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Abstract. This paper concerns rigidity results to Serrin’s overde-
termined problem in an epigraph

∆u + f(u) = 0, in Ω = {(x′, xn) : xn > ϕ(x′)},
u > 0, in Ω,

u = 0, on ∂Ω,

|∇u| = const., on ∂Ω.

We prove that up to isometry the epigraph must be an half space
and that the solution u must be one-dimensional, provided that
one of the following assumptions are satisfied: either n = 2; or
ϕ is globally Lipschitz, or n ≤ 8 and ∂u

∂xn
> 0 in Ω. In view

of the counterexample constructed in [9] in dimensions n ≥ 9 this
result is optimal. This partially answers a conjecture of Berestycki,
Caffarelli and Nirenberg [5].

1. Introduction

This paper is concerned with the one dimensional symmetry problem
for the Serrin’s overdetermined problem in an epigraph. More precisely
we consider solutions to the following overdetermined problem:

∆u+ f(u) = 0, in Ω

u > 0, in Ω,

u = 0, on ∂Ω,

∂u

∂ν
= const., on ∂Ω

(1.1)

where f is a Lipschitz nonlinearity, ν is the outer normal at ∂Ω, and
∂u
∂ν

is a constant which is not prescribed a priori.

A classical result of Serrin’s [29] asserts that if Ω is a bounded and
smooth domain for which there is a positive solution to the overdeter-
mined equation (1.1) then Ω is a sphere and u is radially symmetric.

In the analysis of blown up version of free boundary problem, it is
natural also to consider Serrin’s overdetermined problem in unbounded
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domains. (See Berestycki-Caffarelli-Nirenberg [4].) A natural class of
unbounded domains to be considered are epigraphs, namely domains
Ω of the form

Ω = {x ∈ Rn / xN > ϕ(x
′
)} (1.2)

where x
′

= (x1, . . . , xn−1) and ϕ : Rn−1 → R is a smooth function. In
[5], Berestycki, Caffarelli and Nirenberg proved, under conditions on f
that are satisfied for instance the Allen-Cahn nonlinearity below, the
following result: If ϕ is uniformly Lipschitz and asymptotically flat at
infinity, and Problem (1.1) is solvable, then ϕ must be a linear function,
in other words Ω must be a half-space. This result was improved by
Farina and Valdinoci [12], by lifting the asymptotic flatness condition
and smoothness on f , under the dimension constraint n ≤ 3 and other
assumptions (see remarks below). When the epigraph is coercive (see
(1.6) below) they can also consider an arbitrary nonlinearity.

In [5, pp.1110], the following conjecture on Serrin’s overdetermined
problem in unbounded domains was raised.

Berestycki-Caffarelli-Nirenberg Conjecture: Assume that Ω is a
smooth domain with Ωc connected and that there is a bounded positive
solution of (1.1) for some Lipschitz function f then Ω is either a half-
space, or a cylinder Ω = Bk × Rn−k, where Bk is a k-dimensional
Euclidean ball, or the complement of a ball or a cylinder.

In this paper we are mainly concerned with the BCN conjecture in
the epigraph case (1.2), namely the following overdetermined problem

∆u+ f(u) = 0, u > 0 in Ω = {xn > ϕ(x
′
)}

u = 0, on {xn = ϕ(x
′
)},

∂u

∂ν
= const., on {xn = ϕ(x

′
)}.

(1.3)

In this case, the BCN conjecture states that if Serrin’s problem (1.3)
is solvable, then Ω must be an half-space. In a recent paper, del Pino,
Pacard and the second author [9] constructed an epigraph, which is
a perturbation of the Bombieri-De Giorgi-Giusti minimal graph, such
that problem (1.3) admits a solution. This counterexample requires
dimension n ≥ 9. It remains open if the BCN Conjecture is true in low
dimensions n ≤ 8. In this paper we shall give an affirmative answer to
this question.

Before we proceed, we introduce the assumptions on the nonlinearity.
Let W (u) = −

∫ u
0
f(s)ds. We assume that W is a standard double well

potential, that is, W ∈ C2([0,+∞)), satisfying

W1) W ≥ 0, W (1) = 0 and W > 0 in [0, 1);
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W2) for some γ ∈ (0, 1), W ′ < 0 on (γ, 1);
W3) there exists a constant κ > 0, W ′′ ≥ κ > 0 for all x ≥ γ;
W4) there exists a constant p > 1, W ′(u) ≥ c(u− 1)p for u > 1.

Moreover, we also assume that W satisfies

W5) W ′ < 0 in (0, 1), and either W ′(0) 6= 0 or

W ′(0) = 0 and W ′′(0) 6= 0.

A prototype example is W (u) = (1 − u2)2/4 which gives the Allen-
Cahn equation.

Under hypothesis (W1-4), there exists a unique function g satisfying{
g′′ = W ′(g), on [0,+∞),

g(0) = 0, lim
t→+∞

g(t) = 1.
(1.4)

Moreover, g has the following first integral:

g′(t) =
√

2W (g(t)) > 0, on [0,+∞). (1.5)

As t → +∞, g(t) converges to 1 exponentially. Hence the following
quantity is finite:

σ0 :=

∫ +∞

0

1

2

∣∣g′(t)∣∣2 +W (g(t))dt < +∞.

From now on we always assume that W satisfies (W1-5).

Our first result proves the conjecture in dimension 2 for any epigraph.

Theorem 1.1. Let n = 2 and W satisfy (W1-5). If Serrin’s overde-
termined problem (1.3) has a solution then Ω = {xn > ϕ(x

′
)} must be

a half space and up to isometry u(x) ≡ g(x · e) for some unit vector e.

Our second result proves the conjecture in all dimensions for any
Lipschitz or coercive graph.

