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Abstract. We consider the following singularly perturbed Neu-
mann problem

ε2∆u− u+ up = 0 in Ω, u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω,

where p is subcritical and Ω is a smooth and bounded domain in
Rn with its unit outward normal ν. Lin-Ni-Wei [18] proved that
there exists ε0 such that for 0 < ε < ε0 and for each integer k
bounded by

1 ≤ k ≤ δ(Ω, n, p)
(ε| log ε|)n

(0.1)

where δ(Ω, n, p) is a constant depending only on Ω, p and n, there
exists a solution with k interior spikes. We show that the bound
on k can be improved to

1 ≤ k ≤ δ(Ω, n, p)
εn

, (0.2)

which is optimal.

1. Introduction and statement of main results

Of concern is the following Lin-Ni-Takagi problem ([17]) ε2∆u− u+ up = 0 in Ω
u > 0 in Ω

∂u
∂ν

= 0 on ∂Ω,
(1.1)

where p satisfies 1 < p < +∞ for n = 2 and 1 < p < n+2
n−2

for n ≥ 3 and
Ω is bounded, smooth domain in Rn with its unit outward normal ν.

Problem (1.1) arises in many applied models concerning biological
pattern formations. For instance, it gives rise to steady states in the
Keller-Segel model of the chemotactic aggregation of the cellular slime
molds and it also plays an important role in the Gierer-Meinhardt
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model describing the regeneration phenomena of hydra. See [9], [15]
and [17] for more details.

Problem (1.1) has been studied extensively for the last twenty years.
In the pioneering paper [17], Lin, Ni and Takagi proved the a priori
estimates and existence of least energy solutions to (1.1), that is, a
solution uε with minimal energy. Furthermore, Ni and Takagi showed
in [24, 25] that, for each ε > 0 sufficiently small, uε has a spike at
the most curved part of the boundary, i.e., the region where the mean
curvature attains maximum value.

Since the publication of [25], problem (1.1) has received a great deal
of attention and significant progress has been made. More specifically,
solutions with multiple boundary peaks as well as multiple interior
peaks have been established. (See [4]-[5], [11]-[14], [16]-[18], [26]-[29]
and the references therein.) In particular, it was established in Gui
and Wei [13] that for any two given integers k ≥ 0, l ≥ 0 and k+ l > 0,
problem (1.1) has a solution with exactly k interior spikes and l bound-
ary spikes for every ε sufficiently small. Furthermore, Lin, Ni and Wei

[18] showed that there are at least δ(n,p,Ω)
(ε| log ε|)n number of interior spikes.

On the other hand, problem (1.1) also admits higher dimensional con-
centrations. (See [23].) For results in this direction, we refer to [1],
[19]-[22]. In particular, we mention the results of Malchiodi and Mon-
tenegro [21, 22] on the existence of solutions concentrating on the whole
boundary provided that the sequence ε satisfies some gap condition.

In this paper, we shall address the question of the maximal possible
number of spikes, in terms of small parameter ε > 0, that a solution of
(1.1) could have. Note that since p is subcritical, the solutions to (1.1)
is uniformly bounded (Lin-Ni-Takagi [17]). Thus the energy bound for
solutions of (1.1) is O(1). On the other hand, each spike contributes to
at least O(εn) energy. This implies that the number of interior spikes
can not exceed O(ε−n). Our main result, Theorem 1.1 below, asserts

that for every positive integer k ≤ δΩ,n,p
εn

, where δ(Ω, n, p) is a constant
depending only on n, p and Ω, problem (1.1) has a solution with exactly
k peaks. This gives an optimal bound on the number of interior spikes.

Our proof uses a “localized energy method” as in [12] and [18]. There
are two main difficulties. First, the distance between spikes is assumed
only to be O(ε). In the Liapunov-Schmidt reduction process, we have
to prove that all the estimates are uniform with respect to the integer
k. Second, we have to detect the difference in the energy when spikes
move to the boundary of the configuration space. A crucial estimate
is Lemma 5.1, in which we prove that the accumulated error can be
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controlled from step k to step k + 1. To prove Lemma 5.1, we have to
perform a secondary Liapunov-Schmidt reduction. This seems to be
new.

We now state the main result in this paper.

Theorem 1.1. There exists an ε0 > 0 such that for 0 < ε < ε0, and
any positive integer k satisfying

1 ≤ k ≤ δ(Ω, n, p)

εn
, (1.2)

where δ(Ω, n, p) is a constant depending on n,Ω and p only, problem
(1.1) has a solution uε that possesses exactly k local maximum points.

Remark 1.1. As mentioned earlier, the upper bound for k is the best
possible. As far as we know, the only result on the optimal upper
bound for the number of spikes is the one-dimensional situation. In a
series of papers [7]-[8], Felmer-Martinez-Tanaka studied the following
singularly perturbed nonlinear Schrödinger equation

ε2∆u− V (x)u+ up = 0, u > 0, u ∈ H1(R). (1.3)

They constructed solutions to (1.3) with C
ε

number of spikes. Extension
to Gierer-Meinhardt system can be found in [6]. Related construction
can also be found in del Pino-Felmer-Tanaka [3].

Remark 1.2. An interesting problem is to study the homogenization
of the measure ε−n|∇u|2dx. We expect that it will approach some kind
of Lebesgue measure. As ε→ 0, the locations of the maximum points
should approach to some sphere-packing positions.

Remark 1.3. It is clear that the proofs of Theorem 1.1 can be applied
to a large class of singularly perturbed problems{

ε2∆u− u+ f(u) = 0 in Ω
u > 0 in Ω, ∂u

∂ν
= 0 on ∂Ω,

(1.4)

where f(u) satisfies the conditions (f1)-(f3) stated in [18].

The paper is organized as follows. Notations, preliminaries and some
useful estimates are explained in Section 2. Section 3 contains the
study of a linear problem that is the first step in the Lyapunov-Schmidt
reduction process. In Section 4, we solve a nonlinear projected problem.
Section 5 contains a key estimate which majors the differences between
k-th step and (k+ 1)-th step. We then set up a maximization problem
in Section 6. Finally in Section 7, we show that the solution to the
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maximization problem is indeed a solution of (1.1) and prove Theorem
1.1.

Throughout this paper, unless otherwise stated, the letters c, C will
always denote various generic constants that are independent of ε and
k for ε small enough.

Acknowledgment. Juncheng Wei was supported by a GRF grant
from RGC of Hong Kong.

2. Notation and Some Preliminary Analysis

In this section we introduce some notations and some preliminary
analysis on approximate solutions. Our main concern is that all the
estimates should be independent of k-the number of spikes.

Without loss of generality, we may assume that 0 ∈ Ω. By the
following rescaling:

z = εx, x ∈ Ωε := {εz ∈ Ω},

equation (1.1) becomes{
∆u− u+ up = 0 in Ωε

u > 0 in Ωε,
∂u
∂ν

= 0 on ∂Ωε.
(2.5)

For u ∈ H2(Ωε), we also put

Sε(u) = ∆u− u+ up. (2.6)

Associated with problem (2.5) is the energy functional

Jε(u) =
1

2

∫
Ωε

(|∇u|2 + u2)− 1

p+ 1

∫
Ωε

up+1
+ , u ∈ H1(Ωε), (2.7)

where we denote u+ = max(u, 0).
Now we define the configuration space,

Λk :=
{

(Q1, · · · , Qk) ∈ Ωk
∣∣∣ min

i 6=j
|Qi−Qj| ≥ ρε, min

i,j,d(Qj ,∂Ω)≤10ε| ln ε|
|Qi−Q∗j | ≥ ρε

}
,

(2.8)
where Q∗j = Qj + 2d(Qj, ∂Ω)νQ̄j , νQ̄j denotes the unit outer normal at

Q̄j ∈ ∂Ω, and Q̄j is the unique point on ∂Ω such that d(Qj, ∂Ω) =
d(Qj, Q̄j), and ρ is a constant which is large enough (but independent
of ε). (This is possible since d(Qj, ∂Ω) ≤ 10ε| ln ε|.)

By the definition above, we may assume that

1 ≤ k ≤ δ

εnρn
(2.9)
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for some δ > 0 sufficiently small only depend on Ω ,n and p. We can
get a lower bound of ρ, so we have a upper bound of k which is of
O( 1

εn
). See Remark 6.1 below.

