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1. I N T R O D U C T I O N  

This work is concerned with the asymptotic behavior of the energy solutions of the mixed 
boundary value problem 

A u  + u p = 0 in 

u = 0 on Fo (1.1) 
0u 
Ovv = 0 on r l ,  

where: 
• f~ is a C °'1 and bounded domain in Rz; 
• 0f~ consists of two pieces F0 and F1, where the one-dimensional Hausdorff  measure of F o 

is greater than 0; 
• F0 is smooth and F1 is piecewise smooth; 
• F0 and 1"1 are relatively closed in 0f~; 
• v is the unit outer normal of f~; 
• p is a large parameter. 

In this work, we shall only consider the least energy solutions, although the method can be used 
to study other solutions with the same decay rate of energies. Let 

{~p = [U ~ wl '2 (~ '~ ) :  u = 0 on F0, Ilvll~+x(f~) = 1} 

be the admissible set. Define the energy 
o 

Jp(v) : =  Ivvl dx 
J f] 

on the admissible set 6~p. Standard argument shows that for any p > 1 Jp is bounded from 
below and the infimum is obtained by a function up in ~p. By the inhomogeneity of (1.1) we 
know that a positive multiple of up solves (1.1). Throughout the rest of this paper we denote 
such least energy solutions by up. 

Our goal here is to understand the asymptotic behavior of up as p, serving as a parameter, 
approaches oo. It is known in [1] that for the pure Dirichlet problem, i.e. F t = Q, the solutions 
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588 X. RENand J. WEI 

up develop single or double bounded peaks in the interior of  f~ as p --, oo. In the current mixed 
problem, we shall see peaks on the Neumann boundary F~ and show that Up can develop no 
more than either one interior peak or two boundary  peaks on F~. We start to investigate Cp 
where 

Cp := inf ]Vul 2 : u ~ . (1.2) 

According to the construction of  the least energy solution Up, 

¢~ = I~lvu,,I ~ 
[in Up p+I dx] v(p+l) ' (1.3) 

and Cp ~ is the optimal constant of  the Sobolev embedding 

V(F, ,  ~ )  - LP+I (~) ,  

where V(F1, f ~ ) =  Iv e W~'Z(f]): v = 0 on Fo] is a Hilbert space equipped with the inner 
product 

O 

( u , v ) =  / (Vu, Vv) dx. 
J fl 

We shall see that cp possesses nice decay property as p ~ co. Next we extend some L x estimates 
of  Brezis and Merle [2] for A with Dirichlet boundary  condition in R 2 to mixed boundary  
condition. After these preparations we shall prove the following theorem. 

THEOREM 1.1. There exist C~, C2, independent of  p ,  such that 

0 < c, < I l u ~ l l ~  < c~ < oo 

for large p .  Indeed 

1 _< lim infllupllL®(~) -< lira supllupllL~<.) -< e x p ~  
p--*~ p ~  

1 +Oto 
, 

Define 

Sz= S n f ~ ,  

sc = s n (I"0 n r,),  

s~ = s n (ro\(ro n q) ) ,  
(1.6) 

su = s n ( r , \ ( ro  n q) ) .  

To state our second result, we need a few definitions. Let 

up (1.4) v p - S n u g "  

For a sequence [Up,} of  [up} with Pn ~ oo as n ~ oo, we define the blow-up set S to be the 
subset of  ~ such that x ~ S if there exist a subsequence, still denoted by {Pn}, and a sequence 
x n in ~ with 

vp,(xn) ~ oo and x,  ---, x. (1.5) 

where or0, defined later in (4.4), is a constant dependent only on the pair (FI, ~) .  
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So every blow-up point must fall in one and only one of the above four classes. We shall see 
later that S contains the set of peaks of the sequence [uv,]. By a peak P e ~ we mean that {up,} 
does not vanish in the L = norm in any small neighborhood of P. Theorem 1.1 in particular 
implies that the set of peaks of [uvl is not empty. In this paper we are mainly concerned with 
SI and SN. We will use #St (#SN) to denote the cardinality of SI (SI, respectively). Our second 
result is the following theorem. 

