Patterns with Arbitrary Period

We consider the following system of equations

Ar=Aps+A—A*—AB, t>0,0<z<Z,
By = 0Bz + (A)ee, t>0,0<z <%,
A, (0) =4, (%) =0,

B.(0) = B. () =0,

where spatial average < B >=0 and g > o > 0. This system plays an important role as a Ginzburg-Landau equation with a
mean field in several areas of the applied sciences and the steady-states of this system extend to periodic steady-states with
period L on the real line which are observed in experiments.

Our approach is by combining methods of nonlinear functional analysis such as nonlocal eigenvalue problems and the
variational characterization of eigenvalues with Jacobi elliptic integrals. This enables us to give a complete classification of
all stable steady-states for any positive L.
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1 Introduction
In this paper, we study the existence and stability of periodic solutions for the following amplitude equations
(A= Ape + A—|APA-AB, t>0,0<z<i

By = 0Byy + p(|A*) ez, t>0,0<2< L

] (1.1)
4, (0) = 4. (5) =0,

\

for all 4 > o > 0. We assume throughout the paper that L > 0 is arbitrary and

1 (L2

<B>=—/ B(z)dz = 0.
LJ 1)

Amplitude equations of the form (1.1) play a role in various areas of the applied sciences. In [3], the system (1.1) was

derived in the study of secondary stability of a one-dimensional cellular pattern. In [4] the system (1.1) was derived from

various models arising in thermosolutal convection, rotating convection, or magnetoconvection.

Systems similar to (1.1) play an important role in binary fluid convection [16], [17]. They even arise in the modeling
of sand banks and sand waves [11]. For a survey on hydrodynamics applications see [9]. For applications in biology of
chemistry we refer to the survey paper [5].

In the system (1.1), A may be complex. In this case one can decompose A = Rexp(if) with functions R and 6
representing the amplitude and the phase of A, respectively. An explicit analytical treatment of the general case is very
complicated. In this paper we therefore restrict our attention to the invariant subspace in which A is real. Both cases
are physically relevant. The coefficients of the equation for A in general are complex. However, they are real when the
partial differential equation from which the amplitude equation has been derived has a reflection symmetry for the spatial
variable [14].

It is important to understand (1.1) for finite L since periodic solutions of any period play an important role for the
system (1.1) posed on the real line. In general, the period will depend on physical parameters which are represented
by the constants o and g in the system. The case of finite L is important to understand patterns which are not well
separated, i.e. whose distance is not large in relation with the decay rate.

We now reduce system (1.1) to its final form. By setting 7 = 1, uo= £, the system (1.1) can be written as follows:

(Ay = Ape + A—|APA-AB, t>0,0<z<%,
7By = Byp + 1 (|A)ee, t>0,0<z< L,
4. (0) =4, (3) =0,

B,(0) =B, (£) =0, <B>=0,

\

where

I

>0, p >1
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Let us now suppose that we have a periodic steady-state of (1.2) with A(z) > 0 for all 0 < z < L/2 and period L.
Using Rolle’s theorem, one sees that there exists an zp € (—%, %) such that A’ (zo) = 0 and by periodicity we also have
A'(zg + L) = 0 and A(zg + L) = A(zo). Further, by the structure of (1.2), after a translation such that z, becomes
zero any steady-state with A > 0 having period L can be represented by an even function on (—%, %) with Neumann
boundary conditions, or, equivalently, by a function on (O, %) with Neumann boundary conditions.

On the other hand, for a function defined on the interval (0,%) with Neumann boundary conditions, by even and
periodic continuation we get a periodic steady-state on the real line with period L.

We will use this representation of a periodic function with period L by a function on the interval (0,L/2) with
Neumann boundary conditions throughout the paper. Thus, from now on, we study solutions on (0, %) with Neumann
boundary conditions.

We study these solutions by combining methods of nonlinear functional analysis such as nonlocal eigenvalue problems
and the variational characterization of eigenvalues with Jacobi elliptic integrals. Using this rigorous approach, we give a
complete classification of existence and stability of all steady-states defined for all L > 0.

By the remarks above, the steady-states of (1.2) satisfies
(Ape+ A— A - AB=0,0<2<%,

A
B,(0)=B,(£)=0, <B>=0.
) )

is said to be linearly stable if the following linearized
eigenvalue problem

'¢ww+(1_3)¢_3A2¢_A¢:)‘L¢a 0<.’E<%,

Yoz + 20 (AB)gw = TALY), 0<z <L

¢w(0) = ¢z(%) = 0;%(0) = %(%) =0,< ’l,b >=0,

\)\L eC
admits only eigenvalues with negative real parts. It is linearly unstable if (1.4) admits an eigenvalue with positive real
part. It is neutrally stable if (1.4) admits an eigenvalue with zero real part, and all other eigenvalues have negative real
parts. (In the appendix, we shall prove that all eigenvalues of (1.4) are real.)

We now state our main results. First we have

Theorem 1 Let L > 0 and i’ > 1 be fized. Assume that A(z) >0 and A'(z) <0 for0 < z < L. Then there exist two
numbers py (L) > pa(L) > 1 (to be given explicitly in (3.26)) such that the following holds.

(1) If i’ > p1(L), all solutions of (1.8) are constant.