Let w be the unique solution of{
∆w − w + wp = 0, w > 0 in Rn,

w(0) = maxy∈Rn w(y), w → 0 as |y| → ∞. (2.10)

By the well-known result of Gidas, Ni and Nirenberg [10], w is ra-
dially symmetric and is strictly decreasing, and w′(r) < 0 for r > 0.
Moreover, we have the following asymptotic behavior of w:{

w(r) = Anr
−n−1

2 e−r(1 +O(1
r
))

w′(r) = −Anr−
n−1

2 e−r(1 +O(1
r
))

(2.11)

for r > 0 large, where An is a positive constant.
Let K(r) be the fundamental solution of −∆+1 centered at 0. Then

we have {
w(r) = (A0 +O(1

r
))K(r)

w′(r) = −(A0 +O(1
r
))K(r)

(2.12)

for r > 0 large, where A0 is a positive constant.
For Q ∈ Ω, we define wε,Q to be the unique solution of

∆v − v + w(· − Q

ε
)p = 0 in Ωε,

∂v

∂ν
= 0 on ∂Ωε. (2.13)

We first analyze wε,Q. To this end, set

ϕε,Q = w(
z −Q
ε

)− wε,Q(
z

ε
). (2.14)

We state the following lemma on the properties of ϕε,Q:

Lemma 2.1. Assume that cε ≤ d(Q, ∂Ω) ≤ 10ε| ln ε|, where c ≥ ρ
2
.

We have

ϕε,Q = −(A0 +O(
1

ρ
1
2

))K(
z −Q∗

ε
) +O(e−2ρ). (2.15)

Proof. In Lemma 2.1 of [18], a similar estimate was proved under the
condition that C1ε| ln ε| ≤ d(Q, ∂Ω) ≤ δ. Here we will relax this con-
dition to cε ≤ d(Q, ∂Ω) ≤ 10ε| ln ε|. The proof is similar. For the sake
of completeness, we repeat a modification of the proof here.

Let ψε(z) be the unique solution of

ε2∆ψε − ψε = 0 in Ω,
∂ψε
∂ν

= 0 on ∂Ω. (2.16)

It is easy to see that

0 < ψε(z) ≤ ψ1(z) ≤ C for ε < 1. (2.17)
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On the other hand, ϕε,Q satisfies

ε2∆v − v = 0 in Ω,
∂v

∂ν
=

∂

∂ν
w(
z −Q
ε

) on ∂Ω. (2.18)

Using (2.11), we can see that on ∂Ω,

∂

∂ν
w(
z −Q
ε

) =
1

ε
w′(

z −Q
ε

)
〈z −Q, ν〉
|z −Q|

= −(An +O(
1

ρ
))ε

n−3
2 |z −Q|−

n+1
2 e−

|z−Q|
ε 〈z −Q, ν〉.

We use the following comparison function:

ϕ1(z) = −(A0 −
1

ρ
1
2

)K(
z −Q∗

ε
) + e−dρψε, (2.19)

where d ≥ 2 is a constant.
For z ∈ ∂Ω, |z −Q| ≥ ε

3
4 , we have

∂ϕ1(z)

∂ν
= −(A0 −

1

ρ
1
2

)K ′(
z −Q∗

ε
)ε−1 〈z −Q∗, ν〉

|z −Q∗|
+ e−dρ ≥ 1

2
e−dρ,

∂ϕε,Q
∂ν

≤ ce−ε
− 1

4 ,

so

∂ϕε,Q
∂ν

≤ ∂ϕ1

∂ν
.

For |z −Q| ≤ ε
3
4 , we have

∂ϕ1

∂ν
=

∂

∂ν
{−(A0 −

1

ρ
1
2

)K(
z −Q∗

ε
)}+ e−dρ.

Since

〈z −Q, ν〉
|z −Q|

= −(1 +O(ε
1
2 ))
〈z −Q∗, ν〉
|z −Q∗|

,

|z −Q|
ε

= (1 +O(ε
1
2 ))
|z −Q∗|

ε
,

we obtain

∂ϕε,Q
∂ν

≤ ∂ϕ1

∂ν
.

By the comparison principle, we have

ϕε,Q(z) ≤ ϕ1(z) for z ∈ Ω. (2.20)
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Similarly, we obtain

ϕε,Q ≥ −(A0 +
1

ρ
1
2

)K(
z −Q∗

ε
)− e−dρψε for z ∈ Ω. (2.21)

�

For Q = (Q1, · · · , Qk) ∈ Λk, we define

wQi(x) = w(x− Qi

ε
), wε,Q =

k∑
i=1

wε,Qi . (2.22)

The next lemma analyzes wε,Q in Ωε. To this end, we divide Ωε into
k + 1 parts:

Ωε,i = {|x− Qi

ε
| ≤ ρ

2
}, i = 1, · · · , k, (2.23)

Ωε,k+1 = Ωε\ ∪ki=1 Ωε,i. (2.24)

Then we have the following lemma

Lemma 2.2. For x ∈ Ωε,i, i = 1, · · · , k, we have

wε,Q = wε,Qi +O(e−
ρ
2 ). (2.25)

For x ∈ Ωε,k+1, we have

wε,Q = O(e−
ρ
2 ). (2.26)

Proof. For j 6= i, and x ∈ Ωε,i, we have

wε,Qj = w(x− Qj

ε
)− ϕε,Qj(εx)

= O(e−|x−
Qj
ε
| + e−|x−

Q∗j
ε
|)

= O(e−|x−
Qj
ε
|)

by the definition of the configuration set. Next we observe that given a
a ball of size ρ, there are at most cn := 6n number of non-overlapping
balls of size ρ surrounding this ball. Thus we have for x ∈ Ωε,i,∑

j 6=i

wε,Qj(x) = O(
∑
j 6=i

e−|x−
Qj
ε
|) +O(e−2ρ)

≤ cne
− ρ

2 + c2
ne
−ρ + · · ·+ cjne

− jρ
2 + · · ·

≤
∞∑
j=1

ej(log cn− ρ2 ) +O(e−2ρ)

≤ O(e−( ρ
2
−log cn))

≤ O(e−
ρ
2 ),
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if cn < e
ρ
2 , which is true for ρ large enough. So this proves (2.25). The

proof of (2.26) is similar.
�

Remark 2.1. In the following sections, we will use the definition of
the configuration and the estimate as above frequently.

The following lemma is proved in Lemma 2.3 of [2].

Lemma 2.3. Let f ∈ C(Rn) ∩ L∞(Rn), g ∈ C(Rn) be radially sym-
metric and satisfy for some α ≥ 0, β ≥ 0, γ0 ∈ R,

f(x)exp(α|x|)|x|β → γ0 as |x| → ∞,∫
Rn
|g(x)|exp(α|x|)(1 + |x|β)dx <∞.

Then

exp(α|y|)|y|β
∫

Rn
g(x+y)f(x)dx→ γ0

∫
Rn
g(x)exp(−αx1)dx as |y| → ∞.

As in [18], we now define the following quantities:

Bε(Qj) = −
∫

Ωε

wpQjϕε,Qjdx, Bε(Qi, Qj) =

∫
Ωε

wpQiwQjdx. (2.27)

Then we have the following:

Lemma 2.4. For Q = (Q1, · · · , Qk) ∈ Λk, it holds that

Bε(Qj) = (γ +O(
1
√
ρ

))w(
2d(Qj, ∂Ω)

ε
) +O(e−(1+ξ)ρ), (2.28)

Bε(Qi, Qj) = (γ +O(
1
√
ρ

))w(
2d(Qj, ∂Ω)

ε
) +O(e−(1+ξ)ρ), (2.29)

for some ξ > 0 independent of ε and k for ε sufficiently small, where

γ =

∫
Rn
wp(y)e−y1dy. (2.30)

Remark 2.2. Note that γ > 0. See Lemma 4.7 of [26].

Proof. By Lemma 2.2 and 2.3, the proof is similar to that of Lemma
2.5 in [18]. We omit the details. �
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3. Linear Theory

In this section, we study a linear theory that allow us to perform the
finite dimensional reduction procedure. The proof is similar to Section
3 of [18]. However, the main concern is to show that all the constants
are independent of the number k. Fixing an integer k satisfying

1 ≤ k ≤ δ

εn
(3.31)

and Q ∈ Λk, we define the following functions:

Zij =
∂wQi
∂xj

χi(x), for i = 1, · · · , k, j = 1, · · · , n, (3.32)

where wQi(x) = w(x − Qi
ε

), χi(x) = χ(2|εx−Qi|
(ρ−1)ε

) and χ(t) is a cut off

function such that χ(t) = 1 for |t| ≤ 1 and χ(t) = 0 for |t| ≥ ρ2

ρ2−1
.