Theorem 1.2. Assume that ϕ is globally Lipschitz. If Serrin’s overde-
termined problem (1.3) has a solution then Ω = {xn > ϕ(x

′
)} must be

a half space and up to isometry u(x) ≡ g(x · e) for some unit vector e.

Theorem 1.3. Assume that ϕ is coercive, i.e.

lim
x′→∞

ϕ(x′) = +∞. (1.6)

Then there is no solution to Serrin’s overdetermined problem (1.3) in
Ω = {xn > ϕ(x

′
)}.

The last result proves the conjecture in dimensions n ≤ 8, under an
additional assumption.
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Theorem 1.4. Let u be a solution of (1.3) satisfying the following
monotonicity assumption in one direction

∂u

∂xn
> 0, in Ω. (1.7)

If n ≤ 8 and 0 ∈ ∂Ω, then u(x) ≡ g(x · e) for some unit vector e and
Ω is an half space.

We compare the results of this paper with those in the existing lit-
erature. Theorem 1.1 was proved by Farina and Valdinoci [12] under
the assumption that the epigraph is globally Lipschitz (and for more
general f). They also proved Theorem 1.2 and Theorem 1.3 for more
general f under the dimension restriction n = 2 or 3. (In the case of
coercive epigraph it is assumed to be uniformly Lipschitz. See [The-
orem 1.6-1.8, [12]].) When n = 2, Theorem 1.4 was also proved in
[Theorem 1.2, [12]]. Related results can also be found in [16]. In view
of the counterexample constructed by del Pino, Pacard and the second
author [9], the dimension restriction in Theorem 1.4 is optimal. (We
remark that the solutions constructed in [9] also satisfy (1.7).)

The extra condition (1.7) in Theorem 1.4 is a natural one. See
[12, 13]. This condition is always satisfied if the epigraph is globally
Lipschitz or coercive ([5]). It seems that the monotonicity condition
(1.7) should follow from our other assumptions. However, this is not
clear at present. It will be an interesting question to remove or prove
this condition in general setting.

Theorems 1.1-1.4 have analogues in De Giorgi Conjecture for Allen-
Cahn equation

∆u+ u− u3 = 0 in Rn (1.8)

which asserts that the only solution which is monotone in one direc-
tion must be one-dimensional. Caffarelli-Cordoba [6] proved the one-
dimensional symmetry result under the assumption that the level set
is globally Lipschitz. (This corresponds to Theorem 1.2.) De Giorgi’s
conjecture has been proven to be true for n = 2 by Ghoussoub and Gui
in [17], for n = 3 by Ambrosio and Cabre in [3] and for 4 ≤ n ≤ 8 by
Savin in [28], under the additional assumption that

lim
xn→±∞

u(x′, xn) = ±1.

This conjecture was proven to be false for n ≥ 9 by del Pino, Kowalczyk
and Wei in [10]. (Another proof of Savin’s theorem is recently given by
the first author [31]. A more general version of De Giorgi’s conjecture
was proved by Farina-Valdinoci [14].)
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Now we explain the main ideas of our proof. The key observation is
that under some conditions (i.e. the monotonicity condition (1.7)) we
shall prove that solutions to Serrin’s overdetermined problem (1.3) are
minimizers of the functional∫

1

2
|∇u|2 +W (u)χ{u>0}. (1.9)

(Here we only need W to satisfy hypothesis (W1-4).) The Euler-
Lagrange equation corresponding to (1.9) ((1.10) below) is a one phase

free boundary problem in which |∇u| =
√

2W (0) on the boundary. To
this end, we first establish

Theorem 1.5. Let u be a solution of (1.3), where W satisfies (W1-5).

Then |∇u| =
√

2W (0) on ∂Ω.

This is mainly because {u > 0} is an epigraph, we can touch ∂{u >
0} by arbitrarily large balls from both sides. Then we construct suitable
comparisons in these balls to determine |∇u|b∂Ω. (Similar idea has been
used in [5].) Theorem 1.5 does not hold for other unbounded domains.
See examples of Delaunay type domains in [9].

With hypothesis (W5) and the monotonicity condition (1.7), we fur-
ther show that a solution to (1.3) is necessarily a minimizer of (1.9).

Hence the proof of Theorem 1.4 is reduced to the study of solutions
to the following one phase free boundary problem:

∆u = W ′(u), in Ω = {u > 0},
u > 0, in Ω,

u = 0, on ∂Ω,

|∇u| =
√

2W (0), on ∂Ω.

(1.10)

In the general case, a solution u to this equation is a stationary critical
points of (1.9).

For this one phase free boundary problem, we have

Theorem 1.6. Let u be a minimizer of (1.9) in Rn with 0 ∈ ∂Ω. If
one of the blowing down limit of u is an half space, then u(x) ≡ g(x · e)
for some unit vector e.

This one phase free boundary problem bears many similarities with
the Allen-Cahn equation. Hence previous methods used to prove De
Giorgi conjecture for Allen-Cahn equations (cf. Savin [28]) can be em-
ployed to study the one dimensional symmetry of solutions to (1.10).
In this paper, we shall follow the first author’s approach in [31], which
uses an energy type quantity, the excess. To this aim, we also present
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the Huichinson-Tonegawa’s theory for the convergence of general sta-
tionary critical points, see Section 3. (Similar idea has been used in
recent preprints [15] and [31].)

Finally we discuss other related progress made at the BCN conjec-
ture. The conjecture, in the case of cylindrical domains, was disproved
by Sicbaldi in [30], where he provided a counterexample in the case
when n ≥ 3 and f(t) = λt, λ > 0 by constructing a periodic pertur-
bation of the cylinder Bn−1 × R which supports a bounded solution
to (1.3). In the two-dimensional case, Hauswirth, Hèlein and Pacard
in [18] provided a counterexample in a strip-like domain for the case
f = 0. Explicitly, Serrin’s overdetermined problem is found to be solv-
able in the domain

Ω = {x ∈ R2 / |x2| <
π

2
+ cosh(x1)},

where the solution found is unbounded. Necessary geometric and topo-
logical conditions on Ω for solvability in the two-dimensional case have
been found by Ros and Sicbaldi in [27]. The overdetermined prob-
lem in Riemannian manifolds has been considered by Farina, Mari and
Valdinoci in [13].