(2) If i’ = py (L), there exists ezactly one solution of (1.8).

(8) If pa(L) < pi' < pa (L), there exist exactly two solutions of (1.3).

(4) If 1 < i’ < pa(L), there exists exactly one solution of (1.3).

The next theorem classifies the instability of large classes of steady-state solutions.

Theorem 2 All solutions of (1.3)

(1) for which A changes sign or

(2) for which A, changes sign

are linearly unstable steady-states of the corresponding parabolic system (1.2).

Thus it only remains to study the stability of solutions of (1.3) for which A is positive and strictly monotone for
Iz < % or for which A is constant. They are all given by Theorem 1.
We have
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Theorem 3 For the solutions of (1.3) given in Theorem 1, we have

(1) If i = p1 (L), there exists exactly one solution of (1.3). This solution is neutrally stable.

(2) If po(L) < p' < pi(L), there exist ezactly two solutions of (1.3). The one with small amplitude A(0) is linearly
stable and the one with large amplitude A(0) is linearly unstable.

(8) If 1 < i’ < pa(L), there exists exactly one solution of (1.8) and this solution is linearly unstable.

The explicit values of p1 (L), u2(L) are given in Section 3. In particular,

pa(L) =1+ == (1.5)

and p1(L) is given in terms of elliptic integrals. Both p1(L) and p2(L) are functions of L — the domain size — only. Thus
we have rigorously established the following bifurcation picture (see also Figure 3 of [13]).

A
A(0)

.. unstable

0 1 K, K

v
af=

FiGure 1. Bifurcation Curve

Remarks.

1. The constant solution A = 1 is unstable.

2. The even and periodic extension to the real line of a strictly monotone solution of (1.3) has minimal period L.
This explains the important role which the solutions of Theorem 1 play in the understanding of periodic solutions on the
real line.

3. Since solutions with sign-changing A or A’ are unstable by Theorem 2 we do not pursue them any further and
assume that A > 0 and A’ < 0.

Previous numerical and analytical studies of these amplitude equation include [13] (numerical simulation, asymptotic
expansion and bifurcation theory, in particular the use of Jacobi elliptic integrals to describe the shape of solutions and a
numerical study of stability) and [15] (rigorous study of the limit when the minimal period is large enough). In [15] the
resulting steady-states are pulses or spikes and nonlocal eigenvalue problems are used, but no Jacobi elliptic integrals.
In particular, we showed in [15] that there are two large single pulse solutions, where one is stable and the other one is
unstable.

Various other terms are used in the literature in the second equation of (1.1). One type, where the term (|]A4|?),, in
the B-equation is replaced by (|A4|?), has been considered by several authors, see [18] and the references therein. In that
case the basic patterns are traveling pulses which arise in the convection of binary fluids.

In [24] a complex Ginzburg-Landau equation is coupled to a pseudoscalar. The stability of traveling and standing waves
is studied by asymptotic expansions for large wavelengths and by numerical methods.
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In [8] a real Ginzburg-Landau system with another type of diffusive mode B is studied on the real line using geometric
singular perturbation theory and hypergeometric functions.

Both these papers consider dynamic phenomena, whereas we consider only static patterns. On the hand, our method
can analytically cover the case of finite minimal period in contrast to both papers.

The organization of the paper is as follows. In Section 2, we perform a scaling argument and reduce the existence
problem to an algebraic equation for consistency. In Section 3, we use elliptic integrals to rigorously solve the algebraic
equation for consistency and prove Theorem 1. In Section 4, the spectrum of a linearized operator is analyzed and a key
identity is derived. In Section 5, we study a crucial nonlocal eigenvalue problem. Section 6 contains the proof of Theorem
3, the main result on stability. In Section 7, we prove Theorem 2 by showing the instability of all other solutions, invoking
the variational characterization of eigenvalues. Section 8 is the conclusion section, where our results are summarized and
an outlook is given. In the Appendix, the linear operator is first derived and then reduced to a self-adjoint nonlocal
eigenvalue problem which is given in the reduction lemma, Lemma 13.

2 Scaling and consistency algebraic equation

In this section, we rescale the steady-state equation (1.3) and reduce it to a single ordinary differential equation coupled
with an algebraic equation for consistency.
Integrating the second equation of (1.3) twice, we derive

B(z)=—p A%(z) +p < A2 >, where < A >= %/AQ(x)dm (2.1)
T

and I = (0,%). Substituting (2.1) into the first equation of (1.3), we obtain
Apg —aA+04°=0, 0<z<Zi
A, (0)=A4,(%) =0, (2.2)
Az) >0, A () <0 for0<az< L
where
a=p <A®>-1, b=y —1. (2.3)

We consider a as a real and b as a positive parameter. Now we solve (2.2) with consistency condition (2.3). Note that
a positive solution of (2.2) exists if and only if @ > 0 (since b > 0). So we consider (2.2) in the subcritical case.
In this case, we let 8 = y/a and

p
A(z) = ——=wi(y), (2.4)
where
_ PL _
y=pr, — =1L (2.5)
Then w; solves the following boundary value problem:

wgl —w +w} =0, w;(O) =w;(l) =0,

) (2.6)
w,(y) <0, w(y) >0 for0<y<l.
In Lemma 5 we will show that (2.6) has a unique solution if [ > 7/ v/2 and no solution if I < w/ V2.
Substituting (2.4) into (2.3), it is easy to see that 3 will have to satisfy the following consistency equation:
2 &
ok 2
62—,7ﬁ/ widy +1=0. (2.7)
Ly —1) 0 :
We write (2.7) in terms of the new length [ = ﬁZ—L:
l 2 !
L
g) =1% - tl/ widy + — = 0, where t = ,# . (2.8)
0 4 p—1