THEOREM 1.2. For a domain ~ with the properties stated in the beginning of this paper, we have 

S o = Q ) ,  #(SIUSct ,-JSN)> I; 

# S  I .-}- I # S  N ~ 1 

(1) 

(2) 

if F~ is smooth; 

(3) $I = O, and #SN = 1 

if F~ has convex corners; furthermore in this case if x0 is the point in SN, x0 must be a corner 
point with the least angle among all the corners on F~. 

Here by a convex corner, we mean a corner having angle less than n. 
We shall also see that under the extra condition of f~, F0 and 1"1, up can develop only one peak 

on the Neumann boundary F1. We would like to point out that as in [3], most of our results can 
be extended to higher dimensions with A replaced by AN, the N-Laplacian operator 
(ANu = div(IVul N-2 Vu)), in (1.1) if t2 is a domain in R N. However, we do not know anything 
about Sc if F0 N F1 is nonempty. 

Our paper is organized as follows. In Section 2, we give some background materials for the 
mixed boundary value problem. Then in Section 3, we prove the decay rate of c v. We prove 
theorem 1.1 in Section 4. In Section 5, we present some L 1 estimates. Section 6 is devoted to the 
proof of theorem 1.2. Finally we consider some special domains and some examples in 
Section 7. 

2. P R E L I M I N A R I E S  

Let ~2 be a domain in R 2 with conditions stated in the beginning of this article. Let Fo and F1 
be two parts of the boundary of ~2 with Fo having positive one dimensional Hausdorff  measure. 
We recall that the isoperimetric constant of ~2 relative to FI, Q(F1, ~),  is defined to be 

IEI l/z 
Q(FI, f~) = sup P~(E)'  (2.1) 

where the supremum is taken over all measurable sets of t2 such that OE tq Fo has one 
dimensional Hausdorff  measure 0, and Pn(E) denotes the De Giorgi perimeter of E relative to 
t2, i.e. 

P ~ ( E ) = s u p l  I E d i v ~ d x : ~ / ~ [ C ~ ( ~ ) ] 2 ' ' ~ [ ~ l l "  (2.2) 
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Some properties of  Pe(E) are stated in [4, 5]. We also refer to [6] and [7] for more 
information about the De Giorgi perimeter and isoperimetric inequalities. In particular we 
notice that 

Q(F1, ~)  -> (2;~1/2) -1, 

where the second is the absolute isoperimetric constant; and if H i (F0  > 0, 

Q(F1, ~)  -> (2rt/2) -1/2. 

From here we deduce that if HI(FI) > 0 and Q(FI, ~)  < oo, there exists o~ ~ [0, n] such that 
Q(FI, ~)  = ('~-d) -~ where ee is the angle of the unitary sector 

E(o~, 1) = Ix = (r, 0) e Rz: 0 _< r _< 1, 0 e [0, ~]1. 

We denote by 8~ the class of all pairs (F1, f/) of the type considered above such that 

Q(F~, t~) = (4Ud) -1. (2.3) 

By virtue of  an isoperimetric inequality described in [5], any pair of a convex sector and its 
noncircular boundary (F1, T~(oL, 1)) belongs to 8~ once we denote by F0 the circular part of 
E(a, 1). Therefore, 

Q(F1, E(c~, 1)) = (v~--da)- 1 

if E(a, 1) is a convex sector. By the way, if (Fl, f~) e 8~ and fl is the smallest angle among all 
convex corners on F1, 

fl _> or. (2.4) 

Recall V(FI, f~) the Hilbert space defined in Section 1. Assuming (F1, f~)~ 80 for some 
a ~ [0, n], we have the following two dimensional Moser type embedding while the proof of 
this result in any dimension can be found in [5]. See also [8]. 

PROPOSITION 2.1. There exists a universal constant C such that 

Ia  exp[ (2°t)[u[2 . ] <  C[~,  
Ilvull ,(o J - 

for any u ~ V(F 1 , f~) wi th (I"1, ~ )  ~ 8~. 

