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Abstract
We consider the following fourth order mean field equation with Navier boundary
condition L "
(%) A%y =p (z)e inQ, u=Au=0 on 01,
Jq he®

where h is a C%# positive function, Q is a bounded and smooth domain in R*. We prove

that for p € (32mo3,32(m + 1)o3) the degree-counting formula for (*) is given by

i (— R G m) for m
d(p):{ T!iorxrim:;l) (—x(Q) +m) for m >0,

where x(2) is the Euler characteristic of Q. Similar result is also proved for the corre-

sponding Dirichlet problem

h(z)e*
pr het

(*x) A2y = inQ, u=Vu=0 on 0f.

1 Introduction

This is a continuation of the previous paper Lin-Wei [18], where they studied the following

fourth order mean field equation

Ay = Pfs}iu in €,
u=Au=0 on Of)
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and computed the sharp estimates for the bubbling solutions. Our aim here is to compute
the Leray-Schauder degree for solutions of (1.1).
In dimension two, the analogous problem

—Au = pfsf;;u in €,
u=20 on 0f2,

(1.2)

where Q is a smooth and bounded domain in R?, has been extensively studied by many
authors. We summarize the results for (1.2) and identify the difficulty in studying (1.1) now.
Let (uk, px) be a bubbling sequence to (1.2) with p, < C, maxgeq ug(z) — +0o. Then it has
been proved that

(P1) (no boundary bubbles) u; is uniformally bounded near a neighborhood of 02
(Ma-Wei [19]);

(P2) (bubbles are simple) p, — 8mm for some m > 1 and ux(z) — 87 ) Gal-, pj)

j=1

in C*(Q\{p1,---,Pm}) (Brezis-Merle [2], Nagasaki-Suzuki [22], Ma-Wei [19]), where G, is the
Green function of —A with Dirichlet boundary condition;

(P3) (sup + inf estimates) at each bubble py ; where ug(p ;) = maxeep;(p,) Ur(r), the
following refined estimate holds (Brezis-Li-Shafrir [5], Li [13], Li-Shafrir [14])

1
(1 + |z~ ;]2 )2
2

k,j

|uk(z) — uk(pr,;) — log | <C (1.3)

where u(py,;) — log( [, he**) = log =—;
k.
(P4) (exact bubbling rate) It holds then (Chen and Lin [7])
m 1 m
P — 8mm = ¢y Z h(pr;) ' Alog h(py,;)er ;log o + O(Z € i); (1.4)
3] ]

(P5) (Leray-Schauder degree) Li [13] initiated the program of computing the Leray-
Schauder degree of solutions of (1.2). He showed that the Leray-Schauder degree remains a
constant for p € (8w(m — 1),87m) and that the degree depends only on the topology of €.
Chen and Lin [8] obtained the exact Leray-Schauder degree counting formula as follows:

1.5
1 form=0 (1.5)

1
—1(=x(Q) +1) - - - (=x(2) + m) for m >0,
d(p):{ (=X(@) +1) - - (=x(
where x(€2) is the Euler characteristic of €.
In the previous paper [18], the same program was carried out for equation (1.1) and the
properties (P1)-(P4) were established. Namely, we have the following theorem:



Theorem 1.1 ([18]) Let h be a positive C*P function in Q and uy be a sequence of blowup
solutions of (1.1) with p = pr < C. Then (after extracting a subsequence), limy_, o pr =
3203m for some positive integer m. Furthermore,

Pr — 3203m

Z (prg)) 3¢ ,9(3 Alog h(pr;) + ARu(Prjr prj) + Y AGa(Pr gy P ) +0(d ;)
J=1 (] Jj=1

(1.6)
where os is the area of the unit sphere in R*, i.e. o3 = 22, ¢y > 0 is a generic constant,
G4(-,p) is the Green function of A? with Navier boundary condition G4(-,p) = AG4(-,p) =0
on 0X), Ry is the regular part of Gy, py; are the local mazimum points of uy on Bs(p;),
log 3L = uy(pr,;) — log([,, ke ) and p; satisfies