In (2.8), t is a fixed parameter, L is a given parameter (which corresponds to the domain size), and [ is the unknown.
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Note that the unknown [ appears in the equation (2.8) in three ways: explicitly, as the upper boundary of the integral
and as the index of the function w;. The last two dependencies are new compared to the singular limit case L >> 1 and
they make this study more difficult than the singular limit case.

If there exists a solution [ to (2.8), then, by taking

Afz) = L\/%wl (”T”’) , (2.9)

we obtain a solution of (2.2). Conversely, by taking (2.9), ! must satisfy (2.8). Thus we have reduced our problem to
showing existence of (2.6) (see Lemma 5) and solving the algebraic equation (2.8) for consistency.

3 Solving the consistency equation

In this section, we show that (2.6) has a unique solution if I > 7/+/2 and no solution if I < m/+/2 (see Lemma 5) and
we will solve the consistency equation (2.8). Our idea is to represent the solution of the ordinary differential equation
(2.6) by Jacobi elliptic integrals. Then we use their properties to show our result of solvability of (2.6) and to solve the
algebraic equation (2.8).

Let w;(0) = M and w;(l) = m. Recall that 0 < m < M. From (2.6), we have

' 1 1 1
(w,)2:w?—§w§‘—M2+§M4:§(w12—m2)(M2—w?), (3.1)
2,1 4 2, 1,0
—m® + om' = —M? + S M", (3.2)
From (3.2), we deduce that
M? +m? =2. (3.3)
Note that
M
- / dwr (34)
bW —m?) (M2 = wf)
and

l . M 2d
/ widy = / e . (3.5)
0 w3 (wf —m?) (M2~ w})

We now represent the values of the function w; by a phase function ¢ such that the relations (3.4), (3.5) can be
expressed by Jacobi elliptic integrals.

Let
2 2 2,02
M# _wp = _MTm cos(2).
Then it is easy to see that (3.4) and (3.5) become
l
2
l=+2-k2K(k), /w2d:7Ek, 3.6
where
1 k2
i 1- 7 (3.7)

and E(k) and K (k) are Jacobi elliptic integrals:

z z 1
Ek:/ /1= k2 sin? o dop, Kk:/ S S
®) 0 e (®) 0o V1-—Ek2sin?¢ v

For the properties of elliptic integrals, we refer the reader to [1] and [2]. We list the following for later use:

EO0) =2, K@) = g lim B(k) =1, lim K (k) = +oo, (3.8)

2

k K(k) < E(k) < (1 - %) K(k) < K(k), (3.9)
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dK(k) E(k)— (K)2K(k) dE(k) E(k)-K(k)

= = 1
dk k(k')? ’ dk k ’ (3:10)
where
0<k<1l and k =+/1-k2
By (3.6), our consistency equation (2.8) can be rewritten in terms of the new variable k € (0,1):
k? L?
(1 - ?) K%(k) —tE(k)K (k) + 5 =0 (3.11)
Thus the existence problem is reduced to solving (3.11) for k.
We begin with
Lemma 4 For 0 < k <1, we have
dk
— 12
7> % (3.12)
d k?
— |(1- =)K? 1
o |0-5rw)] >0 (3.13)
d? k2,
pEs [(1 - E)K (k)] >0, (3.14)
d
P [E(k)K (k)] > 0, (3.15)
d2
72 [E(k)K (k)] <0, (3.16)
& [ (1= 5K (k)
— 1
I 0 >0, (3.17)
d? 1
— | = . 1
i | F) > 319
Proof The proof is mainly based on the inequality (3.9).
Using (3.10), we arrive at
d k? K ) .
— |1 - 2)K?| = —= |1+ (k))E —2(k )’K
3 0= 5] = s [a+ 9B~ 20 K] > 0
by (3.9). Thus (3.13) is proved. Since I? = (2 — k¥?)K?, (3.12) follows from (3.13).
Equation (3.14) is more difficult to prove. In fact, by lengthy computations, we have
LBy = L (14 (K))E? + BE@=7(K)? = (6)") + () K>(5(k ) = 1) (3.19)
dk? 2 k2 (k') ' '
It is easy to see that if 5(k )2 — 1 < 0, then
(1+ (K))E*+ EK@2—-17K)* = (k)Y + ()2 K2(5(k )? —1) > B> — (K )>K? > 0.
Now we assume that 5(k )2 — 1 > 0. Then, using (3.9), we have
A+ (K )V)E2+EK@2—T7(k)? — (K)*) + (K )2K2(5(k')* — 1) (3.20)

= (1+ (K))B(E — K K) + (K 6k ~ DK (K - %)

+EK |E 1+ &) +2-7(k)2 - (k)" + 1 (k’)2(5(k’)2—1)1.
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For the last term in (3.20), we have
7 7 ! ! ]_ ! 7

k(L+ (k) +2-7(k) (k)" + A )?(5(k)* - 1)
>k @2—-5k)) +(k — (k)1 +(E)?) + %2(15)2(5(15)2 -1)> gk4 > 0.
Thus (3.14) is proved.
By using (3.10), it is easy to see that
d _ E?—(k)*K?
ar PK1 = k(K2

which is positive by (3.9). This proves (3.15).
We calculate
d? 1

1— 2k2
——(EK) = ——— 3

e 2 - w2 - (B - 0RO

Note that
(E? — (k')’K?) (1 - ;;&) —2(k )*(E — K)?

