is equivalent to the norm ∥ · ∥h. And we can compute that there holds

nsε
n+ 2sε

=

{ sε
2∗−1−ε if ε < 0;
2n
n+2 if ε > 0,

(2.4)

Here we note that nsε
n+2sε

= 2n
n+2 − n(n2+2n+2)

n+2 ε+O(|ε|2) for ε < 0 small.

Then by (2.2) (or (2.3) in the supercritical case), equation (1.1) can be written as

u = i∗(fε(u)), u ∈ H2
1 (M),(2.5)

where fε(u) = |u|p−1−εu, here and in the follows we will denote p by p = n+2
n−2 .

3. The existence result

By compactness of manifold M , we have that the injectivity radius ig of the manifold is
nonzero. Fix r > 0 small than ig. Let χr be a smooth cut-off function satisfying

χr(z) :=

1 if z ∈ B(0, r2);
∈ (0, 1) if z ∈ B(0, r)\B(0, r2);
0 if z ∈ Rn\B(0, r),

(3.1)

and |∇χr(z)| ≤ 2
r , |∇

2χr(z)| ≤ 2
r2
.

Let
A = (λ, ξ, a, θ) ∈ R+ ×M × Rn × R2n−3.

We will denote A ∈ A if (λ, ξ, a, θ) ∈ R+ ×M × Rn × R2n−3, such that

η < t <
1

η
, for some fixed η > 0,(3.2)

ξ ∈M, a ∈ B :=

{
a = (a1, a2, 0, . . . , 0) ∈ Rn : |a| < 1

2

}
,(3.3)
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and

θ = (θ12, θ13, . . . , θ1n, θ23, . . . , θ2n) ∈ O,(3.4)

where O is a compact manifold of dimension 2n− 3 with no boundary.

Now, for A ∈ A, set

(3.5) λ =
√
t|ε|.

We define the function WA(x) =Wλ,ξ,a,θ(x) on M by

(3.6) WA(x) :=

{
χr

(
exp−1

ξ (x)
)
W̃A(x) if x ∈ Bg(ξ, r);

0 otherwise,

where

W̃A(x) = Q
(
Pθ ◦ J ◦ T−a ◦ J ◦Dλ−1 ◦ P−1

θ ◦ exp−1
ξ (x)

)
,

that is,

(3.7) W̃A(x) = λ−
n−2
2

∣∣∣exp−1
ξ (x)

dg(x, ξ)
− Pθa

dg(x, ξ)

λ

∣∣∣2−n
Q

 exp−1
ξ (x)

λ − Pθa
dg(x,ξ)2

λ2∣∣∣ exp−1
ξ (x)

dg(x,ξ)
− Pθa

dg(x,ξ)
λ

∣∣∣2
 ,

where Q = QK is a solution of problem (1.6) for K large enough, which was proved in [7].
Moreover, let us define on M the functions

(3.8) Zi
A(x) :=

{
χr

(
exp−1

ξ (x)
)
Z̃i
A(x) if x ∈ Bg(ξ, r);

0 otherwise,

for i = 0, 1, 2, · · · , 3n− 1. where

(3.9) Z̃i
A(x) = λ−

n−2
2

∣∣∣exp−1
ξ (x)

dg(x, ξ)
− Pθa

dg(x, ξ)

λ

∣∣∣2−n
zi

 exp−1
ξ (x)

λ − Pθa
dg(x,ξ)2

λ2∣∣∣ exp−1
ξ (x)

dg(x,ξ)
− Pθa

dg(x,ξ)
λ

∣∣∣2
 ,

where zi, i = 0, 1, 2, . . . , 3n− 1, are defined in (6.5)- (6.9).
We define the projections ΠA and Π⊥

A of the Sobolev space Hε onto the respective subspaces

(3.10) KA := Span
{
Z0
A, Z

1
A, · · · , Z3n−1

A

}
,

(3.11) K⊥
A :=

{
ϕ ∈ Hε : ⟨ϕ,Zi

A⟩h = 0,∀i = 0, 1, . . . , 3n− 1
}
,

where ⟨·, ·⟩h is as in (2.1).
We will look for a solution to (2.5), or equivalently to (1.1), of the form

uε =WA(x) + ϕA(x),(3.12)

where WA(x) is given by (3.6), and the rest term ϕA belongs to the space K⊥
A . In order to solve

problem (2.5) we will solve the system

Π⊥
A {WA + ϕA − i∗ [fε (WA + ϕA)]} = 0,(3.13)

ΠA {WA + ϕA − i∗ [fε (WA + ϕA)]} = 0.(3.14)

We first give the result whose proof is postponed until Section 4 to solve equation (3.13).
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Proposition 3.1. If n ≥ 6, for A ∈ A, if ε is small enough, there exists a unique ϕε,A = ϕ(ε,A)
which solves equation (3.13), which is continuously differential with respect to A, moreover,

∥ϕε,A∥h,sε ≤ C

{
|ε| |ln |ε| |2/3 if n = 6 and ε > 0;
|ε| |ln |ε| | otherwise.

(3.15)

Furthermore,

∥∇Aϕε,A∥h,sε ≤ C

{
|ε| |ln |ε| |2/3 if n = 6 and ε > 0;
|ε| |ln |ε| | otherwise.

(3.16)

where C is a positive constant.

We introduce the functional Jε : Hε → R defined by

Jε(u) =
1

2

ˆ
M

|∇gu|2 dυg +
1

2

ˆ
M
h(x)u2 dυg −

1

p+ 1− ε

ˆ
M

|u|p+1−ε dυg,

It is well known that any critical point of Jε is solution to problem (1.1). We also define the
functional Fε : R+ ×M × R2n−3 × Rn → R by

Fε(t, ξ, a, θ) = Jε (WA + ϕA) ,(3.17)

where WA is as (3.6) and ϕA is given by Proposition 3.1.
The next result, whose proof is postponed until Section 5, allows to solve equation (3.14), by

reducing the problem to a finite dimensional one.

Proposition 3.2. (i) For ε small, if (t, ξ, a, θ) is a critical point of the functional Fε, then
WA + ϕA is a solution of (2.5), or equivalently of problem (1.1).

(ii) If n ≥ 6, for A ∈ A, there holds

Jε(WA(x)) =
c0
n

− d1ε log |ε| − d2ε+
β

2
Ψ(t, ξ, a, θ)ε+ o(|ε|).(3.18)

as ε→ 0, C1−uniformly with respect to A in A, where

Ψ(t, ξ, a, θ) = −d3 log t+ sign(ε)φ(ξ)t− sign(ε)d4a(Bξ,θ)a
T t

+ [sign(ε) (−2φ(ξ) + d5Scalg(ξ)) t+ d6] |a|2 + o(|a|2)(3.19)

with

φ(ξ) = h(ξ)− n− 2

4(n− 1)

(
1 +

n− 4

3n
K

)
Scalg(ξ),(3.20)

and

Bξ,θ = (Pθ)
T (Rij)n×nPθ(3.21)

is a n× n matrix. The constants d1 =
n−2
4 c0, d2 =

(n−2)2

4n2 c0 − n−2
2n c1 −

(n−2)2

2 c2 with

c0 =

ˆ

Rn

|Q(y)|
2n
n−2dy, c1 =

ˆ

Rn

|Q(y)|
2n
n−2 log |Q(y)|dy, c2 =

ˆ

Rn

|Q(y)|
2n
n−2 log |y|dy.

Moreover, the constants d3, d4, d5, d6 are defined by

d3 =
n− 2

2
c0β

−1 =
n(n− 2)2(n− 4)

8(n− 1)
(1 +K),

d4 =
5n(n− 2)(n+ 2)

12(n− 1)(n− 6)
+

(n− 2)(n− 4)

12
K
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d5 =
(n− 2)(n2 − 9n− 2)

n(n− 1)(n− 6)
+

(n− 2)(n− 3)(n− 4)

3n2(n− 1)
K

d6 =
n2(n− 2)2(n− 4)

8(n− 1)

(
1 +

n− 2

n
K

)
.

(iii) If n ≥ 6, there holds

Fε(t, ξ, a, θ) = Jε(WA + ϕA) = Jε(WA) + o(|ε|)
as ε→ 0, C1 uniformly with respect to (t, ξ, a, θ) ∈ A.

Now we are ready to prove the main result Theorem 1.1.

Proof of Theorem 1.1: From Proposition 3.2, we have that the function uε = WA + ϕA is a
solution of equation (2.5), or equivalently of problem (1.1) for ε small enough if we find a
critical point (t, ξ, a, θ) of functional Fε, it is equivalent to find a critical point of the function
Ψ(t, ξ, a, θ) which is given in (3.19).

Recall that A = (t, ξ, a, θ) ∈ A = (η, 1η )×M × B×O, where

B :=

{
a = (a1, a2, 0, . . . , 0) ∈ Rn : |a| < 1

2

}
,

and O is a compact manifold of dimension 2n − 3 with no boundary. By Proposition 3.2, we
have

Ψ(t, ξ, a, θ) = −d3 log t+ sign(ε)φ(ξ)t− sign(ε)d4a(Bξ,θ)a
T t

+ [sign(ε) (−2φ(ξ) + d5Scalg(ξ)) t+ d6] |a|2 + o(|a|2),(3.22)

where φ(ξ) is defined in (1.14).
Firstly, from (3.19), we have

(3.23) Ψ(t, ξ, a, θ) = Φ1(t, ξ) +O(|a|2),
where

Φ1(t, ξ) = −d3 log t+ sign(ε)φ(ξ)t,

with φ(ξ) is given in (3.20). By assumption, there is a stable critical point ξ0 of φ(ξ), satisfying{
φ(ξ0) > 0, if ε > 0;

φ(ξ0) < 0, if ε < 0.