Note that the support of Zij belongs to B ρ2

2(ρ+1)

(Qi
ε

).

We consider the following linear problem: Given h, find a function
φ satisfying

L(φ) := ∆φ− φ+ pwp−1
ε,Q φ = h+

∑
i=1,··· ,k,j=1,··· ,n cijZij in Ωε

∂φ
∂ν

= 0 on ∂Ωε∫
Ωε
φZij = 0 for i = 1, · · · , k, j = 1, · · · , n.

(3.33)
Let

W :=
∑
Q∈Λk

e−η |·−
Qi
ε
|. (3.34)

Given 0 < η < 1, consider the norm

‖h‖∗ = sup
x∈Ωε

|W (x)−1h(x)| (3.35)

where (Q1, · · · , Qk) ∈ Λk.

Proposition 3.1. There exist positive numbers η ∈ (0, 1), ε0 > 0,
ρ0 > 0 and C > 0, such that for all 0 < ε < ε0, ρ > ρ0, and for any
given h with ‖h‖∗ norm bounded, there is a unique solution (φ, {cij})
to problem (3.33). Furthermore

‖φ‖∗ ≤ C‖h‖∗. (3.36)

The proof of the above Proposition, which we postpone to the end
of this section, is based on Fredholm alternative Theorem for compact
operator and an a-priori bound for solution to (3.33) that we state (and
prove) next.
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Proposition 3.2. Let h with ‖h‖∗ bounded and assume that (φ, {cij})
is a solution to (3.33). Then there exist positive numbers ε0, ρ0 and
C, such that for all 0 < ε < ε0, ρ > ρ0 and Q ∈ Λk, one has

‖φ‖∗ ≤ C‖h‖∗, (3.37)

where C is a positive constant independent of ε, ρ, k and Q ∈ Λk.

Proof. We argue by contradiction. Assume that there exist φ solution
to (3.33) and

‖h‖∗ → 0, ‖φ‖∗ = 1.

Multiplying the equation in (3.33) against Zij and integrating in Ωε,
we get ∫

Ωε

LφZij(x) =

∫
Ωε

hZij + cij

∫
Ωε

Z2
ij.

Given the exponential decay at infinity of ∂xiw and the definition of
Zij, we get ∫

Ωε

Z2
ij =

∫
Rn
w2
xi

+O(e−δ1ρ), as ρ→∞, (3.38)

for some δ1 > 0. On the other hand

|
∫

Ωε

hZij| ≤ C‖h‖∗
∫

Ωε

|wxi(x−
Qi

ε
)|e−η|x−

Qi
ε
|dx ≤ C‖h‖∗.

Here and in what follows, C stands for a positive constant independent
of ε, and ρ, as ε → 0, ρ → ∞. Now if we write Z̃ij(x) = wxi(x −

Qi
ε

),
we have

−
∫

Ωε

LφZij(x) = −
∫

Ωε

φ(L[Zij])

=

∫
B(

Qi
ε
, ρ
2

)

[∆Z̃ij − Z̃ij + pwp−1(x− Qi

ε
)Z̃ij]χiφ

−
∫
B(z, ρ

2
)

φ(Z̃ij∆χi + 2∇χi∇Zij) (3.39)

+ p

∫
B(

Qi
ε
, ρ
2

)

(wp−1
ε,Q − w

p−1(x− Qi

ε
))φZ̃ijχi.

Next we estimate all the terms in the above equation.
The first term is 0 since

∆Z̃ij − Z̃ij + pwp−1(x− Qi

ε
)Z̃ij = 0.
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The second integral can be estimated as follows∣∣∣∣∫
Ωε

φ(Z̃ij∆χi + 2∇χi∇Z̃ij)
∣∣∣∣ ≤ C‖φ‖∗

∫ ρ2

2(ρ+1)

ρ−1
2

e−(1+η)ss
−(n−1)

2 ds

≤ Ce−(1+ξ) ρ
2‖φ‖∗,

for some ξ > 0. Finally, we observe that in B(Qi
ε
, ρ

2
) the following holds

|wp−1
ε,Q − w

p−1
Qi

(x)| ≤ Cwp−2
Qi

(x)

[∑
j 6=i

w(x− Qj

ε
)

]
.

Thus we obtain∣∣∣∣∣
∫
B(

Qi
ε
, ρ
2

)

(wp−1
ε,Q − w

p−1
Qi

(x))φZ̃ijχi

∣∣∣∣∣ ≤ Ce−ξ
ρ
2‖φ‖∗

for some ξ > 0, depending on n and p. We then conclude that

|cij| ≤ C
[
e−ξ

ρ
2‖φ‖∗ + ‖h‖∗

]
. (3.40)

Let now η ∈ (0, 1). It is easy to check that the function W (defined
at (3.34)) satisfies

LW ≤ 1

2
(η2 − 1)W ,

in Ωε \∪ki=1B(Qi
ε
, ρ1) provided ρ1 is large enough but independent of ρ.

Hence the function W can be used as a barrier to prove the pointwise
estimate

|φ|(x) ≤ C

(
‖Lφ‖∗ + sup

i
‖φ‖

L∞(∂B(
Qi
ε
,ρ1))

)
W (x) , (3.41)

for all x ∈ Ωε \ ∪ki=1B(Qi
ε
, ρ1).

Granted these preliminary estimates, the proof of the result goes by
contradiction. Let us assume there exist a sequence of ε tending to
0, ρ tending to ∞ and a sequence of solutions of (3.33) for which the
inequality is not true. The problem being linear, we can reduce to the
case where we have a sequence ε(n) tending to 0, ρ(n) tending to∞ and

sequences h(n), φ(n), {c(n)
ij } such that

‖h(n)‖∗ → 0, and ‖φ(n)‖∗ = 1.

By (3.40), we can get that

‖
∑
ij

c
(n)
ij Zij‖∗ → 0 .
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Then (3.41) implies that there exists Q
(n)
i ∈ Λk such that

‖φ(n)‖
L∞(B(Q

(n)
i , ρ

2
))
≥ C , (3.42)

for some fixed constant C > 0. Using elliptic estimates together with

Ascoli-Arzela’s theorem, we can find a sequence Q
(n)
i and we can ex-

tract, from the sequence φ(n)(·−Q
(n)
i

ε
) a subsequence which will converge

(on compact sets) to φ∞ a solution of(
∆− 1 + pwp−1

)
φ∞ = 0 ,

in Rn, which is bounded by a constant times e−η |x|, with η > 0. More-
over, recall that φ(n) satisfies the orthogonality conditions in (3.33).
Therefore, the limit function φ∞ also satisfies∫

Rn
φ∞∇w dx = 0 .

By the nondegeneracy of solution w, we have that φ∞ ≡ 0, which
is certainly in contradiction with (3.42) which implies that φ∞ is not
identically equal to 0.

Having reached a contradiction, this completes the proof of the
Proposition. �

We can now prove Proposition 3.1.

Proof of Proposition 3.1. Consider the space

H = {u ∈ H1(Ωε) :

∫
Ωε

uZij = 0, (Q1, · · · , Qk) ∈ Λk}.

Notice that the problem (3.33) in φ gets re-written as

φ+K(φ) = h̄ in H (3.43)

where h̄ is defined by duality and K : H → H is a linear compact
operator. Using Fredholm’s alternative, showing that equation (3.43)
has a unique solution for each h̄ is equivalent to showing that the
equation has a unique solution for h̄ = 0, which in turn follows from
Proposition 3.2. The estimate (3.36) follows directly from Proposition
3.2. This concludes the proof of Proposition 3.1.

In the following, if φ is the unique solution given by Proposition 3.1,
we set

φ = A(h). (3.44)

Estimate (3.36) implies

‖A(h)‖∗ ≤ C‖h‖∗. (3.45)
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4. The non linear projected problem

For small ε, large ρ, and fixed points Q ∈ Λk, we show solvability in
φ, {cij} of the non linear projected problem

∆(wε,Q + φ)− (wε,Q + φ) + (wε,Q + φ)p =
∑

i=1,··· ,k,j=1,··· ,n cijZij in Ωε

∂φ
∂ν

= 0, on ∂Ωε∫
Ωε
φZij = 0 for i = 1, · · · , k, j = 1, · · · , n.