This paper is organized as follows. In Section 2 we collect some
basic facts about the one phase free boundary problem, such as Mod-
ica inequality and monotonicity formula. In Section 3 we present the
Huichinson-Tonegawa theory for the convergence of general stationary
critical points. Section 4 is devoted to prove Theorem 1.6, following
[31]. Most of these arguments are suitable adaption of previous ones
and we only state the results without proof. Only for the integer mul-
tiplicity of the limit varifold in the Huichinson-Tonegawa theory (The-
orem 3.13), a new proof is given, which follows the line introduced in
Lin-Rivière [23] and we think simplifies the existing methods. Section
5 is devoted to proving that Theorem 1.4 can be reduced to Theorem
1.6.

2. One phase free boundary problem

From this section to Section 4, u always denotes a local minimizer
of (1.9) in Rn. We also assume that u is nontrivial and 0 ∈ ∂{u > 0}.

We can show that 0 ≤ u ≤ 1 (see Proposition 2.1 below) and it is
Lipschitz continuous in Rn (see [2] and [7]). Hence {u > 0} is an open
set, which we denote by Ω. Furthermore, by the partial regularity for
free boundaries in [2] and [7], ∂Ω is a smooth hypersurface except a
set of Hausdorff dimension at most n− 3. The last condition in (1.10)
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is understood in the weak sense, see [2]. At the smooth part of ∂Ω, it
also holds in the classical sense.

Proposition 2.1. u ≤ 1 on Rn.

Proof. Following an idea of Brezis, first by the Kato inequality we can
show that

∆ (u− 1)+ ≥ W ′(u)χ{u>1} ≥ c (u− 1)p+ .

Then the claim follows from the Keller-Osserman theory. �

From this bound and the strong maximum principle, we can further
show that u < 1 strictly in Ω.

Proposition 2.2 (Modica inequality).

1

2
|∇u|2 ≤ W (u), in Ω.

Proof. Assume

sup
Ω

(
1

2
|∇u|2 −W (u)

)
=: δ > 0,

and xi ∈ Ω approaches this sup bound.
If lim sup dist(xi, ∂Ω) > 0, we can argue as in the proof of the usual

Modica inequality (e.g. [24]) to get a contradiction.
If lim dist(xi, ∂Ω) = 0, then u(xi)→ 0. Hence for all i large,

1

2
|∇u(xi)|2 ≥ W (0) +

δ

2
.

Then we can proceed as in the proof of the gradient estimate for one
phase free boundary problem (cf. [2, Corollary 6.5]) to get a contra-
diction. �

Remark 2.3. The Modica inequality implies that ∂{u > 0} is mean
convex (see for example [7]).

By considering domain variations, we can deduce the following sta-
tionary condition:∫

Ω

(
1

2
|∇u|2 +W (u)χ{u>0}

)
divX −DX(∇u,∇u) = 0. (2.1)

As usual, this implies the following Pohozaev identity:∫
BR

n− 2

2
|∇u|2 + nW (u)χ{u>0} = R

∫
∂BR

|∇u|2

2
− |ur|2 +W (u)χ{u>0}.

(2.2)
Together with the Modica inequality, this gives the following mono-
tonicity formula.
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Proposition 2.4 (Monotonicity formula).

E(r;u, x) := r1−n
∫
Br(x)∩Ω

1

2
|∇u|2 +W (u)χ{u>0}

is non-decreasing in r > 0.
Moreover,

d

dr
E(r;u, x) = 2r1−n

∫
∂Br(x)

∣∣∣∇u(y)· y − x
|y − x|

∣∣∣2+r−n
∫
Br(x)

[
W (u)χΩ −

|∇u|2

2

]
.

Corollary 2.5. Let u be a non-trivial solution of (1.10). Then there
exists a constant c > 0 such that, for any x ∈ ∂Ω and R > 1,

E(R;u, x) ≥ cRn−1.

Proof. Because x ∈ ∂Ω, by the non-degeneracy of u near ∂Ω (see [2,
Section 3]), there exists a universal constant c such that |Ω∩B1(x)| ≥ c.
Then because |∇u| ≤ C, W (u) ≥ c in Ω∩Bh(x) for a universal constant
h. This implies that E(1;u, x) ≥ c and the claim follows from the
monotonicity formula. �

On the other hand, for minimizers we have the following upper
bound.

Proposition 2.6. There exists a universal constant C such that, for
any x ∈ Rn and R > 1,∫

BR(x)

1

2
|∇u|2 +W (u)χ{u>0} ≤ CRn−1.

Proof. In BR(x), construct a comparison function in the following form:

w(y) =

{
1, in BR−1(x),

|y − x| −R + 1 + (R− |y − x|)u(y) in BR(x) \BR−1(x).

Note that w > 0 in BR(x). A direct verification shows that∫
BR(x)

1

2
|∇w|2 +W (w) ≤ CRn−1.

The energy bound on u follows from its minimality because w = u on
∂BR(x). �

3. Hutchinson-Tonegawa theory

In this section we consider the convergence theory for general sta-
tionary critical points of the functional∫

ε

2
|∇uε|2 +

1

ε
W (uε)χ{uε>0}. (3.1)
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Let uε be a sequence of stationary solutions in the unit ball B1, to
the singularly perturbed problem

ε∆uε =
1

ε
W ′(uε), in {uε > 0},

uε = 0, on ∂{uε > 0},

|∇uε| =
1

ε

√
2W (0), on ∂{uε > 0}.