V(3Q—Iogh<pj)+R4(p],p, +§G4pl,pj)) 0, j=1,...,m.
J

In this paper, we prove the following theorem, which completes the program (P5):

Theorem 1.2 Let 32mo3 < p < 32(m + 1)os and d(p) be the Leray-Schauder degree for
equation (1.1). Then

d(p) = { ?(f;ff??):—{_ol) <o (=x(2) +m) for m >0, )

where x(Q) is the Euler characteristic of Q.

Remark. We are informed by Prof. Malchiodi that he obtained a similar degree counting for-
mula for the corresponding prescribing ()—curvature problem on a four dimensional compact
manifold, [21]. He used Morse theory to obtain the formula. We remark that on compact
manifolds, one doesn’t need to prove Property (P1). On the other hand, one of the main
difficulties in our proof is the property (P1).

As a consequence of Theorem 1.2, equation (1.1) always possesses a solution for p # 32mo;
whenever the Euler characteristic x(€2) < 0. (Here m can be made > 2, by results of Lin-Wei
[17].) In particular, we have

Corollary 1.3 If for some integer d > 1 such that H(Q)) # 0, then equation (1.1) always
has a solution for p & {32mos, m > 2}.

Set d;f, = lim,_,30m0y+ d(p) and d;, = lim,_,39m0,— d(p). One of the main steps in the proof
of Theorem 1.2 is to calculate the gap d; — d for any integer m > 1. Once this is known,
d(p) can be computed inductively on m. Clearly, the gap of d} —d_ is due to the occurrence
of blowup solutions when p — 32mo3. Thus an important question is to analyze the blowup
behavior of sequence of solutions uy to (1.1) and to know the sign of p;, — 32mo3, which has
been done in [18].



Remark 1.4 Theorems 1.1-1.2 can be extended easily to the following n—th order mean field
type equation

—A)"u = phe in €,

(A) = b (1.8)

(=AY u=0 on 009,j=0,...,n—1

where Q is a smooth and bounded domain in R®™.
Similar result can also be obtained for the corresponding Dirichlet problem
A%y = pe in €,
PTane (1.9)

u=Vu=0 on 0f).

We summarize in the following theorem, whose proof will be given in Section 4.

Theorem 1.5 (1) Let h be a positive C*P function in Q and uy be a sequence of blowup
solutions of (1.9) with p = pr < C. Then (after extracting a subsequence), limy_, o pr =
3203m for some positive integer m. Furthermore,

Pr — 3203m

m m
— Z () 26k](32 3Alogh(p;”) + AR, (Prj> Prj) +ZAG4 Dk.j» Phyi ) +o0 Zei]
j=1 i#£j Jj=1
(1.10)
where o3 is the area of the unit sphere in R, i.e. o3 = 272, ¢y > 0 is a generic constant,

G,(-,p) is the Green function of A? with Dirichlet boundary condition Gy(-,p) = VG,(-,p) =0

on 051, R4 18 the regular part ofG4, Pk,; are the local mazimum points of uy, on Bs(p;), log 364 —

uk(pr,;) — log f he"*) and p; satisfies

V(32 log h(p;) + Ra(p;, p)) ZGwz,p]) j=1,...,m;
I#j

(2) Let 32mos < p < 32(m + 1)os and d(p) be the Leray-Schauder degree for equation
(1.9). Then

(1.11)

d(,;):{ ?(J;;g):;})---(—x(n)m) for m >0,

Semilinear equations involving exponential nonlinearity and fourth order elliptic operator
appear naturally in conformal geometry and in particular in prescribing (Q—curvature on
4-dimensional Riemannian manifold M (see e.g. Chang-Yang [6])