We also need some results concerning the relative isoperimetric constants near the boundary 
F1. Let us fix our notation first. For each smooth point x e Fx, we can associate a smooth 
flattening map ~x in a neighborhood of x that maps the neighborhood of x to a neighborhood 
of (0, 0) in 

{Y e Rz: Y = (Yl, Y2), Y2 > 0] 
and maps F near x to 

[Y ~ RZ: Y = (Yl ,  Y2), )'2 = 0] 

near (0, 0). For a corner point x on F1 we associate a similar map @x in a neighborhood of x that 
maps the neighborhood of  x to a neighborhood of (0, 0) in 

[y ~ R2: y = (p cos 0, p sin 0), 0 < 0 < ,6}, 
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where fl is the angle of  the corner at x and that maps the boundary near x to the boundary near 
(0, 0). We further require that D ~  = I at x, and ~x varies smoothly with respect to x. From 
now on throughout the rest of  this paper, for any x on F1, by a ball BAx0), we mean 
• x-l(Br(0, 0)). Clearly it is well-defined if r is small. We can now state the following result 
concerning the asymptotic behavior of  the relative isoperimetric constants and the quantities 
defined in (2.3) of  (F1 n B,(xo), ~ n Br(xo)). 

PROPOSITION 2.2. (1) Let Xo e F2 such that F2 is smooth near x0. Then as r ~ 0, 

1 
0(I"1 f') Br(Xo),  ~ n Br(xo)  ) --* x/2-~ ' 

i.e. 

or(l-" 1 O Br(Xo),  ~ n B~(xo)) ~ re, 

where a(F1 n B,(xo), f~ O B,(xo)) is the angle of  the unit sector whose relative isoperimetric 
constant is the same as the one of  (FI O B,(xo), 0 N BAxo)). 

(2) Let Xo e Fz such that x0 is the vertex of  a convex corner with angle fl0 in 172. Then as 
r --* 0, 

i.e. 

1 
Q(F1 O Br(Xo) , ~ N Br(Xo) ) ---* ~t-x--z-. , 

~Z#o 

ot(F 1 O Br(xo), f~ n Br(xo)) ~ flo. 

To prove this proposition, one just invokes the variable change formula in standard 
integration theory to compare the relative isoperimetric constants above with the relative 
isoperimetric constants of  the sectors computed in [5]. We leave the details of this argument to 
the reader. 

3. SOME E S T I M A T E S  FOR cp 

Recall cp defined in (1.2). We have the following refined Sobolev embedding. 

LEMMA 3.1. For every t > 2 there is D t such that 

Ilullv <-- o, tl/2llvullL2 

for all u e V(F1, f~) with (F 1 , f~) e 8~; furthermore, 

lim D t = (4ae) -1/2. 
t ~ o ~  

Proof. Let u e V(F1, ~ ) .  We know 

1 
_ _  X s ~ e x 
F(s + 1) 
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for all x _> 0, s _> 0 where F is the F function. Using proposition 2.1, we have 

where C does not depend on anything and ]~l is the Lebesgue measure of ~.  Therefore, 

1 utdx = 1 2c~ dx(2oO-'/211vull',  
r ( t / 2 +  1) ~ F ( t / 2 +  1) n 

U 2 

Hence 

_< clol(2oO-' llvull  . 

dxI 
/t < 

(lfl ut --(F(~+I))'/tc1/t(2°t'-'/2I~['/tllvu[IL2(o, • 

Notice that, according to Stirling's formula, 

//t/2\t/2 \l/t (F(~ + 1)) '/t _ ~ L ~ )  x/~eOt) _t~e)/l\'/2t ,/2, 

where 0 < Or < 1-~-. Choosing D t to be 

( F ( ~ +  1))'/tc1/t(Xol)-l/2l~)l'/tt-1/2 

we get the desired result. • 

An immediate consequence is the following corollary. 

COROLLARY 3.2. 
lim infp1/2% >_ (4ore) '/2. 

p-*co 

Next we prove an upper bound for p'/2cp. 

LEMMA 3.3. For domains ~ with smooth F, 

lim sup pl/2cp <_ (4he)l~2; 
p~oo 

if the domain ~ has convex corners on F1, 

lira suppl/2Cp < (4pe) '/2, 

where fl is the smallest angle among all convex corners on F,. 
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Proof. Let us first assume that f/ contains [(xl,xE):X2> O,x 2 +x22 <_L} with 
[(Xl, x2): x2 = 0, x 2 + x 2 <_ L} being part of the Neumann boundary. We construct a Moser 
type test function near (0, 0). Letting 

(log L - log/)1/2, 

1 log l - loglxl 
mr(x) = ~ [logL - log/] 1/2' 