(3.2)

The stationary condition means that for any vector fieldX ∈ C∞0 (B1,Rn),∫
Ω

(
ε

2
|∇uε|2 +

1

ε
W (uε)χ{uε>0}

)
divX − εDX(∇uε,∇uε) = 0. (3.3)

We also assume that the energy of uε is uniformly bounded, that is,

lim sup
ε→0

∫
B1

ε

2
|∇uε|2 +

1

ε
W (uε)χ{uε>0} < +∞. (3.4)

Finally, to make the presentation simpler, we assume that 0 ≤ uε ≤ 1
and it satisfies the Modica inequality

ε

2
|∇uε|2 ≤

1

ε
W (uε), in {uε > 0}. (3.5)

See [20] for the general case, where two weaker conditions (but sufficient
for the application below) are derived from (3.2)-(3.4).

Of course, what is used in this paper is the following sequences

uε(x) := u(ε−1x), ε→ 0,

where u is a local minimizer of (1.9) in Rn. By results in the previous
section, they satisfy all of the above assumptions.

We can assume that, up to a subsequence of ε→ 0,

ε|∇uε|2dx ⇀ µ1,

1

ε
W (uε)dx ⇀ µ2,

weakly as Radon measures, on any compact set of B1.
A caution on our notation: in the following, unless otherwise stated,

ε→ 0 means only a sequence εi → 0.
In the following µ = µ1/2 + µ2 and Σ = sptµ.
We can also assume the matrix valued measures

ε∇uε ⊗∇uεdx ⇀ [ταβ]µ1,
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where [ταβ], 1 ≤ α, β ≤ n, is measurable with respect to µ1. Moreover,
τ is nonnegative definite µ1-almost everywhere and

n∑
α=1

ταα = 1, µ1 − a.e.

First, we need the following simple clearing out result, which is a
direct consequence of Corollary 2.5.

Proposition 3.1. There exists a universal constant η small so that the
following holds. For any r > 0, if

r1−n
∫
Br(x)

ε

2
|∇uε|2 +

1

ε
W (uε) ≤ η,

then either uε ≡ 0 in Br/2(x) or uε ≥ 1− γ.

In the latter case of the previous lemma, we can improve the decay
estimate to an exponential one.

Lemma 3.2. If uε ≥ 1− γ in Br(x), then

uε ≥ 1− Ce−
r
Cε in Br/2(x).

Proof. By (W3),

∆ (1− uε) = − 1

ε2
W ′(uε) ≥

c

ε2
(1− uε) .

From this the decay estimate can be deduced, e.g. by a comparison
with an upper solution. �

Combining the monotonicity formula (Proposition 2.4) and Propo-
sition 3.1, we get

Lemma 3.3. For any x ∈ Σ,

1

C
rn−1 ≤ µ(Br(x)) ≤ Crn−1,

for some universal constant C.

Another consequence of Proposition 3.1 is:

Lemma 3.4. On any connected compact set of B1 \ Σ, either uε → 1
uniformly or uε ≡ 0 for all ε small.

This is because for every x not in Σ, there exists an r > 0 such that
µ(Br(x)) ≤ ηrn−1/2. Hence for all ε small,∫

Br(x)

ε

2
|∇uε|2 +W (uε)χ{uε>0} ≤ ηrn−1,

and Proposition 3.1 applies.
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Similar to [20], by the Modica inequality (Proposition 2.2) and the
monotonicity formula (Proposition 2.4), we can show that

Lemma 3.5. In L1
loc(B1),

1

ε
W (uε)χ{uε>0} −

ε

2
|∇uε|2 → 0.

As a consequence, we have the following energy partition relation.

Corollary 3.6. µ1/2 = µ2.

By passing to the limit in the monotonicity formula, we obtain the
corresponding monotonicity formula for the limit measure µ.

Lemma 3.7. For any x ∈ B1,

r1−nµ(Br(x))

is non-decreasing in r > 0. Moreover, for any 0 < r1 < r2 < +∞,

r1−n
2 µ(Br2(x))−r1−n

1 µ(Br1(x)) = 2

∫
Σ∩(Br2\Br1 )

∑n
α,β=1 ταβ(y)(y − x)α(y − x)β

|x− y|n+1
dµ.

By this lemma, we can define

Θ(x) := lim
r→0

µ(Br(x))

rn−1
.

This is an upper semi-continuous function. By Lemma 3.3, 1/C ≤
Θ(x) ≤ C everywhere on Σ.

Combining Proposition 3.1, Lemma 3.2 and Lemma 3.4, we have the
following characterization of Σ.

Corollary 3.8. x ∈ Σ⇐⇒ Θ(x) > 0⇐⇒ Θ(x) ≥ 1/C.

By the Preiss theorem [26] (or by following the direct proof in [22]),
we can show that

Lemma 3.9. Σ is countably (n− 1)-rectifiable.

By differentiation of Radon measures, the measure µ has the follow-
ing representation.

Corollary 3.10. µ = ΘHn−1bΣ.

Next we show that

Lemma 3.11. I − τ = TxΣ, Hn−1-a.e. on Σ.

This can be proved as in [20]. However, here we would like to give a
new proof, which uses several ideas from [23].

As in [23], to prove this lemma, we only need to consider the special
case where Σ = Rn−1.

Notation: C1 := Bn−1
1 × (−1, 1).
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Proposition 3.12. If Σ = Rn−1, then

lim
ε→0

∫
C1
ε
n−1∑
α=1

(
∂uε
∂xα

)2

= 0.

This clearly implies Lemma 3.11 in this special case. This proposition
can be proved as in [31, Lemma 4.6]. This proof is by choosing X =
ϕψxnen in the stationary condition (3.3), where ϕ ∈ C∞0 (Bn−1

1 ) and
ψ ∈ C∞0 ((−1, 1)). For another proof using the monotonicity formula,
see the derivation of [22, Eq. (2.11)].

With the help of Proposition 3.12, we can get the following quanti-
zation result for Θ(x).