’ 2 '

> (k)?(E? - K?)(1 — g192) —2(k )*(E - K)?
— (K 2(E - K) [(E +K)(1— %kz) — 2B - K)]

= (k' )*(E - K) [K(3 - §k2) -1+ §k2)E] >0

by (3.9), which proves (3.16).
Finally, (3.17) and (3.18) follow from (3.13) — (3.16) by simple calculus.

Lemma 5 Ifl > 7/v/2 the equation (2.6) has a unique solution. If1 < 7/\/2 the equation (2.6) has no solution.

Proof The inequality (3.12) implies that to every k with 0 < k < 1 there belongs exactly one [ > 0. By definition
0 < k < 1 parameterizes all solutions of (2.6) with 1 < M < +/2. Now (3.6) and (3.8) imply that the solutions are also
parameterized by 7/v/2 < | < +oco. For any I < w/+/2 the function w; = 1 satisfies all requirements of (2.6) except
w'(y) < 0 for 0 < y < [ and therefore it is not a solution.

O

Remarks 1.) Note that in Lemma 5 the functions with w(0) = M, M > v/2 do not solve (2.6) since they do not satisfy
w(y) > 0 for all 0 < y < I. By Theorem 2, this would lead to an unstable solution of (1.3). Therefore we do not study
this type of solution any further.

2.) The solution with w(0) = v/2 corresponds to I = 400 and it does not solve (2.6) either, since there is no 0 < I < +oo
with w’ (1) = 0. Therefore this leads to a homoclinic connection which is defined on the whole line.

3.) The solutions of (2.6) have a pitchfork bifurcation at I > 7/+/2.

Now we rewrite (3.11) as follows:

t=f(k) = SEE® + B0k , (3.21)
where f(k) is defined on (0,1). By Lemma 4, we have
2
%f(k) >0 (3.22)
and, by (3.8), we obtain
e K(©0) I
1O =szorm T B0 "2 Tl (3.23)
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and

k—gr,%a f(k) = 4o0. (3.24)

By (3.22), (3.23) and (3.24), the function f(k) is strictly convex and attains a unique minimum at a point ko € (0,1)

such that
, L* d 1 d (1-E)K
1 (ko) =525 <2E(k)K(k)> t <( E2) =0.
k=ko k=ko
Furthermore, by strict convexity, for k < ko, f (k) < 0 and for k > ko, f (k) > 0.
Let us denote
L2
L) = mi L) = = —+1. 2
n(L) = min FB), (D)= F0)= 55+ (3.25)
Correspondingly, we define
_ t1 ot 272
“1(L)_t1—1’ uz(L)—t2_1 =1+ 75 (3.26)
Summarizing these results, we obtain
Lemma 6 Let L be fixed and t; < t2 be given in (3.25). Then we have
(a) Problem (3.11) has a solution if and only if t > t1.
(b) For t =t,, problem (8.11) has a unique solution ko and we have f (ko) = 0.
(¢) For t1 <t < ta, problem (8.11) has two solutions k1 < ko. Moreover, we have
f k) <0, f(k)>0. (3.27)
(d) For t > t,, problem (3.11) has a unique solution ko and we have f (ko) > 0.
Going back to (2.8), we express the results of Lemma 6 in terms of L and ,u'.
Lemma 7 Let L be fized and p1 > po be given in (3.26). Then we have
(a) Problem (2.8) has a solution if and only if 1 < pi' < py.
(b) For i = pu, problem (2.8) has a unique solution ly and we have %(lo) =0.
(¢) For pus < p < p1, problem (2.8) has two solutions ly < ly. Moreover, we have
dg dg
— — 2

where g(I) was defined in (2.8).
(d) For 1 < i’ < ps, problem (2.8) has a unique solution ly and we have %(lo) > 0.

Theorem 1 now follows from Lemma 7.
Thus we have rigorously derived a complete picture of the existence of solutions with A > 0 on an interval of arbitrary
length [.

4 Spectral analysis and a key identity
Let w; be the unique solution of (2.6). We define the linear operator:
Llg)=¢" - ¢+3uie, g € X,
where
n={semon| ¢0=¢0=0}. (1)

In this section, we analyze the spectrum of L. The following lemma will be useful in the study of the stability of
solutions of (1.3).



10 J. Norbury et al.

Lemma 8 Consider the following eigenvalue problem:

{£¢:)\¢, 0<y <, (4.2)

I

$(0)=0(1)=0.
Then its eigenvalues \; can be arranged in such a way that

A>0, A<0, j=2,... (4.3)
Moreover, the eigenfunction corresponding to A1 (denoted by ®1) can be made positive.