(4.1)
The first equation in (4.1) can be rewritten as

L(φ) := ∆φ− φ+ pwp−1
ε,Q φ = Sε(wε,Q) +N(φ) +

∑
i=1,··· ,k,j=1,··· ,n

cijZij,

(4.2)
where

Sε(wε,Q) = ∆wε,Q − wε,Q + wpε,Q, (4.3)

N(φ) = (wε,Q + φ)p − wpε,Q − pw
p−1
ε,Q φ. (4.4)

We have the validity of the following result:

Proposition 4.1. There exist positive numbers ε0, ρ0, C and ξ > 0
such that for all ε ≤ ε0, ρ ≥ ρ0, and for any Q ∈ Λk, there is a unique
solution (φε,Q, {cij}) to problem (4.1). Furthermore φε,Q is C1 in Q
and we have

‖φε,Q‖∗ ≤ Ce−
(1+ξ)

2
ρ. (4.5)

Proof. The proof relies on the contraction mapping theorem in the
‖ · ‖∗-norm introduced above. Observe that φ solves (4.1) if and only if

φ = A (Sε(wε,Q) +N(φ)) (4.6)

where A is the operator introduced in (3.44). In other words, φ solves
(4.1) if and only if φ is a fixed point for the operator

T (φ) := A (Sε(wε,Q) +N(φ)) .

Given r > 0, define

B = {φ ∈ C2(Ωε) : ‖φ‖∗ ≤ re−
(1+ξ)

2
ρ,

∫
Ωε

φZij = 0}.

We will prove that T is a contraction mapping from B in itself.
To do so, we claim that

‖Sε(wε,Q)‖∗ ≤ Ce−
(1+ξ)

2
ρ (4.7)
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and

‖N(φ)‖∗ ≤ C
[
‖φ‖2

∗ + ‖φ‖p∗
]
, (4.8)

for some fixed function C independent of ρ and ε. We postpone the
proof of the estimates above to the end of the proof of this Proposition.
Assuming the validity of (4.7) and (4.8) and taking into account (3.45),
we have for any φ ∈ B

‖T (φ)‖∗ ≤ C [‖Sε(wε,Q) +N(φ)‖∗] ≤ C
[
e−

(1+ξ)
2

ρ + r2e−(1+ξ)ρ + rpe−
p(1+ξ)

2
ρ
]

≤ re−
(1+ξ)

2
ρ

for a proper choice of r in the definition of B, since p > 1.
Take now φ1 and φ2 in B. Then it is straightforward to show that

‖T (φ1)− T (φ2)‖∗ ≤ C‖N(φ1)−N(φ2)‖∗

≤ C
[
‖φ1‖min(1,p−1)

∗ + ‖φ2‖min(1,p−1)
∗

]
‖φ1 − φ2‖∗

≤ 1
2
‖φ1 − φ2‖∗.

This means that T is a contraction mapping from B into itself.
To conclude the proof of this Proposition we are left to show the

validity of (4.7) and (4.8). We start with (4.7).
Fix Qi ∈ Λk and consider the region |x − Qi

ε
| ≤ ρ

2+σ
, where σ is

a small positive number to be chosen later. In this region the error
Sε(wε,Q) can be estimated in the following way

|Sε(wε,Q)| ≤ C

[
wp−1(x− Qi

ε
)
∑
j 6=i

w(x− Qi

ε
) +

∑
j 6=i

wp(x− Qj

ε
)

]

≤ Cwp−1(x− Qi

ε
)e−( 1

2
+ σ

2(2+σ)
)ρ

≤ Cwp−1(x− Qi

ε
)e−( 1

2
+ σ

4(2+σ)
)ρ e−

σ
4(2+σ)

ρ

≤ Cwp−1(x− Qi

ε
)e−

1+ξ
2
ρ (4.9)

for a proper choice of ξ > 0.
Consider now the region |x− Qi

ε
| > ρ

2+σ
, for all i. Since 0 < µ < p−1,

we write µ = p− 1−M . From the definition of Sε(wε,Q), we get in the
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region under consideration

|Sε(wε,Q)| ≤ C

[∑
j

wp(x− Qj

ε
)

]
≤ C

[∑
j

e−µ|x−
Qj
ε
|

]
e−(p−µ) ρ

2+σ

≤

[∑
j

e−µ|x−
Qj
ε
|

]
e−

1+M
2+σ

ρ

≤

[∑
j

e−µ|x−
Qj
ε
|

]
e−

1+ξ
2
ρ (4.10)

for some ξ > 0, if we chose M and σ small enough. From (4.9) and
(4.10) we get (4.7).

We now prove (4.8). Let φ ∈ B. Then

|N(φ)| ≤ |(wε,Q + φ)p − wpε,Q − pw
p−1
ε,Q φ| ≤ C(φ2 + |φ|p). (4.11)

Thus we have

|(
∑

j e
−η|x−

Qj
ε
|)−1

N(φ)| ≤ C‖φ‖∗ (|φ|+ |φ|p−1)

≤ C(‖φ‖2
∗ + ‖φ‖p∗).

This gives (4.8).
For the C1 regularity of φε,Q, see Lemma 4.1 in [18]. This concludes

the proof of the Proposition. �

5. An improved estimate

In this section, we present a key estimate on the difference between
the solutions in the k−th step and (k + 1)−th step.

For (Q1, · · · , Qk) ∈ Λk, we denote uε,Q1,··· ,Qk as wε,Q1,...,Qk+φε,Q1,...,Qk ,
where φε,Q1,··· ,Qk is the unique solution given by Proposition 4.1. The es-
timate below says that the difference between uε,Q1,··· ,Qk+1

and uε,Q1,··· ,Qk+
uε,Qk+1

is small globally in H1(Ωε) norm.
We now write

uε,Q1,··· ,Qk+1
= uε,Q1,··· ,Qk + uε,Qk+1

+ ϕk+1 (5.12)

= W̄ + ϕk+1,

where

W̄ = uε,Q1,··· ,Qk + uε,Qk+1
.

By Proposition 4.1, we can easily derive that

‖ϕk+1‖∗ ≤ Ce−
(1+ξ)

2
ρ. (5.13)
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However the estimate (5.13) is not good enough. We need the fol-
lowing key estimate for ϕk+1:

Lemma 5.1. Let ρ, ε be as in Proposition 4.1. Then it holds∫
Ωε

(|∇ϕk+1|2 + ϕ2
k+1) ≤ Ce−(1+ξ)ρ, (5.14)

for some constant C > 0, ξ > 0 independent of ε, ρ, k and Q ∈ Λk+1.

Proof. To prove (5.14), we need to perform a secondary decomposition.
We first recall the following fact: it is well-known that the principal

eigenfunction φ0 of the following linearized operator:

∆φ− φ+ pwp−1φ = λ1φ (5.15)

is even and exponentially decaying, where λ1 is the first eigenvalue. We
fix φ0 such that maxy∈Rn φ0 = 1. Denote by φi = χiφ0(x− Qi

ε
), where

χi is the cut-off function introduced in Section 3.
By the equations satisfied by ϕk+1, we have

L̄ϕk+1 = S̄ +
∑

i=1,··· ,k+1,j=1,··· ,n

cijZij (5.16)

for some constants {cij}, where

L̄ = ∆− 1 + pW̃ p−1,

W̃ p−1 =

{
(W̄+ϕk+1)p−W̄ p

pϕk+1
, if ϕk+1 6= 0

W̄ p−1, if ϕk+1 = 0,

and
S̄ = (uε,Q1,··· ,Qk + uε,Qk+1

)p − upε,Q1,··· ,Qk − u
p
ε,Qk+1

.

The L2-norm of S̄ is estimated first: Observe that

|S̄| = |(uε,Q1,··· ,Qk + uε,Qk+1
)p − upε,Q1,··· ,Qk − u

p
ε,Qk+1

|
≤ C(p|uε,Q1,··· ,Qk |p−1uε,Qk+1

+ p|uε,Qk+1
|p−1uε,Q1,··· ,Qk).

By the estimate in Proposition 4.1, we have the following estimate of
the first term above∫

Ωε

|uε,Q1,··· ,Qk |2(p−1)u2
ε,Qk+1

dx

≤ C

∫
Ωε

w
2(p−1)
ε,Q1,··· ,Qkw

2
ε,Qk+1

dx+O(e−(1+ξ)ρ)

≤ Ce−(1+ξ)ρ.