Pyw +2Q, = 2Q,, ™ (1.12)



where P, is the so-called Paneitz operator:
2
P, = (A,)? + 5(5391 — 2Ric,)d,
9w = €*g, Q, is Q— curvature under the metric g, and ng is the (Q-curvature under the new

metric g,.
Integrating (1.12) over M, we obtain

b= [ Q= [ @

where k, is conformally-invariant. Thus, we can write (1.12) as

Pw+2Q, =k Quu ™ (1.13)
w = —_——— .
’ R
In the special case, where the manifold is the Euclidean space, P, = A?, and (1.13) becomes
h(z)e*”
w pr h(x)€4w ( )

There is now an extensive literature about this problem, we refer to Adimurthi-Robert-
Struwe [1], Baraket-Dammak-Ouni-Pacard [3], Clapp-Munoz-Musso [9], Druet-Robert [10],
Hebey-Robert [11], Hebey-Robert-Wen [12], Malchiodi [20], Robert-Wei [24] and the references
therein. In particular, we mention the two papers [3] and [9], where they constructed m—point
blowing-up solutions for

(1.15)

A%y = e*he® in Q,
u=Au=0 on 0N

under either nondegenerate conditions ([3]) or topological nontrivial condition ([9]).

The organization of this paper is as follows: In Section 2, important preliminaries are
presented. In Section 3, we prove Theorem 1.2 and the proof of a key lemma is in Appendix.
Finally in Section 4, we give an outline of proof of Theorem 1.5.

Throughout this paper, unless otherwise stated, the letter C' will always denote various
generic constants which are independent of £ > 1.

Acknowledgments: The research of the first author is partially supported by a research
Grant from NSC of Taiwan. The research of the second author is partially supported by an
Earmarked Grant from RGC of Hong Kong.

2 Preliminaries

We state several results in this section, which will be used for the proof of Theorem 1.2 and
Theorem 1.5.



Let G4 denote the Green’s function of A? under the Navier boundary condition, that is
A2G4(x,y) = 5($ - y), G4‘ag = AG4‘[)Q =0. (21)

We decompose
1

G = 1
4($)y) 40_3 0og |$—y|

It is easy to see that
AwGél(xa y) < 0, Alel(m)y) > 0. (23)
In [18], we have proved the following lemmas.
Lemma 2.1 Let uy be a bubbling sequence of (1.1) with pr < C. Then (after extracting a

SUbSequence); Pr — 320’3777, and ’U;k(ﬂ:) — 320'3 Z;ﬂ:l G4(,p]) mn C;OC(Q\{pl’ e ?pm}); where
(P1y --ey Pm) Satisfies

1 .
V<320_3 IOg h(pz) + R4(pi,pz‘) —+ ;Gzl(pz,p])) = (]’z — 1’ ey N (24)

Let 0 be a fixed small positive constant and ug(pg,;) = MaX;eB;, (p;) ug(x) and

1
o _ ) 2.5
e T h()ew (2.5)
Define .
_ ki €k.j .
lk,j = uk(pk,j) — Cg, e 4] = kf, € = min €k,j- (26)
ol 1<j<m

In fact, we can refine the Estimate A and Estimate B in [18]. That is, let

wi(z) = ug(z) — Zpk,iG4(x,pk’i) on \ Ui, B%Q (Pr,j) (2.7)
i=1
and
G (v) = prjRa(w, pr ) + Zﬂk,lel(l“,pk,l); (2.8)

1]

where py, ; = W fBéo(Pk,j) h(z)e.
Lemma 2.2
wi(@)| + 0wk (2)| = O(ex)  for o] <3 in Q\UL, Bs (pry),

and
|V(log h(z) + G5(2))| = O(e3) at T = pg .