Proof Let the eigenvalues of £ be arranged by Ay > Ay > .... It is well-known that A\; > A; and that the eigenfunction
corresponding to A; can be made positive. By using the equation for w;, we get

1 1 -1 1
—A1 = min / [l¢'|* + ¢* — 3w}l dy | < / w} dy / [lw, |* + w? — 3wiw}]dy | <O0. (4.4)
J3 82 dy=1 \Jo 0 0

Next we claim that Ay < 0. This follows from a classical argument (see Theorem 2.11 of [12]). For the sake of
completeness, we include a proof here. By the variational characterization of Ay, we have

Logat\2 2 242 1
+¢* =3 d
—A2 = sup _in lfo((¢ ) l¢ wi ) dy v# 0,/ pvdy = 0]. (4.5)
vEH1(0,1/2) peH(0,1/2),p#0 fO ¢2 dy 0
On the other hand, w; has least energy, that is
Elw] = inf Elu],
u#0,ucH1((0,1/2))
where
TAAY 2
d
Blu] = fo((“l) Fu)dy (4.6)
(Jo utdy)>
Let

h(t) = Elw; +t#], ¢ € H'(0,1).

Then h(t) attains its minimum at ¢ = 0 and hence

" L l L 3 dv)2
ilm)=2L/u¢P+¢%dy—3/1ﬁ¢%w+2“5?f ”] >0
’ ’ Jowidy 1 (fwf dy)

By (4.5), we see that
! ! L3 2
! w?od 1
—A 2 | inf /(|¢I2+¢>2)dy—3/ wf¢2dy+2(f°llf y) — >
Jo dwi=0,620 | Jo 0 Swtdy | L2 dy

Finally we claim that Ay < 0. But this follows from the proof of uniqueness of w;, see Lemma 5.

O

By Lemma 8, £ ! exists and hence £ 'w; is well-defined. Our next goal in this section is to compute the integral
fé w; £~ w; dy and thus to derive the following key identity.

l 1 1 1
1 1.d 1d
-1 - 2 —— 2 = —— 2 .
/Owl(ﬁ wl)dy—4/0 wj dy+4ldl/0 wy dy 14 (l/0 w; dy). (4.7

Lemma 9 We have

~

Proof
Let us denote ¢; = L~ 'w;. Then ¢; satisfies

& — i+ 3widy =wi, ¢,(0) = ¢,(1) = 0.
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Set
1 1
¢ = S+ iywl(y) + 0.
Then ¥(y) satisfies
" ! ! ]_ n
U —T+3w¥=0, T0)=0, T()= — 5l (1).

On the other hand, let ¥¢ = %. Then ¥, satisfies
Ty — U+ 3wiTy =0, To(0) =1, Ty(0) =0.

Integrating (4.10), we have

, L owy b, ou d ! 5 5, dl
To(l) = ) 6—Mdy_3/0 “”a_M y_d—M /O(U)l—wz)dy —(wl(l)—wz(l))m-

Using the equation for w;, we have fé (w; — w})dy = 0. Thus we obtain

Wy(1) = (i) ()

Comparing (4.9) and (4.11), we derive the following important relation:

11
2 _at_
aM
Hence, we have
! Lr1 1
/ wl¢l dy = / (Ewl + Eyw, + II’) wg dy
0 0

1/’ ) 1, Lfdl N\t
== [ widy+ -lwi{l) + = | — /w\I' dy.
4/, 4! 2 \dM o 0

On the other hand,

! l !
Ow; 1d 9 1 ,,.d
lI/ = _ = —— - — J—
/0 w; o dy /0 wl@M dy 57 /0 wj dy 2wl (l)dM

1ld [t , 1o, | d
_§[E/Ow’dy_§wl(l)]d_M'

Substituting (4.14) into (4.13), we obtain that

! 1t 1.d [, 1d L,
/0wl¢ldy—1/0wldy+zla/0wldy—za l/owldy .

This finishes the proof of the lemma.

5 A nonlocal eigenvalue problem

11

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

Let (A, B) be the solution of (1.2) with L arbitrary. In Lemma 13 given in the appendix it was shown that the stability

or instability of (A, B) is determined by the spectrum of the following self-adjoint, nonlocal eigenvalue problem

bos — ad + 3bA2¢ — 24’ < Ap > A = A\,
¢ € X,

XL={¢€H1 (0%) ‘¢’(0)=¢’ (%):o}

where

(5.1)

The derivation of (5.1) is crucial for the analysis. A similar argument, which was given for the case of sufficiently large

L in [15], is recalled in the appendix.
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Recall the following relation,

By scaling
l
y="a B() = 6) (52)

it is easy to see that (5.1) is equivalent to the following

<I>yy—<§+3wl2<1>—’y(f0lwl<1>dy)wl:)\<I’, 0<y<l, 53)
5.3
<I>y(0) = CI’y(l) =0,
where

y= l(j%l) — ? >0 (5.4)
and w; is the unique solution of (2.6). (Note that (5.3) is self-adjoint.)

In this section, we give a complete study of (5.3).