Set t0 =
d3

φ(ξ0)
sign(ε), we have t0 > 0 and (t0, ξ0) is a critical point of Φ1(t, ξ). Since deg(∇gφ,Bg(ξ0, ϱ), 0) ̸=

0 for some ϱ > 0, then deg(∇gΦ1(t, ξ), Bg(ξ0, ϱ), 0) ̸= 0, by the continuity of the Brouwer degree
via homotopy considering the function H : [0, 1]× R+ ×M → Rn+1 defined by

H(τ, t, ξ) = τ

(
∂Φ1(t,ξ)

∂t ,
(
∂Φ1(t,expξ(y))

∂y1

)
|y=0

, · · · ,
(
∂Φ1(t,expξ(y))

∂yn

)
|y=0

)
+(1− τ)

(
t− t0,

(
∂(φ◦expξ(y))

∂y1

)
|y=0

, · · · ,
(
∂(φ◦expξ(y))

∂yn

)
|y=0

)
.

We get that (t0, ξ0) is a critical point of Φ1(t, ξ), such that

deg(∇gΦ1, Bg(ξ0, ϱ), 0) ̸= 0,

By Brouwer degree, we then have that (t0, ξ0) is a stable critical point of Φ1(t, ξ). By Proposition
3.2, we have ∣∣∣∣∂t(1

ε
Fε − Φ1(t, ξ)

)∣∣∣∣+ ∣∣∣∣∂ξ (1

ε
Fε − Φ1(t, ξ)

)∣∣∣∣→ 0,
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as ε → 0, uniformly with respect to A = (t, ξ, a, ξ) ∈ A. By the properties of the Brouwer
degree, it follows that there exists a family of critical points (tε, ξε) of Fε converging to (t0, ξ0)
as ε→ 0.

On the other hand, we observe that the function θ 7→ Ψ(t, ξ, a, θ) has a maximum point θ̄.
Because Ψ(t, ξ, a, θ) is a continuous function for θ on a compact set of R2n−3 without boundary.
Moreover, the function Ψ(t0, ξ0, a, θ̄) has a non degenerate minimum( ε > 0) or maximum (ε < 0)
at ā = (ā1, ā2) = (0, 0).

Thus, we obtain that (t0, ξ0, 0, 0) is a stable critical point of Ψ(t, ξ, a, θ). �

4. The finite dimensional reduction

This section is devoted to the proof of Proposition 3.1. Let us introduce the linear operator
Lε,A : H2

1 (M) ∩KA → K⊥
A defined by

Lε,A(ϕA) := Π⊥
A

{
ϕA − i∗

[
f ′ε(WA)ϕA

]}
.

This operator is well defined by using (2.2). Therefore equation (3.13) is equivalent to

Lε,A(ϕA) = Nε,A(ϕA) +Rε,A(4.1)

where

Nε,A(ϕA) = Π⊥
A

{
i∗
[
fε(WA + ϕA)− fε(WA)− f ′ε(WA)ϕA

]}
,(4.2)

and

Rε,A = Π⊥
A {i∗ (fε(WA))−WA} .(4.3)

As a first step, we want to study the invertibility of Lε,A.

Lemma 4.1. If n ≥ 6 and for any A ∈ A, and for any ϕA ∈ H2
1 (M)∩K⊥

A , if ε is small enough,
there holds

∥Lε,A(ϕA)∥h,sε ≥ C∥ϕA∥h,sε ,(4.4)

where C is a positive constant.

Proof. We argue by contradiction. Assume there exist a sequences εk → 0, Aεk ∈ A with
tk ∈ (η, 1η ), ξk ∈ M , θk in a compact of R2n−3 and ak ∈ B ⊂ Rn, and a sequences of functions

ϕk ∈ H2
1 (M) ∩K⊥

Ak
such that

Lεk,Ak
(ϕk) = ψk, ∥ϕk∥h,sεk = 1 and ∥ψk∥h,sεk → 0.(4.5)

From (4.5) we get there exists ζk ∈ H2
1 (M) ∩KAk

such that

ϕk − i∗
[
f ′εk(WAk

)ϕk
]
= ψk + ζk.(4.6)

Step 1, we claim that

∥ζk∥h,sε → 0 as k → ∞.(4.7)

Let ζk :=
3n−1∑
i=0

cikZ
i
λAk

. For any j = 0, 1, · · · , 3n − 1, we multiply (4.6) by Z l
Ak

, and taking

into account that ϕk, ψk ∈ K⊥
Ak

, we get

3n−1∑
i=0

cik

⟨
Zi
Ak
, Zj

Ak

⟩
h
= −

⟨
i∗
[
f ′εk(WAk

)ϕk
]
, Zj

Ak

⟩
h

(4.8)
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By changing of variable x = expξk(λky), for i, j = 0, 1, · · · , 3n− 1 and for any k, we have⟨
Zi
Ak
, Zj

Ak

⟩
h

=

ˆ
M

⟨
∇Zi

Ak
,∇Zj

Ak

⟩
g
dυg +

ˆ
M
h(x)Zi

Ak
Zj
Ak

dυg

= λ2k

ˆ

B(0,r/λk)

n∑
a,b=1

gabξα(λky)

 1

λk

∂
(
|y|2−nzi(

y
|y|2 − Pθa)

)
∂ya

χr(λky) +
∂χr(λky)

∂ya

(
|y|2−nzi(

y

|y|2
− Pθa)

)
×

 1

λk

∂
(
|y|2−nzj(

y
|y|2 − Pθa)

)
∂yb

χr(λky) +
∂χr(λky)

∂yb

(
|y|2−nzj(

y

|y|2
− Pθa)

) ∣∣gξjα(λky)∣∣ 12 dy

+λ2k

ˆ

B(0,r/λk)

h
(
expξk(λky)

)
χr(λky)|y|2(2−n)zi(

y

|y|2
− Pθa)zj(

y

|y|2
− Pθa) |gξk(λky)|

1
2 dz.

By the Taylor’s expansion, from (2.1), we have

gabξk (λky) = δab +O(λ2k|y|2) = δab +O(tk|εk||y|2);(4.9)

and

|gξk(λky)|
1
2 = 1 +O(λ2k|z|2) = 1 +O(tk|εα||y|2).(4.10)

Therefore, we find⟨
Zi
Ak
, Zj

Ak

⟩
h
= −
ˆ

Rn

∆
(
|y|2−nzi(

y

|y|2
− Pθa)

)(
|y|2−nzj(

y

|y|2
− Pθa)

)
dy + o(λ2k)

=

ˆ
Rn

∣∣∣|y|2−nQ(
y

|y|2
− Pθa)

∣∣∣p−1
|y|4−2nzi(

y

|y|2
− Pθa)zj(

y

|y|2
− Pθa)dy + o(λ2k)

=

ˆ
Rn

|Q(y)|p−1zi(y)zj(y)dy + o(λ2k)

=



´
Rn |Q(y)|p−1z2i (y)dy + o(ε) if i = j;´
Rn |Q(y)|p−1z1(y)zn+2(y)dy + o(ε) if i = 1, j = n+ 2;´
Rn |Q(y)|p−1z2(y)zn+3(y)dy + o(ε) if i = 2, j = n+ 3;

o(ε) otherwise.

(4.11)

Here
´
Rn |Q(y)|p−1z2i (y)dy,

´
Rn |Q(y)|p−1z1(y)zn+2(y)dy and

´
Rn |Q(y)|p−1z2(y)zn+3(y)dy are

fixed numbers, different from zero, that are independent of ε.
Now, set

ϕk(x) = λ
−n−2

2
k

∣∣∣exp−1
ξk

(x)

dg(x, ξk)
− Pθa

dg(x, ξk)

λk

∣∣∣2−n
ϕ̃k


exp−1

ξk
(x)

λk
− Pθa

dg(x,ξk)
2

λ2
k∣∣∣ exp−1

ξk
(x)

dg(x,ξk)
− Pθa

dg(x,ξk)
λk

∣∣∣2
 ,

we have

ϕk(expξk(λky) = λ
−n−2

2
k |y|2−nϕ̃k

(
y

|y|2
− Pθa

)
.