Using the Estimate C-F in [18], the proof is just the same as Lemma 5.3, Lemma 5.4 in [7].
We omit it here.
It has been proved ([16], [25]) that the solution to the following problem

AU = eV in R!
; e in , (2.9)
fR4 e’ < +00,
is given by
4
Q€
U, =1 , 2.10
) (IL‘) 0g (62 + ‘CL' _ CL|2)4 ( )
for any € > 0,a € R*, oy = 384, provided that
U(z) = o(|z|?) as  |z| — +oo. (2.11)
Let U = log ;7f4zyz and 7 € (0,1) be a fixed constant. We have the following lemma
which proves the nondegeneracy of U:
Lemma 2.3 The solutions to the following linearized problem
A’¢ =", |o(y)l <O+ Jy|) (2.12)
is given by ¢ = Zj:o ¢j1; where
1—JyP? Yj :
= , = , =1,..,4. 2.13

Recall that G/;(z,y) is defined in Theorem 1.5. In general, G is not positive. We collect
the property of G, in the following lemma which has been proved in [24].

Lemma 2.4 Let d(x) = d(z,09). Then we have

G (e.v)] < Clog (1 + (1212,

|z —yl?
and J
VG )| < Cle ol min(, PP iz

We also need to recall the well-known Pohozaev’s identity for solutions of fourth-order equation
A%y = h(x)e" in D.

Lemma 2.5 Let u satisfy A*u = h(z)e® in D, where D is a smooth and bounded domain in
R*. Then we have

/D(4h+<x—£,Vh))e“ - /6D<x_,5,y>h(x)eu+/

oD

ou

1 2
SAuP (e — € v) - 22

Ay (2.14)

0Au a_u

—<.’L' - gavu>a—y - <.’L' - gavAU’)ay + <$ - f,V)(VU, VAU’> ’

for any € € R*.



Proof: In fact, multiplying A%u = h(x)e* by (x — &) - Vu and integrating by parts, we obtain
the lemma.

In the rest of the paper, we denote H?({2) be the usual Sobolev space and X = H?(Q)N{u =
Au =0 on 00}. On X, we use the following inner product:

(u,v) = /Q(AuAv + uv).

3 The proof of Theorem 1.2

The purpose of this section is to prove Theorem 1.2. We follow the main steps used in [8]. Note
that the notations cx, pk;, Ik j, €x,; given in (2.5), (2.6) have no relation with our definitions
in this section and p € (32mos3,32(m + 1)os). And from now on, we assume p is sufficiently
close to 32mos.

Let P = (p1,---,0m) € Q" A= (A1,..., ) € R &5 = aze™ and A = (ay,...,a,) €

R™. Set
eri
vj(x) =log , (3.1)

(14 /22 |5 — )t

then v;(z) satisfies the equation A?v;(z) = ph(p;)e¥i. Let

Hy(o) = exp{log 50+ G3(a) = G52} -1 (3.2
on Bss, (p;), and
= -\, —2log hépj) 6472 Ry(p;, p;)- (3.3)

We assume \; large enough.
Let 7 : R — R be a smooth cutoff function satisfying 0 < 7 <1 and 7(t) = 1 for [¢t| < do,
7(t) = 0 for [t| > 28p. Set 7;(x) = 7(|z — p;|) and let v;(z) satisfy

{ A?y;(z) = ph(pj)e”J(VJ-i-(H() VHj(p;) - ( —pj))Tj) on R (3.4)

vi(p;) =0, Avyi(p;)) =0, v;i(x) =0 as |z]— +oo.

As [8], v is solvable and [, |, [Vy;l, 1037, 1p; 751 IV 20p; 75, [V 205, 75| are of the order O(e3).
In fact, by Lemma 2.3, we know that 7;(z) is bounded in R*\ Bss, (p;) and hence is bounded
in R*. Now we consider zero mode 7, of 7; since the remaining terms are of small order with
respect to ;0.