We remark that similar nonlocal eigenvalue problems have been studied in [6], [7], [10], [20], [21], [22] and [23].
However in those papers the eigenvalue problems are in general not self-adjoint. Therefore they allow Hopf bifurcation
which describe the onset of oscillatory phenomena. This does not happen here. Because of the oscillations it is harder to
determine the bifurcation point analytically and this only possible in some special cases.

In [23] the shadow system of the Gierer-Meinhardt system (i.e. infinite diffusion constant of the inhibitor) is studied on
a bounded interval with finite diffusion constant of the activator. It is shown that there exists a unique Hopf bifurcation
point which is transversal. The method of proof is similar to this paper in that Jacobi elliptic integrals are used as
well. The reason for this similarity is because a finite diffusion constant of the activator is considered there (and not
the singularly perturbed problem with sufficiently small diffusion constant). However, the destabilization mechanism is
different in the two cases (Hopf bifurcation for a non-selfadjoint eigenvalue problem versus an eigenvalue crossing the
imaginary axis for a self-adjoint eigenvalue problem).

We first have

Lemma 10 )\ =0 is an eigenvalue of (5.3) if and only if
L
'y/ wi L wy dy = 1. (5.5)
0

Proof Suppose A = 0. Then we have

0=L[®] — v (/lwﬂ)dy) wy
=y (/(]l w;® dy) £ wy. (5.6)

Multiplying (5.6) by w; and integrating, we obtain (5.5) since fé w;® dy # 0 (as otherwise L& = 0 and hence ® = 0).
O

which implies that

The following is the main result of this section:

Lemma 11 All eigenvalues of (5.3) are real and

(a) iffyf(f wi L™ w; dy > 1, then for all eigenvalues of (5.3) we have \ < 0;

(b) if 'yfol wi L™ 'wy dy = 1, then for all eigenvalues of (5.3) we have X < 0 and zero is an eigenvalue of (5.3) with
eigenfunction L wy;

(c) ifvf(f wi L™ w;dy < 1, then there erists an eigenvalue Ao > 0 of (5.3).
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From Lemma 11, we see that ~ fol wi L~ w; dy = 1 is the borderline case between stability and instability of (5.3).
Proof The nonlocal eigenvalue problem (5.3) is self-adjoint and hence all eigenvalues are real. Let A > 0 be an eigenvalue

of (5.3). We first claim that A\ # Ay, where \; is the first eigenvalue of £ given by Lemma 8. In fact, if A = A1, then we
have

1
7/ w®1dy =0,
0

where ®; is the eigenfunction to the eigenvalue A; for the operator £. This implies

1
/ w; P, dy =0,
0

which is impossible since ®; > 0.
So A # A;. By Lemma 8, (£ — \)~! exists and hence A > 0 is an eigenvalue of (5.3) if and only if it satisfies the
following algebraic equation:

l
1= [ (e =N vl dy =o. (5.7)
0
Let
l
)= 1= [ [(C =N wuldy, 20, t#x.
Then p(0) =1 — fyfol(wlﬁ_lwl) dy and

’

L

P == [ (€t wuldy <o
0

On the other hand,

p(t) > —o0 as t—= A, t < Ag

p(t) = 400 as t = A, t >\

p(t) > 1 as t = +oo.

Thus p(t) > 0 for t > A\ and p(t) has a (unique) zero in (0, A1) if and only if p(0) > 0 which is equivalent to
1-— yf(f(wlﬁ_lwl) dy > 0.
This proves the lemma.

O
6 The proof of Theorem 3
Proof Now we can finish the proof of Theorem 3.
By Lemma 11, we have stability of (5.3) if
7/0l(wl£_1wl) dy > 1 (6.1)
and instability if
'y/l(wl/.'.lwl)dy < 1.
By Lemma 9, we have ’
’Y/l(wlﬁ_lwl)dy = td%(lféﬂ- (6.2)
0

Thus (6.1) is equivalent to

l
2l—t% (l/o w; dy) <0 (6.3)
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which by definition (2.8) is equivalent to
dg
— < 0. 6.4
< (6.4)
Thus, for pp < § < p1, by Lemma 7 (¢), the solution with small period [; is stable while the solution with large period
Iy is unstable. For p' < iz, the only solution is unstable. When g’ = 1, we have g (I) = 0, where g was defined in (2.8).
This implies that the only solution is neutrally stable.

When ps < u’ < p1, let us compute the amplitude of A:

21 2lx
Ag) = — 2wy (2.
@ =7 1 Z(L)

So the maximum of A(z) is given by

A(0) = max A(z) = #f_lwl(()) - L\/% M
-2 o REE)-—— V2 k().

Ly —1 /1_162_2_L uw—1

So if I < I, then by (3.12) k1 < k2 and the maximum of A for Iy is smaller than the maximum of A for /.
Thus, for gz < i’ < p1, the solution with small amplitude is stable and the one with large amplitude is unstable.
This finishes the proof of Theorem 3. o

7 Instability of other Solutions: The proof of theorem 2

Proof
In this section, we will show that all other solutions of (2.6) must be unstable. In fact, let w be any solution of the
following ordinary equation:

” ' ’

w —w+w =0, w0 =w(l)=0 (7.1)

and consider its associated eigenvalue problem

Lo=0¢" —¢+3uwp=Xp, 0<y<lI,
(7.2)

$ () =¢'1=0.