0, 

we have mt ~ V(F1, ~), Ilvm, llL2,~) = 1 and 

1 IB, I + l m~l+l(x) dx~[-~(logg)l/21p+l 
: = I 1 + I  2, 

where 

o ~  Ixl ~ l  

1< [x l -<L 

Ixl >- L, 

(3.1) 

(x/~(l°gl)-'/2]P+iII < [xl <L ( lOg L ~p+l dX IX - [ ]  

1 / L\I/2] p+l 
I1= ~-~ k l o g T )  ] hi2 

I2 = [ 1 / L\-l/21 p+I j f, 
Choosing 1 = Le -(p+1)/4, we have 

>_ i ; . . 1 ,  > [ i l -- L ~ e  j (P + 1)l/2(lzL2) 1/(p+1). 

Hence 

i.e. 

Cp <-- [4~ze]l/2(p + 1)-1/2(lrL2) -1/(p+l), 

lim suppl/2cp <_ (4~ze) 1/2. 
p ~ o o  

For a domain ~ with smooth F 1 , we can first flatten the boundary and construct the same test 
function with small L. Sending L to 0, we still get the desired result. 

If the domain ~ has a corner on F1, we can first transform it into a sector by a smooth map. 
Then we construct a similar test function on that sector. Finally, we let L tend to 0. • 

COROLLARY 3.4. (1) For domains fl with smooth Fl, 

limpooosupp f n -p'ip+I --< (4he) and 

(2) For domains ~ having convex corners on F1, 

limp__. ~osupp f a -PUV+l _< 4Be and 

limp _. ®sup p f n I V/'/Pl2 -< 4he. 

limp~oosupp fa Ivupl2 ~ 4~e, 

where fl is the smallest angle among all convex corners on F~. 
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Proof. From (1.3), we know that 

X. REN and J. WEI  

Therefore, 

f uP+I = C(p 2(p+1))/(p-I) and --p 
fl 

The results follow immediately from lemma 3.3. 

Ilvuplb(.) 
cp = 

If we multiply (1.1) by Up and integrate by parts, we have 

~ p  • 

fl fl 

I. Ivup 12 = C(p2(p+l))/(p-1) 

As another consequence of lemma 3.3, we prove a crucial estimate for the quantity 

Lo = lim sup p lt~ u~ (3.2) 
p-~oo e 

The proof follows easily from lemma 3.3 and Holder's inequality. 

COROLLARY 3.5. (1) For the domains D with smooth FI, 

Lo < 4n; 

(2) for domains t) having convex corners on F1, 

L0 _< 4B, 

where fl is the smallest angle among all convex corners on 1"1. 

4. P R O O F  O F  T H E O R E M  1.1 

A uniform lower bound indeed exists for any positive solutions to (1.1). Let 21 be the first 
eigenvalue of  - A  with the same boundary condition as the one in (1.1) and ~o be a 

corresponding positive eigenfunction. Then for any solution u 

[uA(0 - ~0Au] = U~v v - (o = 0. (4.1) 
fl all 

Therefore, 

I (u p - l l u ) ~ o =  0. 
fl 

Hence 

IlulIL-( ) -> JL~/ (p- l )  --~ 1 (4.2) 

as p --' oo which yields a uniform lower hound in p for I]u[lL®(a) when p > 1 + 8, e > O. 
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TO get an upper bound for lupl, we use an iteration argument. Define 

)'o = f l / a ,  (4.3) 

where fl is the smallest angle among all convex corners on F1 and (F~, f]) is in class 8~. Then 
Yo -> 1 by (2.4). Let ao be such that 

exp ao = yo(1 + Oto). (4.4) 

Fix t and e that will be chosen later. Letting v = (1 + t ) ( p  ÷ 1), from lemma 3.1, we have 

[ l  pJl/v -1/2 1/2 
u _< (4o~e) E( l+ t ) (p+ l ) l )  Ilvu, ll~:<.), 

11 
where 

lim Efl+t)fp+l) = 1. 

However, from corollary 3.4 we know that 

limv~oosupp f u iVUpl2 -< 4fie. 