Let

2
OEE VoMple = pil
&5 + v/ Ph(p; \x—pgl



Then it is easy to see that W(zx) satisfies

AW (z) = ph(p;)e" ¥ (x). (3-5)
Using (3.4) and (3.5), we obtain
| 8@ - M) = [ o) Hit@),  (36)
Bro (pj) By (pj)

where H,, is zero mode of H;(z) — VH;(p;) - (x — p;) = O(|z — p;j|?) and B,,(p;) C Q.
The left-hand-side of (3.6) equals

/a\BT()(pj)
0N OA

- [ Eaway- [ o)
8Bry(p;) IV 8Bry(p;) OV

oA 2¢? OA
-/ Lo [ %0 4 0(e2)
0Byp;) OV €24 \/ph(p))8  Jom.ywy) OV

0A
- - [ o
aB'r() (p]) 8]/

The right-hand-side of (3.6) equals O(&3) since after scaling the integration is finite. Thus

[ E-oe).
8Br0 (pj ) al/ ’

On the other hand, taking integration of (3.4) under zero mode and using Green’s Formula,

we have 9A
[ [ phip)enae+ O,
6Br0 (pj) v Bro (Pj)

Hence 7,0 = O(e}), so does v;. By elliptic estimates we get that [0*v;| = O(e3) for |a| < 3.
Now we can refine the estimate of the left hand side of (3.6). That is,

l/ [Nmmmuwwvwm%unzf ph(p;)e” (H;(z) — VH,(p;) - (z — p;)) ¥(x).

aA’Yj,O ov

9 OAT
S0(2) - Ay + AT 3.0

Bl v gy

Bs, (p)) Bs,(pj)
(3.7)
The left-hand-side of (3.7) equals
0A,; ov v, 0AT
= U(z) — Ay, + AV —= — i ——
/6360(pj) ov (@) = Tov ov 7 ov

OA 2¢? OA
B / = 2 : 2_/ %+O(Sj)
dBs (pj) v €5+ ph(p;)d5 9Bs (p;) v

0A
- - [ S0
6360 (pj) v



Since

82
8x18xm

Hj(z) — VH;(p;) - (z —p;) =) _ (G +log b (21 — pj) (Tm — Pim) + Oz — p; ),

the right-hand-side of (3.7) equals

= / ! 522 o [G* + log h]z12m + O(3]2]?) L— |2 2
foehi(py) Jrs (L+ [2[2)E |7 - 92,07, 1Zm j 1+ |22
(o7 2 % 1 |2|? 1—|z? 2
zia-A(G-—Hogh)(p)—/ dz + o(g3),
prh(p;) ’ 74 Jra (L4 ]22)4 1+ [2]2 !
and
o AR Sl P71 L Sl SR (3.5)
4 Jra (U4 2221+ 2277 4 Jra (14 2241 + |2]2 ' '
Thus, we obtain
OA~;
/aB WJ = lj(Q)E:? + o(e?), (3.9)
50 (0j)
where 1;(Q)) is defined in (3.13).
Define

u; = [vj +; + 3203(Ra(z, pj) — Ra(pj, pj)) — si]7j + 3203Ga(, p;) (1 — 75),

3.10

upaa(z) =) aju;. (3.10)
7j=1

We will see that when A;,p;,a; are suitably chosen, ups 4 is considered an approximate

solution to equation (1.1).

Claim: Letting &(z) = u; — 3205G4(x,p;), then V, &;(x), 0, &;(x), Va&j(x), A2 () are of

the order O(e3) in Bas, (p;)\Bs, (1;)-

10



Proof: First, note that u; — 3205G4(z,p;) = 0 on Q\Bas,(p;). On Bas, (pj)\Bs,(p;), we have

u; — 3203G4(x,p;) = (Uj — 55+ ; + 647%(Ry(z, p;) — Ra(pj, pj) — G4($,Pj))>7j

. As .
= |:2/\j _4]0g(1+ Me—{-‘x_pjp) + 2log ,Oh(pj)
C¥4 a4

+647(Ra(z, 1) — Ga(z,27))| 75 + O(€3)

= (—810g |z — p;| + 647%(Ry(z, p;) — G4(33apj)))7'j

1
+O(e§+ o )
1+ /F e 43

= 0(e)).