The Morse index of a solution w of (7.1) is the number of positive eigenvalues of (7.2).

Since wy is the unique positive solution of (7.1) it has least energy under all solutions of (7.1) and hence its Morse index
is 1.

We claim that

Lemma 12 All other solutions of (7.1) have Morse index at least 2.

Proof Let w # w; be a solution of (7.1). Let Ay > 0 be the principal eigenvalue of w. The associated eigenfunction @,
can be made positive. By definition,

. ot [l@®) +¢* — 3w dy

. (7.3)
GEH(0,1),620, [§ ®1¢ dy=0 Jo *dy

We now show that A\s > 0. There are two cases to be considered.
Case 1. w is a changing-sign solution. In this case, we suppose that w(z) > 0,z € (0,71) and w(z) < 0,z € (z1,T2)
where 2o < I. We may assume that w(z1) = 0 and w(z2) = 0 if 2o < | and w (z2) = 0 if 25 = I. Now let ¢(z) =
aw(z),r € (0,z1) and ¢(z) = cow(x),x € (x1,22). We can choose the two constants c;, ca such that

l
/ d1pdy = 0.
0
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Then, by simple computations, we have

1
/ [((;5’)2 + ¢* — 3w2¢2] dy <0
0

which implies that —As < 0 and hence Ay > 0.

Case 2. w is a positive solution. Since w # wy, w must change sign. We may assume that w < 0,2 € (0,21) and
w >0,z € (z1, ). Furthermore, we may also assume that w' (z1) = 0 and w (z2) = 0. Then similar to Case 1, we take
¢ =crw (z),z € (0,21) and ¢(x) = cow (), € (21, 22), where the constants ¢, ¢y are chosen such that fé ®1¢0dy = 0.
Then, by simple computations, we have

l
/ (8)? + 6 — 3u’¢?) dy < 0
0

and hence —As < 0 and A > 0. If Ay =0, then ¢(x) becomes an eigenfunction which satisfies (7.2) and hence is smooth.
This is impossible since ¢ is not smooth at z; (as otherwise w (1) = w" (1) = 0 and hence w = 1).
O

From Lemma 12 it follows that the Morse index of all other solutions is at least 2. In other words, problem (7.2) has
at least two positive eigenvalues. Let A; be the principal eigenvalue and 0 < A2 < A; be the second eigenvalue. Let the

corresponding eigenfunctions be ®;,®5. Since A; is the principal eigenvalue, we may assume that ®; > 0.
If fé w®s dy = 0, we choose ¢ = ®,. If fol w®s dy # 0, then we choose ¢ such that

l I
/w@ldy—kc/ wPydy =0
0 0

¢:¢1 +C‘I)2.

and

In any case, we obtain that fol wddy = 0.

Then we have
2

l ()% + ¢* — 3w?¢?| dy — lwlqsdy (7.4)
0 0

1
= [(@r2+¢ - sute?) ay <o,
0

which implies that for any constant  there exists a positive eigenvalue to (5.3) and, by the scaling argument in Section
5, also to (5.1). Now, by the reduction lemma (Lemma 13), all solutions of (1.3) for which either A or A, changes sign,
must be unstable.

This finishes the proof of Theorem 2.

8 Appendix: The Linearized Operator — A Reduction Lemma

In this appendix, we derive the linearized operator to system (1.3) and study some of its properties.

In particular, we show that its eigenvalues must all be real and that the system of eigenvalue equations reduces to a
self-adjoint nonlocal eigenvalue problem. This is similar to our previous paper [15]. For the sake of completeness, we
include all this material in this appendix.

To study the linear stability of (1.3), we perturb (A(z), B(x)) as follows:

Ac(z,1) = A(@) + ep(z)e*",  Be(w,t) = B(z) + epp(z)e, (8.1)

where Az, € C — the set of complex numbers — and
d)v ¢ € XL,
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where X7, was defined at the beginning of Section 5.
Substituting (8.1) into (1.2) and considering the linear part, we obtain the following eigenvalue problem:

bz +(1—B)p—3A%0 — AP =29, 0<z<Zi
Yoz + 201 (AB)oz = TAY), O0<z <L (8.2)

AL €C, ¢, € XL.

Now in a similar way as B was substituted in (1.3) we can substitute 3 in (8.2) and reduce it to a nonlocal, self-adjoint
eigenvalue problem in ¢ only.
Let

V=20 Ap+2u < Ap> +TALY, (8.3)
where
<1 >=0.

Our goal in this appendix is to show that setting 1/3 = 0 does not change the stability properties of the eigenvalue
problem. This idea will enable us to reduce the eigenvalue problem (8.2) to the nonlocal, self-adjoint eigenvalue problem
(8.6) below.

Equation (8.3) together with (8.2) implies

Voo — TALY = =20 Ap+ 24 < Ad > . (8.4)
Substituting (2.1) and (8.3) into the first equation of (8.2), we obtain that
/ - L
Goz —ap+ 3bA%P —2u < Ap > A—TAAY =Apg, 0<z< 3 (8.5)

where a and b are given by (2.3).
If 7 =0, then (8.5) becomes

buw —ad+30A2p — 24 < Ap>A=Ap, 0<z<Zk,
¢€XL.