Hence, there exists Po such that for all p > Po, 

S Up <_ [yo(1 + t + e)] ~/2. 
li 

Multiplying both sides of (1.1) by u~ ~-~, we get, after integrating by parts, 

z ~ - I  l ivujl2= I -,, . S~" fl f% i~P- 1 +2s 

(4.5) 

(4.6) 

Using lemma 3.1 again, we have 

-] 1/~' 

{f;] S . p-  l+2s llp-l+2s 
_ u ~  <- C1 vs _ p  , . u < C o v e - s -  i ~ 

where D~s is defined in lemma 3.1 and Co and C1 are constants independent of p > Po. Hence, 
we have 

Up s __< C1VS _piJp-l+2s. (4.7) 

We now define two sequences [sfl and {Mfl by 

I 
p -  1 + 2So = v 

p -  1 +2sj+ 1 = vsj  

M o = [Yo(1 + t + e)] ~/z (4.8) 

Mj+l = [C1 vssMA "/2, 
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where CI is the constant in (4.7). From (4.5) and (4.7), we have, by induction, that 

i fl 
Next we claim that 

Mj _< exp[m(yo, t ,p ,  e)vsg_l], 

where m(yo, t, p, e) is a constant depending on Yo, t, p,  e and 

l + t  
lim m(yo, t ,p ,  e) = log[yo(1 + t + e)]. 

p--* oo ~ -  

Put 

In fact, we can write down {sfl explicitly 

Hence, 

"I 1 - -  ( v -  l - p -  1 ) + p -  1 . 
1 

ss= 
v - 2  

V 
trj = ~ log(C 1 vsj), gtj = log Mj. 

/z j+ 1 = ~ 2 +  aS . 

-< Iv log x / ~  1 v](j + 1). 

Therefore, it is easy to see that 

t r j=  log + l o g [ ~ )  ( v - p -  1) + p -  1 

Now we define {rfl by 

ro = go rj+l = lvr j  + (v log x/2-C 1 v)(j + 1). 

Clearly, gj _< D. Moreover, we have 

= v j  + log( 2 x / ~  v) (v _ ~ v  2)2] 

la o + 2v log( 2x/-~l v)v/(v - 2) 2 
< (v - 2)-l(v - p - 1) sj-1 

I~o + 2v log( 2x/~lV)V/(V - 1) 2 v - 2 
<- vsj_1 

v - p - 1  v 

: = m(yo, t, p,  e)vsj_ 1, 

where 

2 ( v log (  2x/~v)(j 
v 2 

plim~*o m(Yo, t ,p ,  e) = 1 2-7 + t l°g[y°(1 + t + e)]. 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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Therefore,  we get 

Sending j ~ oo, we see 

Sending p ~ oo, we have 

Sending e --' O, we deduce 

IlupllL-J-,<~> ~ expIm(~,o, t, p ,  e)l. 

Ilu.llL~<~> ~ exptm(yo, t, p ,  t)]. 

lim supllupllL- < [~'o(1 + t + ,o)](l+t)/2t. 
p--, oo 

lim supllupllL= ~ [yo(1 + t)] O+t)/2t. 
p-~ao 

I f  we le t f ( t )  = [),o(1 + t)] (l+t)/2t, the standard calculus argument shows that logf ( t )  achieves its 
minimum at c~ o , where 

o~ o = l o g [?o (1  + Oto)] 

defined in (4.4). So we obtain 

lira s u p l l u p L -  < exp 1 + ol o 
, , ~  - - - - 5 - - -  • 

We include a consequence of  theorem 1.1 here which will be used later. 

COROLLARY 4.1. There exist C~ and C 2 such that 

c1 I 
o p 

Proof. The first inequality follows f rom theorem 1.1 and the first limit of  corollary 2.3; the 
second inequality follows f rom the first limit of  corollary 2.3 through an interpolation 
argument.  • 

5. S O M E  A P R I O R I  E S T I M A T E S  

In this section we collect some less well-known estimates for A on two dimensional domains.  
We first state a boundary estimate lemma. The proof  of  the lemma is standard. One 

combines the moving plane method in [9] with a Kelvin t ransform.  We refer to [9, 10] for 
details. This lemma actually excludes the possibility that up develop a peak on F 0 . See remark 
6.5. 

LEMMA 5.1. Let u be a positive solution of 

I Au +f(u) = 0 

Ulro = O, 

in fl  C R 2 



598 X. REN and J. WEI 

where Fo is a smooth piece of 0t) and f is a smooth function. Then for every F CC int(Fo) with 
respect to the relative topology of  tgf~ there exist a neighborhood 09 of F and a constant C both 
depending on the geometry of f2 and F only such that 

[lullL~t~) ~ CIIuIILI<o>. 