We now have⟨
i∗
[
f ′εk(WAk

)ϕk
]
, Zj

Ak

⟩
h
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=

ˆ
M
f ′εk(WAk

)Zj
Ak
ϕkdυg

= λ2k

ˆ

B(0,r/λk)

f ′εk

(
χr(λky)λ

−n−2
2

k |y|2−nQ

(
y

|y|2
− Pθa

))
×

×χr(λky)|y|4−2nzj

(
y

|y|2
− Pθa

)
ϕ̃k

(
y

|y|2
− Pθa

)
)
√
|gξk(λky)|dy

= λ
n−2
2

ε

k

ˆ

Rn

f ′εk

(
Q

(
y

|y|2
− Pθa

))
|y|2n+(n−2)ε ×

×zj
(

y

|y|2
− Pθa

)
ϕ̃k

(
y

|y|2
− Pθa

)√
|gξk(λky)|dy +O(ε2)

set ỹ =
y

|y|2
− Pθa

= (2∗ − 1− εk)λ
n−2
2

ε

k

ˆ

Rn

|Q(ỹ)|2∗−2−εQ(ỹ)|ỹ + Pθa|−(n−2)εzj(ỹ)ϕ̃k(ỹ)dy +O(ε2)

→ (2∗ − 1)

ˆ

Rn

|Q(ỹ)|2∗−1zj(ỹ)ϕ̃k(ỹ)dy

(4.12)

as εk → 0.
Since, for any k, the function ϕk ∈ K⊥

Ak
, by the same change of variable for x = expξk(λky),

we have

0 =
⟨
Zj
Ak
, ϕk

⟩
h
= −
ˆ
Rn

∆(zj(y)) ϕ̃k(y)dµgξk

+λ2k

ˆ
Rn

h
(
expξk(λky)

)
χr(λky)zjϕ̃k dµgξk ,(4.13)

where gξk(y) = expξkg(λky) with dµgξk = |gξk(λky)|
1
2 dz. Then, passing the limit in (4.13), we

get ˆ
Rn

∇zj∇ϕ̃ dy = 0.

Since the function zj is a solution of equation L(zj) = 0, the operator L is given in (6.4), it
yields that ˆ

Rn

∇zj∇ϕ̃ dy = (2∗ − 1)

ˆ
Rn

|Q|2∗−1zjϕ̃ dy = 0.(4.14)

It follows from (4.8), (4.11), (4.12) and (4.14) that for any i = 0, 1, · · · , 3n − 1, there holds
cik → 0 as α→ ∞, therefore our claim (4.7) is proved.

Step 2: We prove that

lim inf
k→∞

ˆ
M
f ′εk(WAk

)u2k dυg → c > 0.(4.15)

where

uk = ϕk − ψk − ζk, with ∥uk∥h → 1.(4.16)
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Let us write equation (4.6) as

∆guk + h(x)uk = f ′εk(WAk
)uk + f ′εk(WAk

)(ψk + ζk),(4.17)

We first prove that

lim inf
k→∞

∥uk∥h = c > 0.(4.18)

In fact, by (4.17) we deduce

uk = i∗
{
f ′εk(WAk

)uk + f ′εk(WAk
)(ψk + ζk)

}
,(4.19)

and by (2.3), (4.5), (4.7) and (4.16), use the Hölder inequality, we get

|uk|sεk ≤ C

[∣∣f ′εk(WAk
)uk
∣∣ nsεk
n+2sεk

+
∣∣f ′εα(WAk

)(ψk + ζk)
∣∣ nsεk
n+2sεk

]
≤ C

[∣∣f ′εk(WAk
)
∣∣ 2nsεk
2n−(n−6)sεk

|uk|2∗ +
∣∣f ′εk(WAk

)
∣∣
n
2

|ψk + ζk|sεk

]
≤ C

∣∣f ′εk(WAk
)
∣∣ 2nsεk
2n−(n−6)sεk

|uk|2∗ + C
∣∣f ′εk(WAk

)
∣∣
n
2

(∥ψk∥h + ∥ζk∥h)

≤ C
∣∣f ′εk(WAk

)
∣∣ 2nsεk
2n−(n−6)sεk

|uk|2∗ + o(1)

≤ C∥uk∥h + o(1),(4.20)

as k → ∞. Then, if ∥uk∥h → 0, by (4.20) we deduce that also |uk|sεk → 0, this is not impossible

because of (4.16). This gives the validity of (4.18).
We multiply (4.17) by uk we deduce that

∥uk∥2h =

ˆ
M
f ′εk(WAk

)u2k dυg +

ˆ
M
f ′εk(WAk

)(ψk + ζk)uk dυg.(4.21)

By Hölder inequality, from (4.5), (4.7), we have∣∣∣∣ˆ
M
f ′εk(WAk

)(ψk + ζk)uk dυg

∣∣∣∣ ≤ ∣∣f ′εk(WAk
)
∣∣
n
2

|ψk + ζk| 2n
n−2

|uk| 2n
n−2

≤ C∥ψk + ζk∥h∥uk∥h = o(1).(4.22)

Then, (4.15) follows by (4.18), (4.21) and (4.22).
Step 3: Let us prove that a contradiction arises, by showing that

lim inf
k→∞

ˆ
M
f ′εk(WAk

)u2k dυg → 0.(4.23)

In fact, set

(4.24) uk(x) = λ
−n−2

2
k

∣∣∣exp−1
ξk

(x)

dg(x, ξk)
− Pθa

dg(x, ξk)

λk

∣∣∣2−n
ũk


exp−1

ξk
(x)

λk
− Pθa

dg(x,ξk)
2

λ2
k∣∣∣ exp−1

ξk
(x)

dg(x,ξk)
− Pθa

dg(x,ξk)
λk

∣∣∣2
 .

We will show that

ũk → 0 weakly in D1,2(Rn) and strongly in Lq
loc(R

n),(4.25)

for any q ∈ [2, 2∗). That fact implies thatˆ
M
f ′εk(WAk

)u2k dυg =

ˆ

Bg(ξlα,r)

f ′εα(Wλlα,ξlα)u
2
α dυg
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= λ
n−2
2

εk
k

ˆ

B(0,r/λk)

f ′εk

(
χr(λky)|y|2−nQ(

y

|y|2
− Pθa)

)
×

×|y|4−2n

(
ũk(

y

|y|2
− Pθa)

)2

|gξk(λky)|
1
2 dy

≤ Cλ
n−2
2

εk
k

∣∣∣|ỹ + Pθa|(2−n)εkf ′εk(Q(ỹ))
∣∣∣
Ln/2(Rn)

|ũk(ỹ)|L2∗ (Rn) = o(1),(4.26)

for εk → 0, because
∣∣|ỹ + Pθa|(2−n)εkf ′εk(Q(ỹ))

∣∣
Ln/2(Rn)

= O(1) holds.

Finally, we prove (4.25). By (4.17) we getˆ
M

|∇guk|g dυg +
ˆ
M
h(x)u2k dυg

=

ˆ
M
f ′εα(WAk

)u2k dυg +

ˆ
M
f ′εk(WAk

)(ψk + ζk)uk dυg

=

ˆ
M
f ′εk(WAk

)u2k dυg + o(1),(4.27)

because (4.22) holds.
By an change of variable x = expξk(λky) in (4.27), we getˆ

Rn

|∇gξk
ũk|gξk dµξk + λ2k

ˆ
Rn

h
(
expξk(λky)

)
ũ2k dµgξk

= λ
n−2
2

εk
k

ˆ
Rn

f ′εk (χr(λky)Q(y)) ũ2k dµgξk + o(1).(4.28)

Moreover, we observe that ∥ũk∥D1,2(Rn) ≤ c∥uk∥h ≤ c, that is the sequence {ũk} is bounded in

D1,2(Rn), then there exists ũ such that ũk(z) → ũ weakly in D1,2(Rn) and strongly in Lq(Rn)
for any q ∈ [2, 2∗) if n ≥ 3. Then we deduce that ũ solve the problem

∆ũ = (2∗ − 1)|Q|2∗−2ũ in Rn,(4.29)

by (4.14), we get that the function ũ is identically zero, then (4.25) holds.
Therefore from the contradiction (4.15) with (4.23), we end proof of Lemma 4.1. �
From [17], we have the following estimate of the error term Rε,A.

Lemma 4.2. If n ≥ 6 and for any A ∈ A, if ε is small enough, there holds

∥Rε,A∥h,sε ≤ C

{
|ε| |ln |ε||2/3 if n = 6 and ε > 0;
|ε| |ln |ε|| otherwise,

(4.30)

where C is a positive constant.