We now recall the following reduction lemma (Lemma 3 of [15]):
Lemma 13 (a) All eigenvalues of (8.2) are real.
(b) If all eigenvalues of (8.6) are negative, then all eigenvalues of (8.2) are negative.
(¢) If problem (8.6) has a positive eigenvalue, then problem (8.2) also has a positive eigenvalue.

Lemma 13 implies that the stability and instability properties of (8.2) and (8.6) are the same. Thus we have reduced
our stability problem to the study of the self-adjoint nonlocal eigenvalue problem (8.6).

Proof
We first prove part (a). Multiplying (8.5) by ¢ — the conjugate function of ¢ — and integrating over I = (0, L/2),
we obtain

A A 2 2 —
AL / |62 dz = — /[|¢gﬂ|2 + al|? — 3bA%¢*) dz — == ‘/(A¢) de| — T/\L/Awqﬁdx. (8.7)
I T I T
Multiplying the conjugate of (8.4) by ¢ and integrating over R we get
o 1 N TiL ~
A¢¢dmz—,/¢z2dx+ ,/¢2da;. 8.8
/ o [ e e+ T [ 16 (58)
Substituting (8.8) into (8.7) gives
24/ 2
A [ 1o do+ [ 1162 + alof? - 30a2loP o+ 2 | [ (40)da
I I I

T)\L/ - T2|)\L|2/ ~ g
+—F | Wel|?de + ——— [ |z dz =0. 8.9
2 [t TR [0 (89)
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Taking the imaginary part of (8.9), we obtain

\; (/1 o2 dx + ZL///IW”'zdx) =0, (8.10)

where A\f, = A\, + V=1,
Equation (8.10) implies
Ai=0 (8.11)
and therefore Ay, is real. Since the spectrum of (8.5) coincides with that of (8.2) the proof of part (a) is complete.

Next we prove parts (b) and (c) of Lemma 13. We use variational techniques. To this end, we need to introduce
two quadratic forms: Let

L6 = [ 16 +alol 30410 da + 2 | [ g da | sem (8.12)
and
£3ld) = LI+ 57 [ (el? + 7P da, (5.13)
where zﬁ is the unique solution of the problem
{¢ — M) = =24 Ap + 21 < A >,
. ) (8.14)
e Xy, <i¢>=0.
Observe that for 7 > 0 and A > 0
Lolg] = Llgl, L[g] < L:[¢]- (8.15)

To prove (b), we note that if all eigenvalues of (8.6) are negative, then the quadratic form L[¢] is positive definite,
which by (8.15) yields that £y is positive definite if A > 0. Let A > 0 be an eigenvalue of (8.2), then, by (8.9), we obtain
that

)\/|¢|2da:+£>\[¢] —0 (8.16)
I

which is clearly impossible if A > 0. Thus we have shown that all eigenvalues of (8.2) must be negative.
To prove (c), suppose that (8.6) has a positive eigenvalue. Then the eigenvalue problem

—pr = i L 8.17
R [¢] (8.17)

has a positive value py, > 0. We now claim that (8.2) admits a positive eigenvalue.

Fixing A € [0, 400), let us consider another eigenvalue problem

—u(A) = ¢€XL,IEI<?2 oy Li[g]- (8.18)

A minimizer ¢ of (8.18) satisfies the equation
Goo — ap+3bA%G — 2 < AP > A—A)=p(Ng, ¢ € X, (8.19)

where ¢) is given by (8.14).

By (8.15), —u(A) > —pur. Hence pu(A) < pr. Moreover, since v is continuous with respect to \ in [0,400), we see that
() is also continuous in [0, +00).

Let us consider the following algebraic equation

AN = u(\) —A=0, €0, +00). (8.20)

By our assumption, h(0) = u(0) = pr, > 0. On the other hand, for A > 2ur, h(A) < ur — A < —pr < 0. By the
mean-value theorem, there exists a A\, € (0, ur.) such that h(Ar) = 0.

Substituting p(Ar) = Ar into (8.19), we see that A is an eigenvalue of problem (8.2).

Part (c) of Lemma 13 is thus proved.
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9 Conclusion

In this paper we have given a rigorous analysis of the linearized stability of stationary periodic patterns on the real line
with an arbitrary minimal period L for a Ginzburg-Landau equation with a mean field. This equation arises in many
contexts in the sciences.

Periodic steady-states on the real axis are represented by steady-states on an interval of suitable length with Neumann
boundary conditions. In this setting existence and multiplicity of solutions has been established and linear stability
was proved rigorously. The proof is based on a self-adjoint, nonlocal eigenvalue problem, variational characterization of
eigenvalues and Jacobi elliptic integrals. In particular the latter are well-suited for problems on finite domains.

In this paper we have rigorously shown results on a particular destabilization mechanism which acts on the space
of periodic functions and is closely connected with the size of nonlocal terms. It has lead to an eigenvalue crossing
the imaginary axis. We have not considered other possible instabilities acting on the whole real line such as absolute
instabilities (see for example [19]).

In this paper stationary patterns are considered for the real Ginzburg-Landau equation. It would be very interesting
to try and extend our methods to the complex Ginzburg-Landau equation with a mean field. For recent progress in this
direction see [24].

Another interesting but challenging direction would be the real or the complex case in several space dimensions.
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