Next we state an L 1 estimate of Brezis and Merle, theorem 1 [2]. 

LEMMA 5.2. Let u be a solution of 

I - A u  = f in f~ 

ula~ = O, 

where fl is a smooth bounded domain in R 2. We have for 0 < e < 4n 

I [  (4n-e)lu(x)l]n exp l-if [-~t, j dx _< 4n Area(f2)e 

Remark 5.3. In their paper, Brezis and Merle used (Diameter(f2)) 2 instead of Area(f~) in lemma 
5.2. It turns out from the following symmetrization approach that Area(f2) is more 
appropriate. 

We need a similar L 1 estimate as above to take care of  the mixed boundary condition. 

LEMMA 5.4. Let u be a solution of 

I 
- A u  = f in f2 

Ulr0 = 0 

Ou = O, 
Ovid, 

where the boundary condition is the same as the one in (1.1) and (F1, ~)  ~ g~. Then for every 
0 < e < 2t~, 

f [ (2c¢ -- e)lu(x)'] dx < 2a Area("  ) 
n exp IIfIIL1 J - e 

Proof. Owing to the maximum principle, we may assume f _> 0. Otherwise, we just replace 
f b y  If[ .  We use the symmetrization approach here. Let Z(et, R) be the sector having the same 
areas as f~ and the same relative isoperimetric constant as ~ .  Define as in [4] the 
o~-symmetrization to be the transformation that associates u(x) with 

nee : =  U ,  X 

for x e E(ct, R), where u .  is the standard decreasing rearrangement. Namely 

u ,  := inflt -> 0: g(s) < t} 
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and 

/~(t) = measlx • t2: lu(x)l > t}. 

u~ has similar properties to those of the standard Schwartz symmetrization. In particular 

I F(u(x))dx= I F(u~,(x))dx (5.1) 
E(~,R) 

for real Borel function F. Moreover, let u be a solution to the equation in lemma 5.4, and v be 
the solution of 

I 
-Av = f~ in Z(a, R) 

V[~o = 0 

Ov =0, 
OVl~o 

where 

ro = Ix • 0x (~ ,  R): Ixl = R}, 

1~1 = Ix • 0Z(~,  R): Ixl ~ R} 

and f~ is the a-symmetrization of fi  Standard argument shows that v is radially symmetric. 
From [4], we assert that 

u~(x) <_ v(x), (5.2) 

where u~ is the c~-symmetrization of the solution u in lemma 5.4. However, since it is radially 
symmetric, v satisfies 

I 1 
v"(t) + ~ v'(t) + f~(t) = 0 

I v'(O) = o 

\ v(R) O. 

Therefore, solving the O.D.E., we have 

v(r) <_ log sfi,(s) ds 
0 

t' [(2c~ - e ) v ]  2o~ Area(Z(oL, R)) 2oL Area(t~) 

Combining this with (5.1) and (5.2), we have the desired result. • 

6. P R O O F  OF T H E O R E M  1.2 

Lemma 5.4 implies that {vp] is uniformly bounded in Ll(f~). Therefore, lemma 5.1 implies 
that [vp} is uniformly bounded in L~°(w) where ~ is a neighborhood of any compact subset of 
int(F0). Since 

C 
marx_ v,(x) >- - -  --* oo, 
X E ~ ]JPn 
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f rom theorem 1.1 and corol lary 4.1, we deduce S ;~ Q3. However ,  since So = Q ,  we conclude 
that  #(St USc U S~v) -> 1. This proves part  1. To  prove the rest o f  the theorem,  define 

where 

L o = lira p ~ ,  (6.1) 
p ~  e 

vp = fo u~. (6.2) 

We denote  any sequence up. o f  up with p ,  --, co by u , .  Let  

U~ 
v, := vp, := - - ;  (6.3) 

vv. 

Since 

u... 
:= fP" := in  = (6 .4)  

f f.=l, 
fl U F  1 

we can subtract  a subsequence o f  f,,, still denoted by f,,, so that  there is a positive bounded  
measure p in M ( ~  U F~), the set o f  all real bounded  Borel  measures on f~ U F~, such that  

for  all 

l f,,tp ---, I ~o dp (6.5) 
~UF I flUF I 

• cZ(~ u v~). 