Proof of Proposition 3.1: In order to solve (3.13), we need to find a fixed point for the operator
Tε,A : H2

1 (M) ∩K⊥
A → H2

1 (M) ∩K⊥
A defined

Tε,A(ϕ) = L−1
ε,A(Nε,A(ϕA) +Rε,A),

for ε small and for any A ∈ A. We also let

B(β) =
{
ϕ ∈ H2

1 (M) ∩K⊥
A : ∥ϕ∥h,sε ≤ β∥Rε,A∥h,sε

}
,

where β is a positive constant to be chosen later on.
By Lemma 4.1, we deduce

∥Tε,A(ϕ)∥h,sε ≤ C
(
∥Nε,A(ϕ)∥h,sε + ∥Rε,A∥h,sε

)
,(4.31)
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and

∥Tε,A(ϕ1)− Tε,A(ϕ2)∥h,sε ≤ C
(
∥Nε,A(ϕ1)−Nε,A(ϕ2)∥h,sε

)
.(4.32)

By (2.2) and (2.3), we deduce

∥Nε,A(ϕ)∥h,sε ≤ C
∣∣fε(WA + ϕ)− fε(WA)− f ′ε(WA)ϕ

∣∣
nsε

n+2sε

+
∣∣fε(WA + ϕ)− fε(WA)− f ′ε(WA)ϕ

∣∣
2n
n+2

,(4.33)

and

∥Nε,A(ϕ1)−Nε,A(ϕ2)∥h,sε
≤ C

∣∣fε(WA + ϕ1)− fε(WA + ϕ2)− f ′ε(WA)(ϕ1 − ϕ2)
∣∣

nsε
n+2sε

+
∣∣fε(WA + ϕ1)− fε(WA + ϕ2)− f ′ε(WA)(ϕ1 − ϕ2)

∣∣
2n
n+2

.(4.34)

Then by the mean value theorem and the Hölder inequality, we obtain that if n = 6 and ε > 0,
for any τ ∈ (0, 1),∣∣fε(WA + ϕ1)− fε(WA + ϕ2)− f ′ε(WA)(ϕ1 − ϕ2)

∣∣
2n
n+2

=
∣∣(f ′ε(WA + ϕ2 + τ(ϕ1 − ϕ2))− f ′ε(WA)

)
(ϕ1 − ϕ2)

∣∣
2n
n+2

≤ C

(
|ϕ1|

2sε
n

sε + |ϕ2|
2sε
n

sε

)
|ϕ1 − ϕ2| 2n

n−2
≤ C

(
∥ϕ1∥1−ε

h,sε
+ ∥ϕ2∥1−ε

h,sε

)
∥ϕ1 − ϕ2∥h,sε .(4.35)

We note that by (2.4) we have nsε
n+2sε

= 2n
n+2 for ε > 0.

If n ≥ 7 or ε < 0, there holds∣∣fε(WA + ϕ1)− fε(WA + ϕ2)− f ′ε(WA)(ϕ1 − ϕ2)
∣∣

nsε
n+2sε

≤ C
∣∣∣(|WA|2

∗−3−ε|τϕ2 + (1− τ)ϕ1|+ |τϕ2 + (1− τ)ϕ1|2
∗−2−ε

)
(ϕ1 − ϕ2)

∣∣∣
nsε

n+2sε

≤ C
(
|WA|sε + ∥ϕ1∥h,sε + ∥ϕ2∥h,sε

)2∗−3−ε (
∥ϕ1∥h,sε + ∥ϕ2∥h,sε

)
∥ϕ1 − ϕ2∥h,sε .(4.36)

Since the problem is supercritical if ε < 0, s > 2n
n−2 , i.e., nsε

n+2sε
> 2n

n+2 , by the embedding

L
nsε

n+2sε (M) ↪→ L
2n
n+2 (M), we get∣∣fε(WA + ϕ1)− fε(WA + ϕ2)− f ′ε(WA)(ϕ1 − ϕ2)

∣∣
2n
n+2

= C
(
|WA|sε + ∥ϕ1∥h,sε + ∥ϕ2∥h,sε

)2∗−3−ε (
∥ϕ1∥h,sε + ∥ϕ2∥h,sε

)
∥ϕ1 − ϕ2∥h,sε .

(4.37)

Moreover, if n ≥ 7 and ε > 0, from (2.4), we have nsε
n+2sε

= 2n
n+2 .

Taking ϕ1 = ϕ, ϕ2 = 0 into (4.35) or (4.36) and (4.37), from (4.33), we can get

∥Nε,d̄,ξ̄(ϕ)∥h,sε ≤

{
C∥ϕ∥2−ε

h,sε
if n = 6 and ε > 0;

C
(
∥ϕ∥2h,sε + ∥ϕ∥2∗−1−ε

h,sε

)
if n ≥ 7 or ε < 0.

(4.38)

By the definition of B(β), from (4.30), (4.31) and (4.38), we can get that there exists β > 0 such
that

ϕ ∈ B(β) =⇒ Tε,A(ϕ) ∈ B(β),(4.39)
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provided that ε is sufficiently small. Next we will show that the map Tε,A is a contraction map
for any ε small enough.

If n = 6 and ε > 0, by (4.32), (4.34) and (4.35), we deduce that there exists ϑ ∈ (0, 1) such
that

∥ϕ1∥h,sε , ∥ϕ2∥h,sε ≤ |ε| |ln |ε||2/3

=⇒ ∥Tε,A(ϕ1)− Tε,A(ϕ2)∥h,sε ≤ ϑ∥ϕ1 − ϕ2∥h,sε .(4.40)

If n ≥ 7 or ε < 0, by (4.32), (4.34),(4.36) and (4.37), we can deduce that there exists ϑ ∈ (0, 1)
such that

∥ϕ1∥h,sε , ∥ϕ2∥h,sε ≤ |ε| |ln |ε||
=⇒ ∥Tε,A(ϕ1)− Tε,A(ϕ2)∥h,sε ≤ ϑ∥ϕ1 − ϕ2∥h,sε .(4.41)

By (4.39) and (4.40) or (4.41), we deduce that Tε,A is a contraction mapping from B(β) into
B(β) for ε small enough, so it has a fixed point ϕε,A which satisfies (3.13), and (3.15) holds from
(4.30).

By the Implicit Function Theorem to prove that the map A → ϕε,A is a C1 map. In fact,
we apply the Implicit Function Theorem to the function G(A,ϕ) : A ∈ A × Hε → Hε defined
by G(A,ϕ) = ϕ− L−1

ε,A (Nε,A(ϕ) +Rε,A) . The proof is standard, we omit it here, see [17]. This
finishes the proof. �

5. The expansion of energy

Lemma 5.1. [14]In a normal coordinates neighborhood of ξ ∈M , the Taylor series of g around
ξ is given by

gij = δij +
1

3
Rkijlz

kzl +O(|z|3),

as |z| → 0. Moreover, the volume element on normal coordinates has the following expansion√
det(g) = 1− 1

6
Rklz

kzl +O(|z|3),

where Rkl = Ric(ek, el) = gijRiklj = gijR(ei, ek, el, ej), with {ei}n1 is a basic of Tξ(M).

This section is devoted to the proof of Proposition 3.2. At the first step, we have

Lemma 5.2. For ε small, if (λ, ξ, a, θ) is a critical point of the functional Fε, then WA +ϕA is
a solution of (2.5), or equivalently of problem (1.1).

Proof. Let (λ, ξ, a, θ) be a critical point of Fε. Let ξ = ξ(y) = expξ(y), y ∈ B(0, r). We note
that ξ(0) = ξ. since (λ, ξ, a, θ) is a critical point of Fε, there holds

J ′
ε (WA + ϕA)

[
∂

∂t
WA +

∂

∂t
ϕA

]
= 0,(5.1)

J ′
ε (WA + ϕA)

[
∂

∂yl
WA +

∂

∂yl
ϕA

]
= 0, l = 1, . . . , n,(5.2)

J ′
ε (WA + ϕA)

[
∂

∂θij
WA +

∂

∂θij
ϕA

]
= 0,(5.3)

and

J ′
ε (WA + ϕA)

[
∂

∂ak
WA +

∂

∂ak
ϕA

]
= 0, k = 1, 2.(5.4)



16 SHENGBING DENG, MONICA MUSSO, AND JUNCHENG WEI

Let ∂m denotes ∂t or ∂yl for l = 1, 2, · · · , n, or ∂a1 , ∂a2 , or ∂θij for θij ∈ {θ12, θ13, . . . , θ1n, θ23, . . . , θ2n}.
By (3.13) we get

0 = ∂mFε(λ, ξ, a, θ) = J ′
ε (WA + ϕA) [∂mWA + ∂mϕA]

=
⟨
WA + ϕA − i∗ [fε(WA + ϕA)] , ∂mWA + ∂mϕA

⟩
h

=

3n−1∑
i=0

ciε
⟨
Zi
A, ∂mWA + ∂mϕA

⟩
h
,

for some ciε ∈ R. Since ∂mWA = Zm
A + o(1) and ∂mϕA = o(1), thus ∂mFε(λ, ξ, a, θ) = 0 is

equivalent to get

ciε = 0 for any i = 0, 1, · · · 3n− 1.

for ε is small enough. �

Now we give the expansion of the energy Jε(WA).

Let p, q ∈ R+ such that p − q > 1 and assume that Iqp =
´ +∞
0

tq

(1+t)pdt. An integration by

parts, we have

(5.5) Iqp+1 =
p− q − 1

p
Iqp , and Iq+1

p+1 =
q + 1

p− q − 1
Iqp+1.

I
n−8
2

n−2 =
n

n− 6
I

n−6
2

n−2 , I
n
2
n = I

n−4
2

n =
n(n− 4)

4(n− 1)(n− 2)
I

n−6
2

n−2 ,

I
n−6
2

n =
n(n+ 2)

4(n− 1)(n− 2)
I

n−6
2

n−2 , I
n−2
2

n =
(n− 2)(n− 4)

n(n+ 2)
I

n−6
2

n =
(n− 4)

4(n− 1)
I

n−6
2

n−2 ,

and

I
n−6
2

n−1 =
n

2(n− 2)
I

n−6
2

n−2 , I
n−4
2

n−1 =
n− 4

2(n− 2)
I

n−6
2

n−2

The energy functional is

Jε(WA) =
1

2

ˆ
M

|∇WA(x)|2gdυg +
1

2

ˆ
M
h(x)|WA(x)|2dυg −

1

2∗ − ε

ˆ
M

|WA(x)|2
∗−εdυg.