The second term can be estimated similarly. So we have

‖S̄‖L2(Ωε) ≤ ce−(1+ξ) ρ
2 . (5.17)
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By the estimate (5.13), we have the following estimate

W̃ =
k+1∑
i=1

w(x− Qi

ε
) +O(e−(1+ξ) ρ

2 ). (5.18)

Decompose ϕk+1 as

ϕk+1 = ψ +
k+1∑
i=1

ciφi +
∑

i=1,··· ,k+1,j=1,··· ,n

dijZij (5.19)

for some ci, dij such that∫
Ωε

ψL̄φidx =

∫
Ωε

ψZijdx = 0, i = 1, ..., k, j = 1, ..., n. (5.20)

Since

ϕk+1 = φε,Q1,··· ,Qk+1
− φε,Q1,··· ,Qk − φε,Qk+1

, (5.21)

we have for i = 1, · · · , k,

dij =

∫
Ωε

ϕk+1Zij

=

∫
Ωε

(φε,Q1,··· ,Qk+1
− φε,Q1,··· ,Qk − φε,Qk+1

)Zij

= −
∫

Ωε

φε,Qk+1
Zij

and

dk+1,j =

∫
Ωε

ϕk+1Zk+1,j

=

∫
Ωε

(φε,Q1,··· ,Qk+1
− φε,Q1,··· ,Qk − φε,Qk+1

)Zk+1,j

= −
∫

Ωε

φε,Q1,··· ,QkZk+1,j,

where we use the orthogonality conditions satisfied by φε,Q1,··· ,Qk and
φε,Qk+1

. So by Proposition 4.1, we have{
|dij| ≤ ce−(1+ξ) ρ

2 e−η
|Qi−Qk+1|

ε for i = 1, · · · , k
|dk+1,j| ≤ ce−(1+ξ) ρ

2

∑k
i=1 e

−η
|Qi−Qk+1|

ε

(5.22)

for some η > 0.
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By (5.19), we can rewrite (5.16) as

L̄ψ +
k+1∑
i=1

ciL̄φi +
∑

i=1,··· ,k+1,j=1,··· ,n

dijL̄Zij = S̄ +
∑

i=1,··· ,k+1,j=1,··· ,n

cijZij.

(5.23)
To obtain the estimates for the coefficients ci , we use the equation

(5.23).
First, multiplying (5.23) by φi and integrating over Ωε, we have

ci

∫
Ωε

L̄(φi)φi = −
n∑
j=1

dij

∫
Ωε

L̄(Zij)φi +

∫
Ωε

S̄φi (5.24)

where{
|
∫

Ωε
S̄φi| ≤ ce−(1+ξ) ρ

2 e−η
|Qi−Qk+1|

ε for i = 1, · · · , k
|
∫

Ωε
S̄φk+1| ≤ ce−(1+ξ) ρ

2

∑k
i=1 e

−η
|Qi−Qk+1|

ε .
(5.25)

From (5.18) we see that∫
Ωε

L̄(φi)φi = −λ1

∫
Rn
φ2

0 +O(e−(1+ξ) ρ
2 ). (5.26)

Combining (5.22) and (5.24)-(5.26), we have{
|ci| ≤ ce−(1+ξ) ρ

2 e−η
|Qi−Qk+1|

ε , i = 1, ..., k

|ck+1| ≤ ce−(1+ξ) ρ
2

∑k
i=1 e

−η
|Qi−Qk+1|

ε .
(5.27)

Next let us estimate ψ. Multiplying (5.23) by ψ and integrating over
Ωε, we find∫

Ωε

L̄(ψ)ψ =

∫
Ωε

S̄ψ −
∑

i=1,··· ,k+1,j=1,··· ,n

dij

∫
Ωε

L̄(Zij)ψ. (5.28)

We claim that ∫
Ωε

[−L̄(ψ)ψ] ≥ c0‖ψ‖2
H1(Ωε)

(5.29)

for some constant c0 > 0.
Since the approximate solution is exponentially decaying away from

the points Qi
ε

, we have∫
Ωε\∪iB ρ−1

2
(
Qi
ε

)

L̄(ψ)ψ ≥ 1

2

∫
Ωε\∪iB ρ−1

2
(
Qi
ε

)

|∇ψ|2 + |ψ|2. (5.30)

Now we only need to prove the above estimates in the domain ∪iB ρ−1
2

(Qi
ε

).

We prove it by contradiction. Otherwise, there exists a sequence ρn →
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+∞, and Q
(n)
i such that∫

B ρn−1
2

(
Q

(n)
i
ε

)

|∇ψn|2 + |ψn|2 = 1,

∫
B ρn−1

2
(
Q

(n)
i
ε

)

L̄(ψn)ψn → 0, as n→∞.

Then we can extract from the sequence ψn(· − Q
(n)
i

ε
) a subsequence

which will converge weakly in H1(Rn) to ψ∞, such that∫
Rn
|∇ψ∞|2 + |ψ∞|2 − pwp−1ψ2

∞ = 0, (5.31)

and ∫
Rn
ψ∞φ0 =

∫
Rn
ψ∞

∂w

∂xi
= 0, for i = 1, · · · , n. (5.32)

From (5.31) and (5.32), we deduce that ψ∞ = 0.
Hence

ψn ⇀ 0 weakly in H1(Rn). (5.33)

So ∫
B ρn−1

2
(
Q

(n)
i
ε

)

pW̃ p−1ψ2
n → 0 as n→∞. (5.34)

We have
‖ψn‖H1(B ρn−1

2
) → 0 as n→∞. (5.35)

This contradicts the assumption

‖ψn‖H1 = 1. (5.36)

So we get that ∫
Ωε

[−L̄(ψ)ψ] ≥ c0‖ψ‖2
H1(Ωε)

. (5.37)

From (5.28) and (5.37), we get

‖ψ‖2
H1(Ωε)

≤ c(
∑
ij

|dij||
∫

Ωε

L̄(Zij)ψ|+ |
∫

Ωε

S̄ψ|) (5.38)

≤ c(
∑
ij

|dij|‖ψ‖H1(Ωε) + ‖S̄‖L2(Ωε)‖ψ‖H1(Ωε)). (5.39)

So

‖ψ‖H1(Ωε) ≤ c(
∑
ij

|dij|+ ‖S̄‖L2(Ωε)). (5.40)

From (5.27) (5.22) (5.17) and (5.40), we get that

‖ϕk+1‖H1(Ωε) ≤ c(e−
ρ
2

(1+ξ) + ‖S̄‖L2) (5.41)

≤ ce−
ρ
2

(1+ξ). (5.42)
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6. The Reduced Problem: A Maximization Procedure

In this section, we study a maximization problem. Fix Q ∈ Λk, we
define a new functional

Mε(Q) = Jε(uε,Q) = Jε[wε,Q + φε,Q] : Λk → R. (6.43)

Define

Cε
k = max

Q∈Λk
{Mε(Q)}. (6.44)

Since Mε(Q) is continuous in Q, the maximization problem has a
solution. Let Mε(Q̄) be the maximum where Q̄ = (Q̄1, · · · , Q̄k) ∈ Λ̄k,
that is

Mε(Q̄1, · · · , Q̄k) = max
Q∈Λk

Mε(Q), (6.45)

and we denote the solution by uε,Q̄1,··· ,Q̄k .
A consequence of Lemma 5.1 is the following:

Proposition 6.1. Suppose that k < δ
εn

where δ is sufficiently small
(but independent of ε). Then it holds

Cε
k+1 > Cε

k + I(w)− γ

4
e−ρ, (6.46)

where I(w) is the energy of w,

I(w) =
1

2

∫
Rn

(|∇w|2 + w2)− 1

p+ 1

∫
Rn
wp+1. (6.47)

and γ > 0 is defined at (2.30).

Proof. We prove it by contradiction. Assume that on the contrary we
have

Cε
k+1 ≤ Cε

k + I(w)− γ

4
e−ρ. (6.48)

First we claim:
Given (Q1, · · · , Qk) ∈ Λ̄k, there exists Qk+1 ∈ Ω, such that

B3ρε(Qk+1) ∩ {Q1, · · · , Qk, ∂Ω} = ∅. (6.49)

In fact, if not, we have k·|B1|·(3ρ)n ≥ |Ω|
2εn

. So k ≥ |Ω|
2×3nρnεn|B1| =

CΩ,n

ρnεn
.

By the assumption, we have k ≤ δ
ρnεn

where δ is sufficiently small. This

is a contradiction if we choose δ so small such that δ < CΩ,n. So the
claimed is proved.