Theorem 3.13. Θ(x)/σ0 equals positive integer Hn−1-a.e. on Σ.

To prove this theorem, we need a lemma.

Lemma 3.14. For any δ > 0, there exists a b ∈ (0, 1) such that, for
all ε small, ∫

C1∩{uε>1−b}

ε

2
|∇uε|2 +

1

ε
W (uε) ≤ δ.

The proof uses the strict convexity of W near 1, in particular,

∆

[
ε

2
|∇uε|2 +

1

ε
W (uε)

]
≥ κ

ε2

[
ε

2
|∇uε|2 +

1

ε
W (uε)

]
, in {uε > 1−b1},

(3.6)
where b1 > 0 is small. For more details, see [31, Corollary 6.4].

Proof of Theorem 3.13. We still need only to consider the special case
where Σ = Rn−1 and µ = ΘHn−1bRn−1 , with Θ a constant. We want to
prove that Θ/σ0 is a positive integer.

For x′ ∈ Bn−1
1 , let

fε(x
′) :=

∫ 1

−1

ε

2
|∇uε(x′, xn)|2 +

1

ε
W (uε(x

′, xn))χ{uε>0}dxn.

By (3.4), fε are uniformly bounded in L1(Bn−1
1 ). By the convergence

of ε|∇uε|2dx etc., fε converges to Θ weakly in L1(Bn−1
1 ).

Fix a ψ ∈ C∞0 ((−1, 1)) such that ψ ≡ 1 in (−1/2, 1/2). Let

f̃ε(x
′) :=

∫ 1

−1

[
ε

2
|∇uε|2 +

1

ε
W (uε)χ{uε>0}

]
ψ(xn)dxn.

By Lemma 3.2 and Lemma 3.4,∫
Bn−1

1

∣∣fε − f̃ε∣∣ ≤ Ce−
1
Cε . (3.7)
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By substituting X = ϕψei with ϕ ∈ C∞0 (Bn−1
1 ), we see

∂f̃ε
∂xi

=
n∑
j=1

∂

∂xj
Aεij + giε, ∀1 ≤ i ≤ n− 1,

where

Aεij :=

∫ 1

−1

ε
∂uε
∂xi

∂uε
∂xj

ψ(xn)dxn,

giε =

∫ 1

−1

ε
∂uε
∂xi

∂uε
∂xn

ψ′(xn)dxn.

By Proposition 3.12 and Cauchy inequality, for all 1 ≤ i ≤ n−1 and
1 ≤ j ≤ n, Aεij and giε converges to 0 in L1

loc(B
n−1
1 ). Then by Allard’s

strong constancy lemma [1], f̃ε converges to Θ in L1
loc(B

n−1
1 ), which

also holds for fε by (3.7).
By Lemma 3.12 and the weak L1 estimate for Hardy-Littlewood

maximal function, there exists a set E1
ε with |Bn−1

1/2 \ E1
ε | < |Bn−1

1/2 |/4,

such that,

lim
ε→0

sup
r∈(0,1/2)

r1−n
∫
Cr(x′)

ε
n−1∑
α=1

(
∂uε
∂xα

)2

= 0, ∀x′ ∈ E1
ε . (3.8)

By Lemma 3.14, for any δ > 0, there exists a b ∈ (0, 1) and a set E2
ε

with |Bn−1
1/2 \ E2

ε | < |Bn−1
1/2 |/4, such that

lim sup
ε→0

sup
r∈(0,1/2)

r1−n
∫
Cr(x′)∩{uε>1−b}

ε

2
|∇uε|2 +W (uε) ≤ Cδ, ∀x′ ∈ E2

ε .

(3.9)
By applying the weak L1 estimate for Hardy-Littlewood maximal

function to |fε−Θ|, we get a set E3
ε with |Bn−1

1/2 \E3
ε | < |Bn−1

1/2 |/4, such

that

lim
ε→0

sup
r∈(0,1/2)

r1−n
∫
Br(x′)

|fε(x′)−Θ| = 0, ∀x′ε ∈ E3
ε . (3.10)

Now choose x′ε ∈ E1
ε ∩ E2

ε ∩ E3
ε . For any xε := (x′ε, x

n
ε ) ∈ ∂{uε > 0},

vε(x) := uε(xε + εx)

converges to a limit v∞ in Cloc(Rn)∩H1
loc(Rn) (by the a priori estimates

in [2]). By (3.8), v∞ depends only on the xn variable, hence equals the
one dimensional profile g. Thus for all ε > 0 small, vε(0, xn) > 0 in
(0, g−1(b)) and

lim
ε→0

∫ g−1(b)

0

1

2

(
∂vε

∂xn

)2

+W (vε) =

∫ g−1(b)

0

1

2
(g′)

2
+W (g) = σ0 + ob(1).

(3.11)
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Assume that Π−1(x′ε)∩∂{uε > 0} consists Nε points, tiε, 1 ≤ i ≤ Nε.
By the analysis above, for all ε small, uε > 1− b or uε = 0 outside

Gε := Bn−1
ε (x′ε)× ∪1≤i≤Nε(t

i
ε −Mε, tiε +Mε),

where M is a constant depending only on b.
Then

ε1−n
∫
Cε(x′ε)

eε(uε)

= ε1−n
∫
Gε

eε(uε) + ε1−n
∫
Cε(x′ε)\Gε

eε(uε)

=
Nε∑
i=1

ε1−n
∫
Bn−1

ε (x′ε)

∫ M

−M

(
1

2
|∇vε|2 +W (vε)χ{vε>0}

)
+O(δ)

= Nε (σ0 + oε(1) + ob(1)) +O(δ). (by (3.11))

On the other hand, by (3.10),

lim
ε→0

ε1−n
∫
Cε(x′ε)

eε(uε) = Θ.

Hence

lim
ε→0

Nε =
Θ

σ0

+ ob(1) +O(δ).