Recall SI and SN defined in (1.6). For  any J > 0 we call :Co • ~ U (FI\(F1 O Fo)) a J-regular  
point  if: 

• Xo • f~ and there is ~o • Co(f~), 0 < ~0 _< 1, (o = 1 in a ne ighborhood  o f  :Co, such that  

f 4zr ¢ d p <  ~ (6.6) 
url - Lo + 2 J '  

where L o is the quant i ty  def ined in (3.2); or 
• Xo • FI\(F1 n Fo) and there is qJ • Co(D U 1"1), 0 _< ¢ _< I, ~0 = 1 in a ne ighborhood  o f  Xo, 

such that  

I 2offXo) 
(p dp < - -  (6.7) 

url - Lo + 2 J '  

where ot(Xo) := limT_,o o~(F1 O Br(xo), ~ n Br(xo) considered in proposi t ion  2.2. 
We let ct(Xo) = 2rr if :Co • f~. We say that  Xo • f ] U  FI \ (F  o N 1"1) is J- irregular  if Xo is not  

J-regular .  
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LEM~_A 6.1. If X0 is a 6-regular point for 6 > 0, then Iv.} is uniformly bounded in 
L®(BRo(Xo) U ~) for some Ro > 0. 

Proof. We first consider the case where x o e F~\(Fo n F1). Let Xo be a 6-regular point on 
F~\(Fo n F0. Then there exists Ro such that 

l 2a(Xo) 
f ~ < - -  

BRo(XO) O fi - -  Lo + 6 
for n large enough. 

Split v~ into two parts, v~ = v~ + v2n where vln solves 

I Avl. + fn = 0 in BRo(Xo) n ~) 

vl. = 0 on OBRo(XO) O ~ (6.8) 

0Vln  = 0 
Ov on BRo(Xo) n F 1 

and V2n solves 

I AV2n -~- 0 in BRo(Xo) n ffz 

V2n : V n on OBRo(Xo) n £) 

av~.  = o Ov on BRo(Xo) n Fl. 

(6.9) 

Then v~n _< vn and U2n ~ 1) n by the maximum principle. Now from the standard elliptic 
boundary estimate for harmonic functions with Neumann data, we have 

IIv2.11L~<B.0:2<~o>n~) < CIIV2nllL'CB.on~) < C' 

where C'  is a constant independent of n and the last inequality follows from lemma 5.4. So we 
only need to estimate Vl~. 

We first claim that when n is large enough 

for all x e f~. 
Now observe that 

for x > 0. We have 

f~(x) <_ exp(Lo + 6/2)v,~(x) 

x 
log x _< - 

e 

(6.10) 

(6.11) 

Un Pn Un L o + 6/3 Un 
Pn log-vT~, -< l / P n  ~ 1 /Pn  "< - -  v~"" e Vn Yn Vn 

for n large enough because 

lim v l/p" = 1, --/$ 

t' - 6/6 un <_ t'--un 
~ l / p n  

n Y n  Vn 
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which follows from corollary 4.1. Hence, 

f .  -< exp[(Lo + 0/2)v,]. 

Next we claim that {f.} is uniformly bounded in LI+6°(BR/2) for t~ o sufficiently small. Since 
[v2,} is uniformly bounded in BR~n(Xo), we see from the previous claim that 

I f~+~o < f exp[(1 + O°)(L° + 0"5~)Vn] 
BR1/2 BR~/2 

_< C t" exp[(1 + t~o)(L o + 0.50)vl,] 
2 BRI/2 

C ~ exp 41r(1 + Oo)(Lo + 0.5t~)/(L o + ~)vl,  _< C' < 

J BRI/2 I Bgl/2(Xo)f n 

with the aid of lemma 5.4 if we choose O o sufficiently small. So we have proved lemma 6.1. 

Now take BR/4(Xo). We conclude from the weak Hanack inequality [11, theorem 8.17] 

IIv.ll~°(~.,,,(xo)) -< c[ l lu . l l~(~ , . (xo))  + IIf.ll~,+,o(o.,,~.o))] ~ c .  

Here the boundedness of {v,} in LZ(BR,n(Xo)) follows from lemma 5.4. 
The case where Xo e ~ is similar. We just use lemma 5.2 in place of lemma 5.4. • 

L ~  6.2. For any O > 0, Xo ~ St U SN if and only if Xo is 0-irregular. 