Assume that (Q̄1, · · · , Q̄k) ∈ Λ̄k is such that Mε(Q̄1, · · · , Q̄k) =
maxQ∈ΛkMε(Q) = Cε

k, and we denote the solution by uε,Q̄1,··· ,Q̄k . Let
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Qk+1 be a point satisfying (6.49). (The existence of Cε
k follows from

continuity of Mε.)
Next we consider the solution concentrates at (Q̄1, · · · , Q̄k, Qk+1).

As in Section 5, we decompose the solution as

uε,Q̄1,··· ,Q̄k,Qk+1
= uε,Q̄1,··· ,Q̄k + uε,Qk+1

+ ϕk+1. (6.50)

By the definition of Cε
k, it is easy to see that

Cε
k+1 ≥ Jε(uε,Q̄1,··· ,Qk+1

). (6.51)

Define a cut-off function χ̃ such that χ̃(x) = τ(dist(x, ∂B 3ρ
2

(Qk+1

ε
))),

where τ is a cutoff function, τ(t) = 0 if t ≤ 1
2
, τ(t) = 1 if t ≥ 1.

Let us define, now, µ = χ̃uε,Q̄1,··· ,Qk+1
. Then we evaluate Jε(µ):

Jε(µ) = Jε(χ̃uε,Q̄1,··· ,Qk+1
)

=
1

2

∫
Ωε

|χ̃∇uε,Q̄1,··· ,Qk+1
+ uε,Q̄1,··· ,Qk+1

∇χ̃|2 + χ̃2u2
ε,Q̄1,··· ,Qk+1

dx

− 1

p+ 1

∫
Ωε

χ̃p+1up+1

ε,Q̄1,··· ,Qk+1
dx

=
1

2

∫
Ωε

(|∇uε,Q̄1,··· ,Qk+1
|2 + u2

ε,Q̄1,··· ,Qk+1
)dx− 1

p+ 1

∫
Ωε

up+1

ε,Q̄1,··· ,Qk+1
dx

+
1

2

∫
Ωε

|∇χ̃|2u2
ε,Q̄1,··· ,Qk+1

dx+
1

4

∫
Ωε

∇χ̃2∇u2
ε,Q̄1,··· ,Qk+1

dx

+
1

2

∫
Ωε

(χ̃2 − 1)(|∇uε,Q̄1,··· ,Qk+1
|2 + u2

ε,Q̄1,··· ,Qk+1
)dx

+
1

p+ 1

∫
Ωε

(1− χ̃p+1)up+1

ε,Q̄1,··· ,Qk+1
dx

= Jε(uε,Q̄1,··· ,Qk+1
) +

1

2

∫
Ωε

(|∇χ̃|2 − 1

2
∆χ̃2)u2

ε,Q̄1,··· ,Qk+1
dx

+
1

2

∫
Ωε

(χ̃2 − 1)(|∇uε,Q̄1,··· ,Qk+1
|2 + u2

ε,Q̄1,··· ,Qk+1
)dx

+
1

p+ 1

∫
Ωε

(1− χ̃p+1)up+1

ε,Q̄1,··· ,Qk+1
dx.

By the definition of the cut-off function χ̃ and taking into account the
exponentially decaying away from the spikes of the function uε,Q̄1,··· ,Qk+1

,
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we have

|1
2

∫
Ωε

(|∇χ̃|2 − 1

2
∆χ̃2)u2

ε,Q̄1,··· ,Qk+1
dx+

1

p+ 1

∫
Ωε

(1− χ̃p+1)up+1

ε,Q̄1,··· ,Qk+1
dx

+
1

2

∫
Ωε

(χ̃2 − 1)(|∇uε,Q̄1,··· ,Qk+1
|2 + u2

ε,Q̄1,··· ,Qk+1
)dx| ≤ Ce−(1+ξ)ρ

for some ξ > 0. So we get

Jε(µ) = Jε(uε,Q̄1,··· ,Qk+1
) +O(e−(1+ξ)ρ) (6.52)

for some ξ > 0.
On the other hand, one can see that

µ = µ1 + µ2, (6.53)

with

µ1 =

{
χ̃uε,Q̄1,··· ,Qk+1

if x ∈ B 3ρ
2

(Qk+1

ε
) and dist(x, ∂B 3ρ

2
(Qk+1

ε
)) ≥ 1

2

0 otherwise,

(6.54)
and

µ2 =

{
χ̃uε,Q̄1,··· ,Qk+1

if x ∈ Ωε\B 3ρ
2

(Qk+1

ε
) and dist(x, ∂B 3ρ

2
(Qk+1

ε
)) ≥ 1

2

0 otherwise .

(6.55)
From the definition of µ1 and µ2, we have

Jε(µ) = Jε(µ1 + µ2) = Jε(µ1) + Jε(µ2). (6.56)

So we need to evaluate Jε(µ1) and Jε(µ2) separately.



INTERIOR SPIKE SOLUTIONS 23

First let us consider Jε(µ1):

Jε(µ1) =
1

2

∫
B 3ρ−1

2
(
Qk+1
ε

)

|∇χ̃uε,Q̄1,··· ,Qk+1
+∇uε,Q̄1,··· ,Qk+1

χ̃|2 + |χ̃uε,Q̄1,··· ,Qk+1
|2

− 1

p+ 1

∫
B 3ρ−1

2
(
Qk+1
ε

)

(χ̃uε,Q̄1,··· ,Qk+1
)p+1dx

=
1

2

∫
B 3ρ−1

2
(
Qk+1
ε

)

χ̃2(|∇uε,Q̄1,··· ,Qk+1
|2 + u2

ε,Q̄1,··· ,Qk+1
)

− 1

p+ 1

∫
B 3ρ−1

2
(
Qk+1
ε

)

χ̃p+1up+1

ε,Q̄1,··· ,Qk+1
dx

+
1

2

∫
B 3ρ−1

2
(
Qk+1
ε

)

(|∇χ̃|2 − 1

2
∆χ̃2)u2

ε,Q̄1,··· ,Qk+1
dx

=
1

2

∫
B 3ρ−1

2
(
Qk+1
ε

)

(|∇uε,Q̄1,··· ,Qk+1
|2 + u2

ε,Q̄1,··· ,Qk+1
)dx

− 1

p+ 1

∫
B 3ρ−1

2
(
Qk+1
ε

)

up+1

ε,Q̄1,··· ,Qk+1
dx+O(e−(1+ξ)ρ)

=
1

2

∫
B 3ρ−1

2
(
Qk+1
ε

)

(|∇uε,Qk+1
|2 + u2

ε,Qk+1
)− 1

p+ 1

∫
B 3ρ−1

2
(
Qk+1
ε

)

up+1
ε,Qk+1

+[
1

2

∫
B 3ρ−1

2
(
Qk+1
ε

)

(|∇uε,Q̄1,··· ,Qk+1
|2 + u2

ε,Q̄1,··· ,Qk+1
)dx

−1

2

∫
B 3ρ−1

2
(
Qk+1
ε

)

(|∇uε,Qk+1
|2 + u2

ε,Qk+1
)

− 1

p+ 1

∫
B 3ρ−1

2
(
Qk+1
ε

)

up+1

ε,Q̄1,··· ,Qk+1
dx+

1

p+ 1

∫
B 3ρ−1

2
(
Qk+1
ε

)

up+1
ε,Qk+1

dx]

+O(e−(1+ξ)ρ).
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Using (5.13) and (5.14), we obtain

|1
2

∫
B 3ρ−1

2
(
Qk+1
ε

)

(|∇uε,Q̄1,··· ,Qk+1
|2 + u2

ε,Q̄1,··· ,Qk+1
)− 1

2

∫
B 3ρ−1

2
(
Qk+1
ε

)

(|∇uε,Qk+1
|2 + u2

ε,Qk+1
)

− 1

p+ 1

∫
B 3ρ−1

2
(
Qk+1
ε

)

up+1

ε,Q̄1,··· ,Qk+1
dx+

1

p+ 1

∫
B 3ρ−1

2
(
Qk+1
ε

)

up+1
ε,Qk+1

dx|

= |
∫
B 3ρ−1

2
(
Qk+1
ε

)

∇uε,Qk+1
∇(uε,Q̄1,··· ,Q̄k + ϕk+1) + uε,Qk+1

(uε,Q̄1,··· ,Q̄k + ϕk+1)

−upε,Qk+1
(uε,Q̄1,··· ,Q̄k + ϕk+1)dx|+O(e−(1+ξ)ρ)

= |
∫
∂B 3ρ−1

2
(
Qk+1
ε

)

∂uε,Qk+1

∂ν
(uε,Q̄1,··· ,Q̄k + ϕk+1) (6.57)

−
∫
B 3ρ−1

2
(
Qk+1
ε

)

Sε(uε,Qk+1
)(uε,Q̄1,··· ,Q̄k + ϕk+1)|+O(e−(1+ξ)ρ)

≤ C‖Sε(uε,Qk+1
)‖
L2(B 3ρ−1

2
(
Qk+1
ε

))
(‖(uε,Q̄1,··· ,Q̄k‖L2(B 3ρ−1

2
(
Qk+1
ε

))
+ ‖ϕk+1)‖L2)

+O(e−(1+ξ)ρ).