The last two terms can be made arbitrarily small. Then because Nε is
a positive integer, it must be constant for all ε small, which also equals
Θ/σ0. �

Define the varifold V by

< V, ϕ >:=

∫
Σ

ϕ(x, TxΣ)Θ(x)dHn−1,

for ϕ ∈ C∞0 (B1 × RPn). (We view the space of hyperplanes of Rn as
the projective space RPn.) By passing to the limit in the stationary
condition for uε and noting Lemma 3.11, we obtain

Lemma 3.15. V is stationary.

Finally, we would like to compare this convergence theory with the
Γ-convergence theory. Let

wε(x) := Φ(uε(x)) =

∫ uε(x)

0

√
2W (t)dt.

Then ∫
B1

|∇wε| =

∫
B1

√
2W (uε)|∇uε|
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≤
∫
B1

1

2
|∇uε|2 +

1

ε
W (uε)χ{uε>0} ≤ C.

Since 0 ≤ wε ≤
∫ 1

0

√
2W (t)dt, it is uniformly bounded in BVloc(B1).

Then up to a subsequence wε converges in L1
loc(B1) to a function w∞ ∈

BVloc(B1).
By extending Φ suitably to (-1,1), there exists a continuous inverse

of it. Then uε = Φ−1(wε) converges to Φ−1(w∞) in L1
loc(Rn). Since∫

B1

W (uε)χ{uε>0} ≤ Cε,

uε → 0 or 1 a.e. in B1. Hence there exists a measurable set Ω∞ such
that

uε → χΩ∞ , in L1
loc(Rn).

Because w∞ = (
∫ 1

0

√
2W (t)dt)χΩ∞ , χΩ∞ ∈ BVloc(Rn).

For minimizers, combining the above two approaches gives

Proposition 3.16. If uε are minimizers, then Σ = ∂Ω∞ and µ =
σ0Hn−1b∂Ω∞. Moreover, Ω∞ is a set with minimal perimeter.

The first claim can be proved by the method of cut and paste, i.e.
constructing suitable comparison functions. The second one follows
from the standard Γ-convergence theory (see [25]).

4. Improvement of flatness

Now we return to the study of entire solutions of (1.10). Let u be a
local minimizer of the functional (1.9) in Rn. For ε→ 0, we can apply
results in the previous section to study the convergence of the blowing
down sequence

uε(x) = u(ε−1x).

In this section we assume the blowing gown limit Ω∞ = {xn > 0}
for a subsequence εi → 0. (However, at this stage we do not know
whether this limit depends on the subsequence of ε → 0.) Note that
this is always true if n ≤ 7, by Bernstein theorem.

The following quantity will play an important role in our analysis.

Definition 4.1 (Excess). Let P be an (n−1)-dimensional hyperplane
in Rn and e one of its unit normal vector, Bn−1

r (x) ⊂ P an open ball
and Cr(x) = Bn−1

r (x)× (−1, 1) the cylinder over Br(x). The excess of
uε in Cr(x) with respect to P is

E(r;x, uε, P ) := r1−n
∫
Cr(x)

[
1− (νε · e)2] ε|∇uε|2. (4.1)
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Here νε = ∇uε/|∇uε| when |∇uε| 6= 0, otherwise we take it to be an
arbitrary unit vector.

In Proposition 3.12, we have shown that if the blowing down limit
(of uε) is a hyperplane, then the excess with respect to this hyperplane
converges to 0.

Our main tool to prove Theorem 1.6 is the following decay estimate.
As in [31], we state this theorem for a general stationary critical point
of (3.1), not necessarily a minimizer.

Theorem 4.2 (Tilt-excess decay). For any given constant b ∈ (0, 1),
there exist five universal constants δ0, τ0, ε0 > 0, θ ∈ (0, 1/4) and K0

large so that the following holds. Let uε be a solution of (1.10) with
ε ≤ ε0 in B4, satisfying the Modica inequality, 0 ∈ ∂{uε > 0}, and

4−n
∫
B4

ε

2
|∇uε|2 +

1

ε
W (uε)χ{uε>0} ≤ (1 + τ0)σ0ωn. (4.2)

Suppose the excess with respect to Rn−1

δ2
ε := E(2; 0, uε,Rn−1) ≤ δ2

0, (4.3)

where δε ≥ K0ε. Then there exists another plane P , such that

E(θ; 0, uε, P ) ≤ θ

2
E(2; 0, uε,Rn). (4.4)

Moreover, there exists a universal constant C such that

‖e− en+1‖ ≤ CE(2; 0, uε,Rn)1/2, (4.5)

where e is the unit normal vector of P pointing to the above.

The proof of this theorem is similar to the one in [31]. It is mainly
divided into four steps:

Step 1. ∂{uε > 0} and {uε = t} (for t ∈ (0, 1− b) with b > 0 fixed) can
be represented by Lipschitz graphs over Rn−1, xn = htε(x

′), ex-
cept a bad set of small measure (controlled by E(2; 0, uε,Rn−1)).
This can be achieved by the weak L1 estimate for Hardy-Littlewood
maximal functions, as in the proof of Theorem 3.13.

Step 2. By writing the excess using the (x′, t) coordinates (t as in Step
1), htε/δε are uniformly bounded in W 1,2

loc (Bn−1
1 ). Then we can

assume that they converge weakly to a limit h∞. Here we need
the assumption δε � ε to guarantee the limit is independent of
t.

Step 3. By choosing X = ϕψen in the stationary condition (3.3), where
ϕ ∈ C∞0 (Bn−1

1 ) and ψ ∈ C∞0 ((−1, 1)), and then passing to the
limit, it is shown that h∞ is harmonic in Bn−1

1 .
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Step 4. By choosing X = ϕψxnen in the stationary condition (3.3) and
then passing to the limit, it is shown that (roughly speaking)
htε/δε converges strongly in W 1,2

loc (Bn−1
1 ). The tilt-excess decay

estimate then follows from some basic estimates on harmonic
functions.