We observe that by change of variable x = expξ(λz), for z ∈ B(0, r), we have

W̃A(x) = W̃A(expξ(λz)) = λ−
n−2
2

∣∣∣ z|z| − Pθa|z|
∣∣∣2−n

Q

 z − Pθa|z|2∣∣∣ z
|z| − Pθa|z|

∣∣∣2


= λ−
n−2
2 |z|2−n

∣∣∣ z|z|2 − Pθa
∣∣∣2−n

Q

 z
|z|2 − Pθa∣∣∣ z
|z|2 − Pθa

∣∣∣2


since |z|2−nQ(
z

|z|2
) = Q(z)

= λ−
n−2
2 |z|2−nQ

( z

|z|2
− Pθa

)
.

We set

Q̃ã(z) = |z|2−nQ
( z

|z|2
− ã
)
, with ã = Pθa.
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Then we find

Jε(WA) =
1

2

ˆ
M

|∇WA(x)|2gdυg +
1

2

ˆ
M
h(x)|WA(x)|2dυg −

1

2∗ − ε

ˆ
M

|WA(x)|2
∗−εdυg

=

ˆ

B(0, r
λ
)

[
1

2
gijξ
∂Q̃ã(z)

∂zi

∂Q̃ã(z)

∂zj
+

1

2
λ2h(expξ(λz))|Q̃ã(z)|2 −

1

2∗ − ε
λ

n−2
2

ε|Q̃ã(z)|2
∗−ε

]
×

×
(
1− λ2

6
Rklz

kzl +O(λ3|z|3)
)
dz

Since

1

2

ˆ
M

|∇WA(x)|2gdυg =
1

2

ˆ

B(0, r
λ
)

gijξ
∂Q̃ã(z)

∂zi

∂Q̃ã(z)

∂zj

(
1− λ2

6
Rklz

kzl +O(λ3|z|3)
)
dz

=
1

2

ˆ

Rn

|∇Q̃ã(z)|2dz −
λ2

12
Rkl

ˆ

Rn

|∇Q̃ã(z)|2zkzldz + o(λ2),

and

1

2

ˆ
M
h(x)|WA(x)|2dυg =

λ2

2
h(ξ)

ˆ

Rn

|Q̃ã(z)|2dz + o(λ2).

On the other hand,

1

2∗ − ε

ˆ
M

|WA(x)|2
∗−εdυg

=
1

2∗ − ε
λ

n−2
2

ε

ˆ

B(0, r
λ
)

|Q̃ã(z)|2
∗−ε
(
1− λ2

6
Rklz

kzl +O(λ3|z|3)
)
dz

=
(n− 2

2n
+

(n− 2)2

4n2
ε+O(ε2)

)(
1 + ε

n− 2

2
log(λ) +O(ε2)

)
×

×
ˆ

Rn

|Q̃ã(z)|
2n
n−2

(
1− ε log |Q̃ã(z)|+O(ε2)

)(
1− λ2

6
Rklz

kzl +O(λ3|z|3)
)
dz

=
n− 2

2n

ˆ

Rn

|Q̃ã(z)|
2n
n−2dz − λ2

n− 2

12n
Rkl

ˆ

Rn

|Q̃ã(z)|
2n
n−2 zkzldz

+ε
((n− 2)2

4n2

ˆ

Rn

|Q̃ã(z)|
2n
n−2dz − n− 2

2n

ˆ

Rn

|Q̃ã(z)|
2n
n−2 log |Q̃ã(z)|dz

)
+ε log(λ)

n− 2

2

ˆ

Rn

|Q̃ã(z)|
2n
n−2dz + o(λ2) + o(ε).

Therefore, for λ =
√
t|ε|, we get

Jε(WA(x)) =
1

n

ˆ

Rn

|Q̃ã(z)|
2n
n−2dz − ε log(t)

n− 2

4

ˆ

Rn

|Q̃ã(z)|
2n
n−2dz
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+t

[(1
2

ˆ

Rn

|Q̃ã(z)|2dz
)
h(ξ)− Rkl

6

(1
2

ˆ

Rn

|∇Q̃ã(z)|2zkzldz

−n− 2

2n

ˆ

Rn

|Q̃ã(z)|
2n
n−2 zkzldz

)]
|ε|

−

[
(n− 2)2

4n2

ˆ

Rn

|Q̃ã(z)|
2n
n−2dz − n− 2

2n

ˆ

Rn

|Q̃ã(z)|
2n
n−2 log |Q̃ã(z)|dz

]
ε

−ε log |ε| n− 2

4

ˆ

Rn

|Q̃ã(z)|
2n
n−2dz + o(|ε|).

Since
ˆ

Rn

|Q̃ã(z)|
2n
n−2dz =

ˆ

Rn

|z|−2n
∣∣∣Q( z

|z|2
− ã
)∣∣∣ 2n

n−2
dz =

ˆ

Rn

|Q(y)|
2n
n−2dy := c0,

ˆ

Rn

|Q̃ã(z)|2dz =
1

2

ˆ

Rn

|Q(y)|2

|y + ã|4
dy,

and ˆ

Rn

|Q̃ã(z)|
2n
n−2 log |Q̃ã(z)|dz

=

ˆ

Rn

|z|−2n
∣∣∣Q( z

|z|2
− ã
)∣∣∣ 2n

n−2
log
∣∣∣|z|2−nQ

( z

|z|2
− ã
)∣∣∣dz

=

ˆ

Rn

∣∣∣Q(y − ã
)∣∣∣ 2n

n−2
log
∣∣∣|y|n−2Q

(
y − ã

)∣∣∣dy
= (n− 2)

ˆ

Rn

∣∣∣Q(y − ã)
∣∣∣ 2n
n−2

log |y|dy +
ˆ

Rn

∣∣∣Q(y − ã
)∣∣∣ 2n

n−2
log
∣∣∣Q(y − ã

)∣∣∣dy
= (n− 2)

ˆ

Rn

|Q(y)|
2n
n−2 log

∣∣y + ã
∣∣dy + ˆ

Rn

|Q(y)|
2n
n−2 log |Q(y)|dy.

Then we find

Jε(WA(x)) =
1

n
c0 −

n− 2

4
c0 ε log |ε| −

((n− 2)2

4n2
c0 −

n− 2

2n
c1

)
ε− n− 2

4
c0 log(t)ε

+t
[(1

2

ˆ

Rn

|Q(y)|2

|y + ã|4
dy
)
h(ξ)− Rkl

12

(ˆ
Rn

|∇Q̃ã(z)|2zkzldz −
n− 2

n

ˆ

Rn

|Q̃ã(z)|
2n
n−2 zkzldz

)]
|ε|

+
(n− 2)2

2n

ˆ

Rn

|Q(y)|
2n
n−2 log

∣∣y + ã
∣∣dy ε+ o(|ε|),

(5.6)
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where

c1 =

ˆ

Rn

|Q(y)|
2n
n−2 log |Q(y)|dy.

Now we observer that ã = Pθa, for |ã| small, a Taylor expansion, we have

|y + ã|−4 =
(
|y|2 + 2yã+ |ã|2

)−2
= |y|−4

(
1 + 2

yã

|y|2
+

|ã|2

|y|2
)−2

= |y|−4

(
1− 2

(
2
yã

|y|2
+

|ã|2

|y|2
)
+ 3
(
2
yã

|y|2
+

|ã|2

|y|2
)2

+ o(|ã|2)

)

=
1

|y|4
− 4

yã

|y|6
− 2

|ã|2

|y|6
+ 12

(yã)2

|y|8
+
o(|ã|2)
|y|4

,(5.7)

where yã = y1ã1+y2ã2, then
´
Rn

yã
|y|6 |Q(y)|2dy = 0 and

´
Rn

(yã)2

|y|8 |Q(y)|2dy = |ã|2
n

´
Rn

|Q(y)|2
|y|6 dy. Thus

1

2

ˆ

Rn

|Q(y)|2

|y + ã|4
dy =

1

2

ˆ

Rn

|Q(y)|2

|y|4
dy − |ã|2

ˆ

Rn

|Q(y)|2

|y|6
dy +

6|ã|2

n

ˆ

Rn

|Q(y)|2

|y|6
dy + o(|ã|2)

=
1

2

ˆ

Rn

|Q(y)|2

|y|4
dy − |ã|2n− 6

n

ˆ

Rn

|Q(y)|2

|y|6
dy + o(|ã|2)

= β

(
1

2
− |a|2

)
+ o(|a|2) + o(ε),(5.8)

where β = ωn−1

2 α2
nI

n−6
2

n−2 .