(6.58)

By (3.40), Proposition 4.1 and Lemma 5.1, we infer that

‖Sε(uε,Qk+1
)‖
L2(B 3ρ−1

2
(
Qk+1
ε

))
(‖(uε,Q̄1,··· ,Q̄k‖L2(B 3ρ−1

2
(
Qk+1
ε

))
+ ‖ϕk+1)‖L2)

≤ Ce−(1+ξ)ρ. (6.59)

Again by Lemma 2.2 and Proposition 4.1, we have

|1
2

∫
Ωε\B 3ρ−1

2
(
Qk+1
ε

)

(|∇uε,Qk+1
|2 + u2

ε,Qk+1
)− 1

p+ 1

∫
Ωε\B 3ρ−1

2
(
Qk+1
ε

)

up+1
ε,Qk+1

|

≤ ce−(1+ξ)ρ.

Combining the above, we obtain

Jε(µ1) = Jε(uε,Qk+1
) +O(e−(1+ξ)ρ). (6.60)

Similar to (6.57), we have

Jε(uε,Qk+1
) = Jε(wε,Qk+1

+ φε,Qk+1
) (6.61)

= Jε(wε,Qk+1
) +O(e−(1+ξ)ρ).
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By the definition of wε,Qk+1
, we get

Jε(wε,Qk+1
)

=
1

2

∫
Ωε

wpQk+1
wε,Qk+1

dx− 1

p+ 1

∫
Ωε

wp+1
ε,Qk+1

dx

=
1

2

∫
Ωε

wp+1
Qk+1

dx− 1

p+ 1

∫
Ωε

wp+1
Qk+1

dx

−1

2

∫
Ωε

wpQk+1
ϕε,Qk+1

dx− 1

p+ 1

∫
Ωε

wp+1
ε,Qk+1

− wp+1
Qk+1

dx.

Note that∫
Ωε

(
1

2
− 1

p+ 1
)wp+1

Qk+1
dx

=

∫
Rn

(
1

2
− 1

p+ 1
)wp+1

Qk+1
dx−

∫
Rn\Ωε

(
1

2
− 1

p+ 1
)wp+1

Qk+1
dx

= I(w) +O(e−(1+ξ)ρ)

and

|
∫

Ωε

1

p+ 1
wp+1
ε,Qk+1

− 1

p+ 1
wp+1
Qk+1

+ wpQk+1
ϕε,Qk+1

dx| ≤ C

∫
Ωε

wp−1
Qk+1

ϕ2
ε,Qk+1

dx

≤ Ce−(1+ξ)ρ.

So by Lemma 2.4, we get

Jε(wε,Qk+1
) = I(w)− 1

2
Bε(Qk+1) +O(e−(1+ξ)ρ) (6.62)

= I(w) +O(e−(1+ξ)ρ).

(6.60) and (6.62) yield

Jε(uε,Qk+1
) = I(w)− 1

2
Bε(Qk+1) +O(e−(1+ξ)ρ) (6.63)

= I(w) +O(e−(1+ξ)ρ).
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Now let us consider Jε(µ2):

Jε(µ2)

=
1

2

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

|∇χ̃uε,Q̄1,··· ,Qk+1
+∇uε,Q̄1,··· ,Qk+1

χ̃|2 + |χ̃uε,Q̄1,··· ,Qk+1
|2dx

− 1

p+ 1

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

(χ̃uε,Q̄1,··· ,Qk+1
)p+1dx

=
1

2

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

(|∇uε,Q̄1,··· ,Qk+1
|2 + u2

ε,Q̄1,··· ,Qk+1
)dx

− 1

p+ 1

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

up+1

ε,Q̄1,··· ,Qk+1
dx+O(e−(1+ξ)ρ)

=
1

2

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

|∇uε,Q̄,··· ,Q̄k |
2 + u2

ε,Q̄1,··· ,Q̄kdx

− 1

p+ 1

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

up+1

ε,Q̄1,··· ,Q̄k
dx

+[
1

2

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

(|∇uε,Q̄1,··· ,Qk+1
|2 + u2

ε,Q̄1,··· ,Qk+1
)dx

−1

2

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

|∇uε,Q̄,··· ,Q̄k |
2 + u2

ε,Q̄1,··· ,Q̄kdx

− 1

p+ 1

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

up+1

ε,Q̄1,··· ,Qk+1
dx+

1

p+ 1

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

up+1

ε,Q̄1,··· ,Q̄k
dx]

+O(e−(1+ξ)ρ).



INTERIOR SPIKE SOLUTIONS 27

Similar to (6.57), we can get

|1
2

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

(|∇uε,Q̄1,··· ,Qk+1
|2 + u2

ε,Q̄1,··· ,Qk+1
)dx

−1

2

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

|∇uε,Q̄,··· ,Q̄k |
2 + u2

ε,Q̄1,··· ,Q̄kdx

− 1

p+ 1

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

up+1

ε,Q̄1,··· ,Qk+1
dx+

1

p+ 1

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

up+1

ε,Q̄1,··· ,Q̄k
dx|

= |
∫

Ωε\B 3ρ+1
2

(
Qk+1
ε

)

Sε(uε,Q̄1··· ,Q̄k)(uε,Qk+1
+ ϕk+1)dx|+ e−(1+ξ)ρ

= |
∑

i=1,··· ,k, j=1,··· ,n

cij

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

Zij(uε,Qk+1
+ ϕk+1)dx|.

By Lemma 5.1, (5.19), (5.27), (5.22) and (3.40), we have

|
∑

i=1,··· ,k, j=1,··· ,n

cij

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

Zijϕk+1dx|

= |
∑

i=1,··· ,k, j=1,··· ,n

cij

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

Zij(
∑

ciφi +
∑
ij

dijZij)dx|

≤ c sup
ij
|cij|

∑
(|ci|+ |dij|)

≤ ce−(1+ξ)ρ,

|
∑

i=1,··· ,k, j=1,··· ,n

cij

∫
Ωε\B 3ρ+1

2
(
Qk+1
ε

)

Zijuε,Qk+1
dx| ≤ ce−(1+ξ)ρ,

and

|
∫
B 3ρ+1

2
(
Qk+1
ε

)

|∇uε,Q̄1,··· ,Q̄k |
2+u2

ε,Q̄1,··· ,Q̄k−
1

p+ 1
up+1

ε,Q̄1,··· ,Q̄k
dx| ≤ Ce−(1+ξ)ρ.

Recalling that

Ck
ε = Jε(uε,Q̄1,··· ,Q̄k), (6.64)

we get

Jε(µ2) = Cε
k +O(e−(1+ξ)ρ). (6.65)
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Thus combining (6.51), (6.52), (6.56), (6.60), (6.63) and (6.65), we have

Jε(µ) = Jε(µ1 + µ2)

= Jε(µ1) + Jε(µ2)

= Cε
k + I(w) +O(e−(1+ξ)ρ)

= Jε(uε,Q̄1,··· ,Qk+1
) +O(e−(1+ξ)ρ)

≤ Cε
k+1 +O(e−(1+ξ)ρ).

Thus,

Cε
k+1 ≥ Cε

k + I(w) +O(e−(1+ξ)ρ),

a contradiction with the assumption (6.48). �

Remark 6.1. From the proof above, we may take δ(n, p,Ω) = δ0
ρn0
<<

|Ω|
2×3n|B1|ρn0

for some δ0 > 0 small, where ρ0 is as in Section 4.

Next we have the following Proposition:

Proposition 6.2. The maximization problem

max
Q∈Λ̄k

Mε(Q) (6.66)

has a solution Qε ∈ Λ◦k, i.e., the interior of Λk.