Proof. Let x0 be a 0-irregular point. Then by lemma 6.1, Iv,} is bounded in L®(BR1 A ~) for 
some R1. Hence, Xo ~ St U SN. Conversely, suppose Xo is a 0-irregular point. Then we have for 
every R > 0 

lim II v.liL~BRCxo> n.~ = oo. 
H --* oo  

Otherwise, there would be some Ro > 0 and a suhsequence, still denoted by Iv.}, such that 

iiv,.iiL°~BR~xo>n~ ~ C 

for some C independent of n. Then 

( M ~  v'-I 
f ,  = v.p"-l~" _< C p" --, 0 

\ P , /  

uniformly as n --* ~ on B~o(Xo) (q (2. Here M is a uniform upper bound of up obtained in 
theorem 1.1. Then 

I 2~X(Xo ) 
f n < ~ o  < -  

BRo(Xo) n ~ - -  L o  + 2 0  

which implies that Xo is a 0-regular point. A contradiction. • 
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Back to the measure g defined earlier in this section. Clearly, we have 

1 >_ p(F 1 kJ ~)  _> ~] 2ct(x°) 
Xo ~ s~u SN LO + 26 

which in turn, if we let J --* O, implies the following proposition. 

PROPOSITION 6.3. 

E ~(Xo) -< ~Lo. 
x o ~ S t U S N 

From this proposition, with the aid of  proposition 2.2 and corollary 3.5, we obtain part 2 
and part 3 of  theorem 1.2. 

R e m a r k  6.4. We see that every peak P in ~ is a blow-up point of  v u = UulV p because by 
corollary 4.1 Vp --, 0 as p ~ oo. 

7. F U R T H E R  R E S U L T S  AND E X A M P L E S  

In this section we shall focus on some special domains ~ where the corresponding quantities 
Lo are indeed smaller than what we get in corollary 3.5. In these special cases, we can actually 
prove that the solutions of  (1.1) possess single-peaks on the Neumann boundary of fL Let us 
first formulate a general result. 

THEOREM 7.1. Let (F 1 , ~)  be a pair such that or0, defined in (4.4), with respect to this pair is 
strictly less than 1, i.e. Y0 < e/2. Then for every sequence [Up,} of  solutions on f~ with the 
Neumann boundary F1, there is a subsequence, again denoted by [up,I, such that the interior 
blow-up set St is empty and the Fl-boundary blow-up set SN contains at most one point. 

Proo f .  If we check the proof  of  lemma 6.1 carefully, we can see that we can use a refined 
inequality 

log x log y 

x y 

if x _< y _ e instead of  (6.11). Notice that since we assume s 0 < I, 

Let 

u n 1 + c~ o 
lim sup ~ _< e x p ~  < e. 

n ~ o o  V n 

L~,= 
lim sup,,~,~(1 + Oto)p In u~, 

2 exp[(1 + ao)/2] 

We still have, as proposition 6.3, with the aid of  corollary 3.5, 

~(Xo) -< ~L'o < 2/~. (7.1) 
X 0 E S I U S N 
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IfSi # • ,  then, with the aid of  proposit ion 2.2, c~(Xo) = 2n for some x0 ~ SI. I f  #SN >- 2, then, 
with the aid of  proposit ion 2.2 again, a(xl) + offx2) -> 2fl for two different xl and x2 in SN. In 
any case, we reach a contradiction to (7.1). • 

Example 7.2. Let 

f] = Ix ~ R2: r < [x[ < R}, F1 = {x e R2: [x[ = r] and F o = {x ~ R2: Ix[ = R]. 

In this case the constant a with respect to (F1, t2) is equal to rt (see [4, example 3.3]) and the 
constant fl is clearly it. Hence, Yo = 1 < e/2 and the condition of  theorem 7.1 is satisfied. 
Indeed, since the two boundaries has no intersection, passing to a subsequence if necessary, 

s N  = Ix01. 

Example 7.3. Let f~ = E(oL, R), 0 _< a _< re, and F1 be the union of  two sides of  the sector. 

In this case fl = a (see [5]). hence, Y0 = 1 _< e/2  and the condition of  theorem 7.1 is again 
satisfied. 
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