Recall that Q̃ã(z) = |z|2−nQ
(

z
|z|2 − ã

)
, we have

|∇Q̃ã(z)|2 = |z|−2n|∇yQ(y)|2 + (n− 2)2|z|2−2n|Q(y)|2 + 2(n− 2)|z|−2nQ(y)∇yQ(y)z

where y = z
|z|2 − Pθa. Thus

Rkl

ˆ
Rn

|∇Q̃ã(z)|2zkzldz

= Rkl

ˆ
Rn

[
|∇yQ(y)|2 + (n− 2)2

|Q(y)|2

|y + Pθa|2

+2(n− 2)
(y + Pθa)∇yQ(y)Q(y)

|y + Pθa|2

]
(y + Pθa)

k(y + Pθa)
l

|y + Pθa|4
dy

= Rkl

ˆ
Rn

|∇yQ(y)|2

|y + Pθa|4
(y + Pθa)

k(y + Pθa)
ldy

+(n− 2)2Rkl

ˆ
Rn

|Q(y)|2

|y + Pθa|6
(y + Pθa)

k(y + Pθa)
ldy

+2(n− 2)Rkl

ˆ
Rn

(y + Pθa)∇yQ(y)Q(y)

|y + Pθa|6
(y + Pθa)

k(y + Pθa)
ldy

:= I1 + I2 + I3.

Using (5.7), we have

I1 = Rkl

ˆ
Rn

[
|∇yQ(y)|2

|y|4
− 4

|∇yQ(y)|2

|y|6
yPθa−

2(n− 6)

n

|∇yQ(y)|2

|y|6
|Pθa|2 + o(|a|2)

]
×
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×
(
ykyl + yk(Pθa)

l + yl(Pθa)
k + (Pθa)

k(Pθa)
l
)
dy

=
Scalg(ξ)

n

ˆ
Rn

[
|∇yQ(y)|2

|y|2
− 2(n− 6)

n

|∇yQ(y)|2

|y|4
|a|2
]
dy

+Rkl(Pθa)
k(Pθa)

l

ˆ
Rn

|∇yQ(y)|2

|y|4
dy + o(|a|2) + o(ε)

=
(n− 2)2

n

ωn−1

2
α2
n

(
I

n−2
2

n +KI
n
2
n − 2(n− 6)

n

(
I

n−4
2

n +KI
n
2
n

)
|a|2
)
Scalg(ξ)

+(n− 2)2
ωn−1

2
α2
n

(
I

n−4
2

n +KI
n
2
n

)
Rkl(Pθa)

k(Pθa)
l + o(|a|2) + o(ε)

= β

[
(n− 2)2(n− 4)

4n(n− 1)
+

(n− 2)(n− 4)

4(n− 1)
K − (n− 2)(n− 4)(n− 6)

2n(n− 1)
(1 +K)|a|2

]
Scalg(ξ)

+β
n(n− 2)(n− 4)

4(n− 1)
(1 +K) Rkl(Pθa)

k(Pθa)
l + o(|a|2) + o(ε).

Moreover, since

|y + ã|−6 =
1

|y|6
− 6

yã

|y|8
− 3(n− 8)

n

|ã|2

|y|8
+
o(|ã|2)
|y|8

,

We have

I2 =
(n− 2)2

n
Scalg(ξ)

ˆ
Rn

[
|Q(y)|2

|y|4
− 3(n− 8)

n

|Q(y)|2

|y|6
|a|2
]
dy

+(n− 2)2Rkl(Pθa)
k(Pθa)

l

ˆ
Rn

|Q(y)|2

|y|6
dy + o(|a|2) + o(ε)

=
(n− 2)2

n

ωn−1

2
α2
n

(
I

n−6
2

n−2 − 3(n− 8)

n
I

n−8
2

n−2 |a|
2

)
Scalg(ξ)

+(n− 2)2
ωn−1

2
α2
nI

n−8
2

n−2 Rkl(Pθa)
k(Pθa)

l + o(|a|2) + o(ε)

= β

(
(n− 2)2

n
− 3(n− 2)2(n− 8)

n(n− 6)
|a|2
)
Scalg(ξ)

+β
n(n− 2)2

n− 6
Rkl(Pθa)

k(Pθa)
l + o(|a|2) + o(ε),

and

I3 = 2(n− 2)Rkl

ˆ
Rn

(y + Pθa)∇Q(y)Q(y)

|y + Pθa|6
(y + Pθa)

k(y + Pθa)
ldy

=
2(n− 2)

n
Scalg(ξ)

ˆ
Rn

[
y∇Q(y)Q(y)

|y|4
− 3(n− 8)

n

y∇Q(y)Q(y)

|y|4
|a|2
]
dy

+2(n− 2)Rkl(Pθa)
k(Pθa)

l

ˆ
Rn

y∇Q(y)Q(y)

|y|6
dy + o(|a|2) + o(ε)

= −2(n− 2)2

n

ωn−1

2
α2
n

(
I

n−4
2

n−1 − 3(n− 8)

n
I

n−6
2

n−1 |a|
2

)
Scalg(ξ)

−2(n− 2)2Rkl
ωn−1

2
α2
nI

n−6
2

n−1 (Pθa)
k(Pθa)

l + o(|a|2) + o(ε)
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= β

(
−(n− 2)(n− 4)

n
+

3(n− 2)(n− 8)

n
|a|2
)
Scalg(ξ)

−βn(n− 2) Rkl(Pθa)
k(Pθa)

l + o(|a|2) + o(ε).

Therefore, we obtain

I1 + I2 + I3

= β

(
(n− 2)(n+ 2)

4(n− 1)
+K

(n− 2)(n− 4)

4(n− 1)

)
Scalg(ξ)

−β
(
(n− 2)(n3 + 8n2 − 132n+ 48)

2n(n− 1)(n− 6)
+K

(n− 2)(n− 4)(n− 6)

2n(n− 1)

)
|a|2 Scalg(ξ)

+β

(
n(n− 2)(n+ 2)(n+ 4)

4(n− 1)(n− 6)
+
n(n− 2)(n− 4)

4(n− 1)
K

)
Rkl (Pθa)

k(Pθa)
l

+o(|a|2) + o(ε),(5.9)

where β = ωn−1

2 α2
nI

n−6
2

n−2 .
On the other hand,

Rkl

ˆ

Rn

|Q̃ã(z)|
2n
n−2 zkzldz = Rkl

ˆ

Rn

|Q(y)|
2n
n−2

|y + Pθa|4
(y + Pθa)

k(y + Pθa)
ldy

=
ωn−1

2
α

2n
n−2
n

1

n

((
I

n−4
2

n +KI
n−2
2

n

)
− 2(n− 6)

n

(
I

n−6
2

n +KI
n−2
2

n

)
|a|2
)
Scalg(ξ)

+
ωn−1

2
α

2n
n−2
n

(
I

n−6
2

n +KI
n−2
2

n

)
Rkl(Pθa)

k(Pθa)
l + o(|a|2) + o(ε)

= β

(
n(n− 4)

4(n− 1)

(
1 +K

n− 2

n

)
− (n− 6)(n+ 2)

2(n− 1)

(
1 +K

(n− 2)(n− 4)

n(n+ 2)

)
|a|2
)
Scalg(ξ)

+β
n2(n+ 2)

4(n− 1)

(
1 +K

(n− 2)(n− 4)

n(n+ 2)

)
Rkl(Pθa)

k(Pθa)
l + o(|a|2) + o(ε).

(5.10)

Finally, we have

(5.11)

ˆ

Rn

|Q(y)|
2n
n−2 log

∣∣y + ã
∣∣dy = c2 + β

n2(n− 4)

8(n− 1)

(
1 +K

n− 2

n

)
|a|2 + o(|a|2) + o(ε),

where

c2 =

ˆ

Rn

|Q(y)|
2n
n−2 log |y|dy.

From (5.6), (5.8)-(5.11), we get

Jε(WA(x)) =
c0
n

− d1ε log |ε| − d2ε+
β

2
Ψ(t, ξ, a, θ)ε+ o(|ε|).

where

Ψ(t, ξ, a, θ) = −d3 log t+ sign(ε)φ(ξ)t− sign(ε)d4a(Bξ,θ)a
T t

+ [sign(ε) (−2φ(ξ) + d5Scalg(ξ)) t+ d6] |a|2 + o(|a|2)
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where Bξ,θ = (Pθ)
T (Rij)n×nPθ is a n× n matrix, and

φ(ξ) = h(ξ)− n− 2

4(n− 1)

(
1 +

n− 4

3n
K

)
Scalg(ξ).

The constants c0, c1, c2 and di, i = 1, . . . , 6 are given in Proposition 3.2.

6. Appendix

6.1. The sign changing solution QK . Recall that, In [7,8] it was proved that there exists k0
such that for all integer k > k0 there exists a solution Q = Qk to (1.6) that can be described as
follows

(6.1) Qk(y) = U∗(y) + ϕ̃(y).

where

(6.2) U∗(y) = U(y)−
k∑

j=1

Uj(y),

while ϕ̃ is smaller than U∗. The functions U and Uj are positive solutions to (1.6), respectively
defined as

(6.3) U(y) = αn

(
1

1 + |y|2

)n−2
2

, Uj(x) = µ
−n−2

2
k U(µ−1

k (y − ξj)),

where αn = [n(n− 2)]
n−2
4 . For any integer k large, the parameters µk > 0 and the k points ξl,

l = 1, . . . , k are given by[
k∑

l>1

1

(1− cos θl)
n−2
2

]
µ

n−2
2

k =

(
1 +O(

1

k
)

)
, for k → ∞

in particular µk ∼ k−2 if n ≥ 4, and µk ∼ k−2| log k|−2 if n = 3, as k → ∞, and

ξl =
√

1− µ2 (nl, 0).