Proof. We prove it by contradiction again. If Qε = (Q̄1, · · · , Q̄k) ∈
∂Λk, then either there exists (i, j) such that |Qi − Qj| = ερ or |Qi −
Q∗j | = ερ. Without loss of generality, we assume (i, j) = (i, k). We
have

Jε(uε,Q̄1,··· ,Q̄k) = Jε(uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k + ϕk)

= Jε(uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k) +

∫
Ωε

∇(uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k)∇ϕk

+ (uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k)ϕk − (uε,Q̄1,··· ,Q̄k−1

+ uε,Q̄k)
pϕkdx

+ O(‖ϕk‖2
H1)

= Jε(uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k)

−
∫

Ωε

Sε(uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k)ϕkdx+O(‖ϕk‖2

H1).

Observe that

Sε(uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k)

= (uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k)

p − up
ε,Q̄1,··· ,Q̄k−1

− up
ε,Q̄k

+
∑

i=1,··· ,k,j=1,··· ,n

cijZij,
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for some {cij} which satisfies

|cij| ≤ ce−(1+ξ) ρ
2 . (6.67)

Using Lemma 5.1, we obtain

|
∑
ij

cij

∫
Ωε

Zijϕkdx|

= |
∑
ij

cij

∫
Ωε

Zij(ψ +
∑

ciφi +
∑
ij

dijZij)dx|

= |
∑
ij

cij

∫
Ωε

Zij(ciφi + dijZij)dx|

≤ sup
ij
|cij|

∑
ij

(|ci|+ |dij|)

≤ ce−(1+ξ)ρ

by (5.27), (5.22) and (6.67).
Using the estimate (5.17) and Lemma 5.1, we find

|
∫

Ωε

((uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k)

p − up
ε,Q̄1,··· ,Q̄k−1

− up
ε,Q̄k

)ϕkdx|

≤ c‖S̄‖L2‖ϕk‖H1 ≤ ce−(1+ξ)ρ.

This implies that

Jε(uε,Q̄1,··· ,Q̄k)

= Jε(uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k)

−
∫

Ωε

Sε(uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k)ϕkdx+O(‖ϕk‖2

H1)

= Jε(uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k) +O(e−(1+ξ)ρ).

Next we estimate

Jε(uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k)

= Jε(uε,Q̄1,··· ,Q̄k−1
) + Jε(uε,Q̄k)

+

∫
Ωε

∇uε,Q̄1,··· ,Q̄k−1
∇uε,Q̄k + uε,Q̄1,··· ,Q̄k−1

uε,Q̄kdx

− 1

p+ 1

∫
Ωε

(uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k)

p+1 − up+1

ε,Q̄1,··· ,Q̄k−1
− up+1

ε,Q̄k
dx,
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and ∫
Ωε

∇uε,Q̄1,··· ,Q̄k−1
∇uε,Q̄k + uε,Q̄1,··· ,Q̄k−1

uε,Q̄kdx

− 1

p+ 1

∫
Ωε

(uε,Q̄1,··· ,Q̄k−1
+ uε,Q̄k)

p+1 − up+1

ε,Q̄1,··· ,Q̄k−1
− up+1

ε,Q̄k
dx

=

∫
Ωε

(up
ε,Q̄k+1

−
n∑
l=1

cklZkl)uε,Q̄1,··· ,Q̄k−1
dx

−
∫

Ωε

up
ε,Q̄1,··· ,Q̄k−1

uε,Q̄k + up
ε,Q̄k

uε,Q̄1,··· ,Q̄k−1
dx+O(e−(1+ξ)ρ)

= −
∫

Ωε

up
ε,Q̄1,··· ,Q̄k−1

uε,Q̄kdx+O(e−(1+ξ)ρ)

by (3.40) in Section 3.
The above three identities imply that

Jε(uε,Q̄1,··· ,Q̄k) = Jε(uε,Q̄1,··· ,Q̄k−1
) + Jε(uε,Q̄k) (6.68)

−
∫

Ωε

up
ε,Q̄1,··· ,Q̄k−1

uε,Q̄kdx+O(e−(1+ξ)ρ).

Since ∫
Ωε

up
ε,Q̄1,··· ,Q̄k−1

uε,Q̄kdx (6.69)

=

∫
Ωε

(
k−1∑
i=1

wε,Q̄i + φε,Q̄1,··· ,Q̄k−1
)p(wε,Q̄k + φε,Q̄k)dx

≥
∫

Ωε

wp
ε,Q̄i

wε,Q̄kdx+O(e−(1+ξ)ρ),

using (6.63) (6.68) and (6.69) , one can get

Jε(uε,Q̄1,··· ,Q̄k) ≤ Cε
k−1 + I(w)− 1

2
Bε(Q̄k)−

∫
Ωε

wp
ε,Q̄i

wε,Q̄kdx+O(e−(1+ξ)ρ).

If either there exists (i, k) such that |Qi−Qk| = ερ or |Qk −Q∗k| = ερ,
by Lemma 2.4, we can get that

Jε(uε,Q̄1,··· ,Q̄k) ≤ Cε
k−1 + I(w)− (

γ

2
+O(

1
√
ρ

))e−ρ +O(e−(1+ξ)ρ). (6.70)

Thus

Cε
k =Mε(Q

ε) ≤ Cε
k−1 + I(w)− γ

4
e−ρ.

We reach a contradiction with Proposition 6.1.
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�

7. Proof of Theorem 1.1

In this section, we apply the results in Section 4, Section 5 and
Section 6 to prove Theorem 1.1. The proof is similar to [18].
Proof of Theorem 1.1: By Proposition 4.1 in Section 4, there exists
ε0, ρ0 such that for 0 < ε < ε0, ρ > ρ0, we have C1 map which, to any
Q ∈ Λk, associates φε,Q such that

Sε(wε,Q + φε,Q) =
∑

i=1,··· ,k,j=1,··· ,n

cijZij,

∫
Ωε

φε,QZijdx = 0, (7.71)

for some constants {cij} ∈ Rkn.
From Proposition 6.2 in Section 6, there is a Qε ∈ Λ◦k that achieves

the maximum for the maximization problem in Proposition 6.2. Let
uε = wε,Qε + φε,Qε . Then we have

DQij |Qi=QεiMε(Q
ε) = 0, i = 1, · · · , k, j = 1, · · · , n. (7.72)

Hence we have∫
Ωε

∇uε∇
∂(wε,Q + φε,Q)

∂Qij

|Qi=Qεi + uε
∂(wε,Q + φε,Q)

∂Qij

|Qi=Qεi

−upε
∂(wε,Q + φε,Q)

∂Qij

|Qi=Qεi = 0,

which gives ∑
i=1,··· ,k, j=1,··· ,n

cij

∫
Ωε

Zij
∂(wε,Q + φε,Q)

∂Qsl

|Qs=Qεs = 0, (7.73)

for s = 1, · · · , k, l = 1, · · · , n. We claim that (7.73) is a diagonally
dominant system. In fact, since

∫
Ωε
φε,QZsldx = 0, we have that∫

Ωε

Zsl
∂φε,Q
∂Qij

|Qi=Qεi = −
∫

Ωε

φε,Q
∂Zsl
∂Qij

= 0, if s 6= i.

If s = i, we have

|
∫

Ωε

Zil
∂φε,Q
∂Qij

|Qi=Qεi | = | −
∫

Ωε

φε,Q
∂Zil
∂Qij

|

≤ Cε−1‖φε,Q‖∗ = O(ε−1e−
ρ
2

(1+ξ)).

For s 6= i, we have∫
Ωε

Zsl
∂wε,Q
∂Qij

= O(ε−1e−
η|Qi−Qs|

ε ).
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For s = i, recall the definition of Zij, we have∫
Ωε

Zsl
∂wε,Q
∂Qsj

= −ε−1δlj

∫
Rn

(
∂w

∂yj
)2 +O(ε−1e−ρ). (7.74)

For each (s, l), the off-diagonal term gives∑
s 6=i

∫
Ωε

Zsl
∂(wε,Q + φε,Q)

∂Qij

|Qi=Qεi +
∑

s=i,l 6=j

∫
Ωε

Zsl
∂(wε,Q + φε,Q)

∂Qsj

|Qi=Qεi

= ε−1(O(e−ηρ) +O(e−
ρ
2 ) +O(e−ρ)) (7.75)

= ε−1O(e−ηρ),

for some η > 0.
So from (7.74) and (7.75), we can see that equation (7.73) becomes a

system of homogeneous equations for csl, and the matrix of the system
is nonsingular. So csl = 0 for s = 1, · · · , k, l = 1, · · · , n. Hence uε =
wε,Qε + φε,Qε is a solution of (2.5).

Similar to the argument in Section 6 of [18], one can get that uε > 0
and it has exactly k local maximum points for ε small and ρ large
enough.
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