As in [31], using this theorem we can prove the following estimate.

Lemma 4.3. There exists a unit vector e∞ and a universal constant
C(n) such that∫

BR(x)

[
1− (ν · e∞)2] |∇u|2 ≤ C(n)Rn−2, ∀ x ∈ Rn, R > 1. (4.6)

Note that here the exponent n − 2 < n − 1, which is the energy
growth order of u (see Corollary 2.5 and Proposition 2.6). The blowing
down analysis in Section 3 only gives∫

BR(x)

[
1− (ν · eR,x)2] |∇u|2 = o(Rn−1),

where the unit vector eR,x may also depend on x and R. However, by
iterating Theorem 4.2 on balls of the form Bθ−i(x), we not only get
the decay of the excess on these balls, but also get a control on the
variation of ex,θ−i (through the estimate (4.5)).

Still as in [31], (4.6) implies the uniqueness of the blowing down limit
constructed in the previous section.

Next consider the distance type function

Ψ(x) := g−1 ◦ u.
It satisfies

−∆Ψ = f(Ψ)(1− |∇Ψ|2), in {Ψ > 0} = {u > 0},

where f(t) := W ′(g(t))√
2W (g(t))

.

By the vanishing viscosity method, as ε→ 0,

Ψε(x) := εΨ(ε−1x)

converges to a limit Ψ∞ uniformly on any compact set of Rn, and in
C1 on any compact set of {Ψ∞ > 0}. Moreover, in {Ψ∞ > 0}, Ψ∞ is a
viscosity solution to the eikonal equation

|∇Φ0|2 − 1 = 0.

By definition, we can show that {Ψ∞ > 0} = Ω∞. Using the estimate
(4.6) we know Ψ∞ depends only on the e∞ direction. Hence after
suitable rotation Ψ∞ = x+

n .
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The C1 convergence of Ψε then implies that ∇Ψ is arbitrarily close
to en, as far as u is close enough to 1, in a uniform manner. This then
enables us to apply the sliding method to deduce that u depends only
the xn variable, hence finish the proof of Theorem 1.6.

5. Serrin’s overdetermined problem

In this section we assume that u is a solution of (1.3) satisfying
the monotonicity condition (1.7), where W is a double well potential
satisfying the hypothesis (W1-5).

We first need a technical lemma for the application below.

Lemma 5.1. Let u be a C2 solution of

∆u = W ′(u), in Rn,

satisfying 0 < u ≤ 1. Then u ≡ 1.

For a proof see [21, Section 4.1].

Lemma 5.2. For any x′ ∈ Rn−1,

lim
xn→+∞

u(x′, xn) = 1,

and u(x′,−xn) = 0 for all xn > 0 large.

Proof. By a contradiction argument, we can show that

lim
t→±∞

dist ((x′, ten), ∂Ω) = +∞.

Thus for any R > 0 and t > 0 large, BR(x′,−ten) ⊂ Ωc. In particular,
u(x′,−ten) = 0 for all t large.

By the same reasoning and standard elliptic estimates, as t→ +∞,

ut(·) = u((x′, ten) + ·)
converges in C2

loc(Rn) to a limit function u∞, which is a positive solution
of

∆u∞ = W ′(u∞)

in Rn. Since 0 < u∞ ≤ 1, by the previous lemma, u∞ ≡ 1. �

Lemma 5.3. On ∂Ω, |∇u| ≥
√

2W (0).

Proof. By the same proof as in the previous lemma, for any R > 0
there exists a t0 > 0 such that, for all t ≥ t0, the ball BR(0, t) ⊂ Ω.

Let vR be the unique radial solution of
∆vR = W ′(vR), in BR,

vR > 0, in BR,

vR = 0, on ∂BR.
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For any x and R > 0, denote vRx := vR(· − x).
Since supBR

vR < 1, if t is large enough, vRten < u in BR(ten). Let

t∗ := inf{t : BR(ten) ⊂ Ω}.
Then BR(t∗en) is tangent to ∂Ω at some point x0.

By [5, Lemma 3.1], for all t ≥ t∗, u > vRten in BR(ten). The Hopf
lemma implies that

|∇u(x0)| = ∂u

∂ν
(x0) ≥

∂vRt∗en
∂ν

(x0). (5.1)

Here ν is the upward unit normal vector of ∂Ω. Because BR(t∗en) is
tangent to ∂Ω at x0, we have

∂vRt∗en
∂ν

(x0) = −∂v
R

∂r
(Ren) = |∇v(Ren)|. (5.2)

On the other hand, as R → +∞, vR(Ren + ·) converges to a positive
solution of 

∆v∞ = W ′(v∞), in Rn
+,

v∞ > 0, in Rn
+,

v∞ = 0, on ∂Rn
+.

Because vR is radial, v∞ depends only on the xn variable. (In fact,
to deduce this we do not need the radial symmetry of vR, see [5] and
references therein.) Hence it satisfies the ODE version of (1.3) and the
conservation relation (1.5). In particular,√

2W (0) = |∇v∞(0, 0)| = lim
R→+∞

|∇vR(Ren)|.

Combining this with (5.1) and (5.2) we finish the proof. �

Lemma 5.4. On ∂Ω, |∇u| ≤
√

2W (0).

Proof. As in the previous lemma, for anyR > 0 we find a ballBR(0,−t∗en) ⊂
Ωc tangent to ∂Ω at a point x0.

In B2R(0,−t∗en) \BR(0,−t∗en), by the Kato inequality,

∆u ≥ W ′(u).