In (6.1), ϕ̃(y) satisfies

|ϕ̃(y)| = O

(
k
−n

q

(1 + |y|)n−2

)
,

for q > n
2 .

6.2. About the non-degeneracy of the basic cell. Let Σ be the set of nontrivial solutions
of equation

−∆Q = |Q|
4

n−2Q, in Rn.

Let N be the group of one-to-one maps of Rn ∪ {∞} generated by

• the translations Ta : y 7→ y + a, where a ∈ Rn;
• the dilations Dλ : y 7→ λy, where λ > 0;
• the linear isometries Pθ;
• the inversion J : y 7→ y

|y|2 .
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From [10], for x, ξ ∈M , we then have

Q
(
Pθ ◦ J ◦ T−a ◦ J ◦Dλ−1 ◦ P−1

θ ◦ exp−1
ξ (x)

)
∈ Σ.

In [18], is was proved that these solutions are non degenerate. That is, fix one solution
Q = QK of problem (1.6) and define the linearized equation around Q as follows

(6.4) L(ϕ) = ∆ϕ+ p|Q|p−1ϕ.

The invariances (1.11), (1.12), (1.13), together with the natural invariance of any solution to
(1.6) under translation (if u solves (1.6) then also u(y + ζ) solves (1.6) for any ζ ∈ Rn) and

under dilation (if u solves (1.6) then λ−
n−2
2 u(λ−1y) solves (1.6) for any λ > 0) produce some

natural functions φ in the kernel of L, namely

L(φ) = 0.

These are the 3n linearly independent functions we introduce next:

(6.5) z0(y) =
n− 2

2
Q(y) +∇Q(y) · y,

(6.6) zα(y) =
∂

∂yα
Q(y), for α = 1, . . . , n,

and

(6.7) zn+1(y) = −y2
∂

∂y1
Q(y) + y1

∂

∂y2
Q(y),

(6.8) zn+2(y) = −2y1z0(y) + |y|2z1(y), zn+3(y) = −2y2z0(y) + |y|2z2(y)
and, for l = 3, . . . , n

(6.9) zn+l+1(y) = −ylz1(y) + y1zl(y), z2n+l−1(y) = −ylz2(y) + y2zl(y).

Indeed, a direct computation gives that

L(zα) = 0, for all α = 0, 1, . . . , 3n− 1.

A solution Q is said to be non degenerate if

(6.10) Kernel(L) = Span{zα : α = 0, 1, 2, . . . , 3n− 1},
or equivalently, any bounded (or any solution in D1,2) of L(φ) = 0 is a linear combination of
the functions zα, α = 0, . . . , 3n− 1.

The function z0 defined in (6.5) is related to the invariance of Problem (1.6) with respect

to dilation λ−
n−2
2 Q(λ−1y). The functions zi, i = 1, . . . , n, defined in (6.6) are related to the

invariance of Problem (1.6) with respect to translation Q(y + ζ). The function zn+1 defined in
(6.7) is related to the invariance of Q under rotation in the (y1, y2) plane. The two functions
zn+2 and zn+3 defined in (6.8) are related to the invariance of Problem (1.6) under Kelvin
transformation (1.13). The functions defined in (6.9) are related to the invariance under rotation
in the (y1, yl) plane and in the (y2, yl) plane respectively.

Let us be more precise. Denote by O(n) the orthogonal group of n× n matrices P with real
coefficients, so that P TP = I, and by SO(n) ⊂ O(n) the special orthogonal group of all matrices
in O(n) with detP = 1. SO(n) is the group of all rotations in Rn, it is a compact group, which

can be identified with a compact set in R
n(n−1)

2 . Consider the sub group Ŝ of SO(n) generated
by rotations in the (x1, x2)-plane, in the (xj , xα)-plane, for any j = 1, 2 and α = 3, . . . , n. We

have that Ŝ is compact and can be identified with a compact manifold of dimension 2n−3, with
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no boundary. In other words, there exists a smooth injective map χ : Ŝ → R
n(n−1)

2 so that χ(Ŝ)

is a compact manifold of dimension 2n− 3 with no boundary and χ−1 : χ(Ŝ) → Ŝ is a smooth

parametrization of Ŝ in a neighborhood of the Identity. Thus we write

θ ∈ O = χ(Ŝ), Pθ = χ−1(θ)

where O is a compact manifold of dimension 2n−3 with no boundary and Pθ denotes a rotation
in Ŝ. Let θ = (θ12, θ13, . . . , θ1n, θ23, . . . , θ2n), and we write

Pθ = P12(θ12)P13(θ13)P14(θ14) · · ·P1n(θ1n)P23(θ23)P24(θ24) · · ·P2n(θ2n),

where Pij(θij) is the Rotation in the (i, j)−plane,

Pij(θij) =



1 · · · 0 0 · · · 0 0 · · · 0
...
. . .

...
...
. . .

...
...

. . .
...

0 · · · cos θij 0 · · · 0 − sin θij · · · 0
0 · · · 0 1 · · · 0 0 · · · 0
...
. . .

...
...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 1 0 · · · 0
0 · · · sin θij 0 · · · 0 cos θij · · · 0
...
. . .

...
...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · 1


, i < j.

We set

Pθ = (cij)n×n.

By a direct calculation, we have

c11 = cos θ12 cos θ13 cos θ14 · · · cos θ1n,
ci1 = sin θ1i cos θ1,i+1 cos θ1,i+2 · · · cos θ1n, i = 2, 3, . . . , n,

and

c12 = − sin θ12 cos θ23 cos θ2,4 · · · cos θ2n
− cos θ12 sin θ13 sin θ23 cos θ24 · · · cos θ2n
− cos θ12 cos θ13 sin θ14 sin θ24 cos θ25 · · · cos θ2n
− · · ·
− cos θ12 cos θ13 cos θ14 · · · cos θ1,n−1 cos θ1,n−1 sin θ2,n−1 cos θ2n

− cos θ12 cos θ1,3 cos θ14 · · · cos θ1,n−1 cos θ1,n−1 sin θ1n sin θ2n,

and for i = 2, 3, . . . , n,

ci2 = cos θ1i sin θ2i cos θ2,i+1 cos θ2,i+2 · · · cos θ2n
− sin θ1i sin θ1,i+1 sin θ2,i+1 cos θ2,i+2 cos θ2,i+2 · · · cos θ2n
− sin θ1i cos θ1,i+1 sin θ1,i+2 sin θ2,i+2 cos θ2,i+3 cos θ2,i+2 · · · cos θ2n
− · · ·
− sin θ1i cos θ1,i+1 cos θ1,i+2 · · · cos θ1,n−2 sin θ1,n−1 sin θ2,n−1 cos θ2n

− sin θ1i cos θ1,i+1 cos θ1,i+2 · · · cos θ1,n−2 cos θ1,n−1 sin θ1,n sin θ2n.
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6.3. Some useful estimates.

Lemma 6.1. We haveˆ

Rn

|∇Q(y)|2

|y|2
dy = (n− 2)2

ωn−1

2
α2
nI

n−2
2

n +O
(
k
−n

q

)
,(6.11)

ˆ

Rn

|∇Q(y)|2

|y|4
dy = (n− 2)2

ωn−1

2
α2
nI

n−4
2

n +O
(
k
−n

q

)
,(6.12)

ˆ

Rn

|Q(y)|2

|y|4
dy =

ωn−1

2
α2
nI

n−6
2

n−2 +O
(
k
−n

q

)
,(6.13)

ˆ

Rn

|Q(y)|2

|y|6
dy =

ωn−1

2
α2
nI

n−8
2

n−2 +O
(
k
−n

q

)
,(6.14)

ˆ

Rn

|Q(y)|
2n
n−2

|y|2
dy =

ωn−1

2
α

2n
n−2
n I

n−4
2

n +
ωn−1

2
α

2n
n−2
n kI

n−2
2

n +O
(
k
−n

q

)
,(6.15)

and
ˆ

Rn

|Q(y)|
2n
n−2

|y|4
dy =

ωn−1

2
α

2n
n−2
n I

n−6
2

n +
ωn−1

2
α

2n
n−2
n kI

n−2
2

n +O
(
k
−n

q

)
.(6.16)

Proof. Proof of (6.13): by the definition of Q, we have

ˆ

Rn

|Q(y)|2

|y|4
dy =

ˆ

Rn

∣∣U(y)−
∑k

j=1 Uj(y) + ϕ̃(y)
∣∣2

|y|4
dy

=

ˆ

Rn

|U(y)|2

|y|4
dy +

k∑
j=1

ˆ

Rn

|Uj(y)|2

|y|4
dy +

ˆ

Rn

|ϕ̃(y)|2

|y|4
dy

+2

ˆ

Rn

|U(y)||
∑k

j=1 Uj(y) + ϕ̃(y)|
|y|4

dy.(6.17)

Since ˆ

Rn

|U(y)|2

|y|4
dy =

ωn−1

2
α2
nI

n−6
2

n−2 ,(6.18)

k∑
j=1

ˆ

Rn

|Uj(y)|2

|y|4
dy = α2

n

k∑
j=1

ˆ

Rn

µn−2
k

(µ2k + |y − ξj |2)n−2

1

|y|4
dy

= µ2kα
2
n

k∑
j=1

ˆ

Rn

1

(1 + |z|2)n−2

1

|µkz + ξj |4
dy
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= µ2kα
2
n

k∑
j=1

ˆ

|z|≤ 1
2µk

1

(1 + |z|2)n−2

1

|µkz + ξj |4
dy

+µ2kα
2
n

k∑
j=1

ˆ

|z|≥ 1
2µk

1

(1 + |z|2)n−2

1

|µkz + ξj |4
dy

= µ2kα
2
n

k∑
j=1

ˆ

|z|≤ 1
2µk

1

(1 + |z|2)n−2

1

|ξj |4

(
1 +O

(µkz
|ξj |

))
dy

+µ2kα
2
n

k∑
j=1

ˆ

|z|≥ 1
2µk

1

(1 + |z|2)n−2

1

|µjz|4

(
1 +O

( |ξj |
µkz

))
dy

= O
(
kµ2k| logµk|

)
= O

(
k−3 log k

)
.(6.19)

Using (6.1), we have

ˆ

Rn

|ϕ̃(y)|2

|y|4
dy = O

(
k
− 2n

q

ˆ

Rn

1

(1 + |y|)2(n−2)|y|4
dy
)
= O

(
k
− 2n

q

)
.(6.20)

Moreover,

ˆ

Rn

|U(y)||
∑k

j=1 Uj(y) + ϕ̃(y)|
|y|4

dy

=

ˆ
B(0,δ)

· · ·+
ˆ
∪k
j=1B(0,δ)

· · ·+
ˆ
Rn\(B(0,δ)∪∪k

j=1B(0,δ))
· · ·

= O

(
µ

n−2
2

k + k
−n

q

)
+O

(
µ
n−n−2

2
k

)
+O

(
k
−n

q

)
= O

(
µ

n−2
2

k

)
+O

(
k
−n

q

)
= O

(
k−(n−2)

)
+O

(
k
−n

q

)
= O

(
k
−n

q

)
= o

(
k−1

)
since

n

2
< q < n, n ≥ 4.(6.21)

From (6.28)-(6.21), we get (6.13).

Proof of (6.14): As the same computation as (6.13) we can get. In fact, by the definition of
Q, we have

ˆ

Rn

|Q(y)|2

|y|6
dy =

ˆ

Rn

∣∣U(y)−
∑k

j=1 Uj(y) + ϕ̃(y)
∣∣2

|y|4
dy

=

ˆ

Rn

|U(y)|2

|y|6
dy +

k∑
j=1

ˆ

Rn

|Uj(y)|2

|y|6
dy +

ˆ

Rn

|ϕ̃(y)|2

|y|4
dy
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+2

ˆ

Rn

|U(y)||
∑k

j=1 Uj(y) + ϕ̃(y)|
|y|6

dy.(6.22)

Since ˆ

Rn

|U(y)|2

|y|6
dy =

ωn−1

2
α2
nI

n−8
2

n−2 ,(6.23)

k∑
j=1

ˆ

Rn

|Uj(y)|2

|y|6
dy = α2

n

k∑
j=1

ˆ

Rn

µn−2
k

(µ2k + |y − ξj |2)n−2

1

|y|6
dy

= µ2kα
2
n

k∑
j=1

ˆ

Rn

1

(1 + |z|2)n−2

1

|µkz + ξj |6
dy

= µ2kα
2
n

k∑
j=1

ˆ

|z|≤ 1
2µk

1

(1 + |z|2)n−2

1

|µkz + ξj |6
dy

+µ2kα
2
n

k∑
j=1

ˆ

|z|≥ 1
2µk

1

(1 + |z|2)n−2

1

|µkz + ξj |6
dy

= µ2kα
2
n

k∑
j=1

ˆ

|z|≤ 1
2µk

1

(1 + |z|2)n−2

1

|ξj |6

(
1 +O

(µkz
|ξj |

))
dy

+µ2kα
2
n

k∑
j=1

ˆ

|z|≥ 1
2µk

1

(1 + |z|2)n−2

1

|µjz|6

(
1 +O

( |ξj |
µkz

))
dy

= O
(
kµ2k| logµk|

)
= O

(
k−3 log k

)
.(6.24)

Using (6.1), we haveˆ

Rn

|ϕ̃(y)|2

|y|6
dy = O

(
k
− 2n

q

ˆ

Rn

1

(1 + |y|)2(n−2)|y|6
dy
)
= O

(
k
− 2n

q

)
.(6.25)

Moreover, ˆ

Rn

|ϕ̃(y)|2

|y|6
dy = O

(
k
− 2n

q

ˆ

Rn

1

(1 + |y|)2(n−2)|y|6
dy
)
= O

(
k
− 2n

q

)
.(6.26)

Moreover,
ˆ

Rn

|U(y)||
∑k

j=1 Uj(y) + ϕ̃(y)|
|y|6

dy

=

ˆ
B(0,δ)

· · ·+
ˆ
∪k
j=1B(0,δ)

· · ·+
ˆ
Rn\(B(0,δ)∪∪k

j=1B(0,δ))
· · ·

= O

(
µ

n−2
2

k + k
−n

q

)
+O

(
µ
n−n−2

2
k

)
+O

(
k
−n

q

)
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= O

(
µ

n−2
2

k

)
+O

(
k
−n

q

)
= O

(
k−(n−2)

)
+O

(
k
−n

q

)
= O

(
k
−n

q

)
.(6.27)

From (6.22)-(6.27), we get (6.14).

Proof of (6.15): we have

ˆ

Rn

|Q(y)|
2n
n−2

|y|2
dy =

ˆ

Rn

∣∣U(y)−
∑k

j=1 Uj(y) + ϕ̃(y)
∣∣ 2n
n−2

|y|2
dy

=

ˆ

Rn

|U(y)|
2n
n−2

|y|2
dy +

k∑
j=1

ˆ

Rn

|Uj(y)|
2n
n−2

|y|2
dy +

ˆ

Rn

|ϕ̃(y)|
2n
n−2

|y|2
dy

+

2n
n−2

−1∑
γ=1

ˆ

Rn

|U(y)|γ |
∑k

j=1 Uj(y) + ϕ̃(y)|
2n
n−2

−γ

|y|2
dy.(6.28)

Since
ˆ

Rn

|U(y)|
2n
n−2

|y|2
dy =

ωn−1

2
α

2n
n−2
n I

n−4
2

n ,(6.29)

k∑
j=1

ˆ

Rn

|Uj(y)|
2n
n−2

|y|2
dy = α

2n
n−2
n

k∑
j=1

ˆ

Rn

µnk
(µ2k + |y − ξj |2)n

1

|y|2
dy

= α
2n
n−2
n

k∑
j=1

ˆ

Rn

1

(1 + |z|2)n
1

|µkz + ξj |2
dy

= α
2n
n−2
n

k∑
j=1

ˆ

|z|≤ 1
2µk

1

(1 + |z|2)n
1

|µkz + ξj |2
dy

+α
2n
n−2
n

k∑
j=1

ˆ

|z|≥ 1
2µk

1

(1 + |z|2)n
1

|µkz + ξj |2
dy

= α
2n
n−2
n

k∑
j=1

ˆ

|z|≤ 1
2µk

1

(1 + |z|2)n
1

|ξj |2

(
1 +O

(µkz
|ξj |

))
dy

+α
2n
n−2
n

k∑
j=1

ˆ

|z|≥ 1
2µk

1

(1 + |z|2)n
1

|µjz|2

(
1 +O

( |ξj |
µkz

))
dy

=
ωn−1

2
α

2n
n−2
n kI

n−2
2

n +O
(
kµk

)
=
ωn−1

2
α

2n
n−2
n kI

n−2
2

n +O
(
k
−n

q

)
, n ≥ 4.(6.30)
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Using (6.1), we have

ˆ

Rn

|ϕ̃(y)|
2n
n−2

|y|2
dy = O

(
k
−n

q
2n
n−2

ˆ

Rn

1

(1 + |y|)2n|y|2
dy
)
= O

(
k
−n

q
2n
n−2

)
= O

(
k
−n

q

)
.(6.31)

Moreover, for γ ∈ (1, 2n
n−2 − 1),

ˆ

Rn

|U(y)|γ |
∑k

j=1 Uj(y) + ϕ̃(y)|
2n
n−2

−γ

|y|2
dy

=

ˆ
B(0,δ)

· · ·+
ˆ
∪k
j=1B(0,δ)

· · ·+
ˆ
Rn\(B(0,δ)∪∪k

j=1B(0,δ))
· · ·

= O

(
µ

n−2
2

(
2n
n−2

−γ
)

k + k
−n

q

(
2n
n−2

−γ
))

+O

(
µ
n−n−2

2

(
2n
n−2

−γ
)

k

)
+O

(
k
−n

q

(
2n
n−2

−γ
))

= O

(
µ
n−n−2

2
γ

k

)
+O

(
µ

n−2
2

γ

k

)
+O

(
k
−n

q

(
2n
n−2

−γ
))

= O

(
µ

n−2
2

k

)
+O

(
k
−n

q

)
= O

(
k−(n−2)

)
+O

(
k
−n

q

)
= O

(
k
−n

q

)
.(6.32)

Therefore (6.15) follows from (6.28)-(6.32).

Proof of (6.16), which is the same as (6.15). �
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