Clearly the constant function 1 is a sup solution of this equation in
B2R(0,−t∗en) \BR(0,−t∗en). Because 1 > u, by the standard sup-sub
solution method, there exists a solution uR > u in B2R(0,−t∗en) \
BR(0,−t∗en) satisfying uR = 0 on ∂BR(0,−t∗en) and uR = 1 on
∂B2R(0,−t∗en). Then the Hopf lemma implies that

|∇u(x0)| = ∂u

∂ν
(x0) ≤ ∂uR

∂ν
(x0) = |∇uR(x0)| ≤

√
2W (0) + oR(1).
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Here the last identity follows from the same argument as in the previous
lemma. �

Combining Lemma (5.3) and Lemma (5.4) we obtain the proof of
Theorem 1.5. Note that up to now we have not used the monotonicity
condition (1.7). However, this condition is crucial for the following
result.

Lemma 5.5. u is a local minimizer of the functional (1.9) in Rn.

Proof. Assume by the contrary, there exists a ball BR(x0) such that u
is not a minimizer of the functional (1.9) in this ball (under the same
boundary condition as u). Let v be such a minimizer.

For any t ∈ R, consider

ut(x) := u(x+ ten).

By Lemma 5.2, for all t large, ut > 0 and ut > v in BR(x0). Let

t+ := inf{t : us ≥ v on BR(x0), ∀s > t}.
We claim that t+ = 0.

Assume by the contrary, t+ > 0. By definition and continuity, ut+ ≥
v on BR(x0). Moreover, by the monotonicity of u, ut+ 6= v on ∂BR(x0).
Then by the strong maximum principle and Hopf lemma, {v > 0} ∩
BR(x0) is strictly contained in {ut+ > 0}∩BR(x0) and ut+ > v strictly

on {v > 0} ∩BR(x0).
By continuity, there exists an ε > 0 such that, for all t ∈ (t+− ε, t+],

ut ≥ v on BR(x0). This contradicts the definition of t+. Hence we must

have t+ = 0, which implies that u ≥ v on BR(x0).

Because for all t > 0 large, u−t ≡ 0 on BR(x0), we can also slide

from below. This gives u ≤ v on BR(x0). Hence u ≡ v is the unique
minimizer of the energy functional (1.9). �

With this lemma in hand, we can perform the blowing down anal-
ysis as in the one phase free boundary problem. By the proof of [28,
Theorem 2.4], we can show (using the notations in Section 3)

Lemma 5.6. If n ≤ 8, Ω∞ is an half space.

With this lemma in hand, we can use the method in the previous
section to show that u is one dimensional, thus completing the proof
of Theorem 1.4.

Finally we prove Theorem 1.2, 1.3 and 1.1.

Proof of Theorem 1.2 and Theorem 1.3. By [5], u satisfies the mono-

tonicity condition (1.7) in Ω. As in the previous proof, |∇u| =
√

2W (0)
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on ∂Ω and u is a local minimizer for the functional (1.9). Then we can
perform the blowing down analysis as before.

If ϕ is globally Lipschitz, the blowing down limit Ω∞ is still the
epigraph associated to a Lipschitz function ϕ∞ defined on Rn−1. Since
Ω∞ has minimal perimeter, ϕ∞ satisfies the minimal surface equation.
By [19, Theorem 17.5], ϕ∞ must be an affine function. In other words,
Ω∞ is an half space. Then we deduce that Ω is an half space and ϕ is
an affine function. However, this contradicts the coerciveness of ϕ. �

Proof of Theorem 1.1. In R2, by Remark 2.3, {u = 0} is a convex set.
Hence the function ϕ is concave.

First,

−
∫
BR(0)∩{u>0}

W ′(u) = −
∫
BR(0)∩{u>0}

∆u

= −
∫
∂BR(0)∩{u>0}

∂u

∂r
+

∫
BR(0)∩∂{u>0}

|∇u|

≤ CR. (by the Lipschitz bound on u)

By hypothesis on W , −W ′ ≥ cW on (γ, 1). Thus we obtain∫
BR(0)∩{u>γ}

W (u) ≤ CR. (5.3)

Next, as in the proof of [5, Theorem 1.2, (b)], there exists an M > 0
so that

{u < γ} ⊂ {x : dist(x, ∂{u > 0}) < M}. (5.4)

By the convexity of ∂{u > 0},∣∣{x : dist(x, ∂{u > 0}) < M} ∩BR(0)
∣∣ ≤ CR.

Thus ∫
BR(0)∩{0<u<γ}

W (u) ≤ CR. (5.5)

Combining (5.3), (5.5) and the Modica inequality we see∫
BR(0)

1

2
|∇u|2 +W (u)χ{u>0} ≤ CR.

With this bound in hand, we can perform the blowing down analysis
using results in Section 3. In particular, we obtain a stationary integer
1-rectifiable varifold V from the sequence

uε(x) := u(ε−1x).
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V has the following form: there are finitely many positive integers
ni and unit vectors ei with the corresponding rays Li := {tei : t > 0},
such that

V =
∑
i

ni[Li], (5.6)

where [Li] is the standard varifold associated to Li.
Because V is stationary, we have the following balancing formula:∑

i

niei = 0. (5.7)

On the other hand, from the convexity of {u = 0} it is clear that as
ε → 0, ε{u > 0} converges to a limit Ω∞ in the Hausdorff distance,
with R2 \Ω∞ convex. Moreover, by assuming 0 ∈ ∂{u = 0}, R2 \Ω∞ ⊂
{u = 0}. Hence for all ε > 0, uε = 0 on R2 \Ω∞. By (5.4), uε → 1 a.e.
in Ω∞. This then implies that the support of V lies in ∂Ω∞. Combining
(5.7) and the convexity of R2 \ Ω∞, Ω∞ must be an half plane.

What we have proved says that, the limit cone (at infinity) of the
concave curve {x2 = ϕ(x1)} is a line. By convexity, this implies that
{x2 = ϕ(x1)} itself is a line.

Finally, there are many ways to deduce that u is one dimensional,
see for example [5] again. �
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