It is not hard to see that all derivatives of &; is bounded by s?. 0
Now we start to define S,(Q) such that upa 4 is a good approximate solution to our

problem.
Let I';, be a subset of 2™ defined by

L ={(21,- -, Zm) € Q" :x; =x; forsome i# 75}

For any function h(z) on €, we set fj, to be a function on Q™\I',, :

fo(xy, .o xm) = Z(log h(z;) 4+ 1603R4(zj, ;) + 3203 ZG4(:CZ~,:E]-)). (3.11)
Jj=1 i#]j
Clearly,
VH;(p;) =0 ifand onlyif Vg, fu(pi,...,pm)=0. (3.12)

For any critical @ = (g1, ..., qm) of fr, we set

H(Q) = cohpy)~* (3 A o h(a) + ARalay ) + 3 Galaioay)).
m &ty 7 (3.13)
Q) = £ L(Qh(p)e 5"

where ¢ is defined in Theorem 1.1.
From now on, h is assumed to satisfy the following two conditions:
(i) The functionfy, is a Morse function on Q™\I';, with critical points Q1, ..., Qn;

11



(ii) The quantity /(Q) doesn’t vanish for any critical point of fj,.
It is not difficult to construct a function h on € such that both conditions (i) and (ii) hold.
For p # 32mo3 and each critical point of f,, we set A\;(Q),7 =1,...,m to satisfy

1] =G; (j)=2;(Q)
p—3203m = o} h((?)e”ﬂ
j

which implies that A\;(Q) — 400 as p — 32mos.

Next we will decompose a solution u as u = upa 4 + w for some P,A, A and w € Opax,
where

OP,A = {U} e X: /{;AUJAU,J = /QAwAa,\juj = /{;A’U}Aapjuj' = 0, j = 1,. . .,m}. (315)

, (3.14)

The triplet (P, A, A) is chosen according to each critical point @ of fy,, we define

Sp(Q) = { u=uppa+w:lp;—q| <CeHQ), M—-M@Q) <O, |-t <CeEQ),

for 2<j<m, |oj—1 <CEQ), |uwlx<CeAQ), weOpa},

(3.16)
where ¢; is defined by
tj = /\j + G;‘(qj) + 210g M,
&7}

and the constant C' is large.

Similarly as [8], we obtain that any blowup solution must be contained in S,(Q) for some
critical point @ of f; provided that p is sufficiently close to 32mo3. The proof is omitted here.

Set
_o he"

Jo he

Since each solution in S,(Q) has a representation (P, A, A, w), the nonlinear operator u+7'(p)u
of (1.1) can be split according to this representation. Thus, our problem of counting degree
can be reduced to a finite-dimensional problem. At each point p;, the nonlinear term phe" is
linearly expressed, up to higher order, in terms of a; — 1, ;, H; and w. More precisely, we let

T(p) = pA

B =Nla; — 1+ lag— 1| + || + | Hj| + |w].
1]

Then on B, (p;),

pheu — pheu—w-l-w — pheu—w(l + w) + (ew —1—= w)pheu—w

= ph(p)e 1+ (a5 — (05 — 5) + 532050 = )G, p) (3.17)
+Hj(z) + () +w + i( — 10|z — pi)| + B

12



where

E = (e” —1—w)phe"™ + ph(p;)e”i [O(ﬂf) + O(wZ)].
Using the expression for phe* above, we obtain an estimate for [, phe®.

Lemma 3.1 Let u =wuppa+w € S,(Q). Then as p — 32mos,

m

/ phe" = 3 (647T2€tj +1287%(a; — 1) A€l + %%lj(Q)etj—%i)
" » (3.18)

A

+0(1+ i la; — 1]e%) + o(eti™%).
=1

A
Proof: Note that ¢t; = A\; + O(1) and v; — s; = 2\; — 4log(1 + Prpi) o3 | — pil?) + O(1).

Qa4

By (3.17),
/ phe" = Z / phe" + / phe"
Q j=1 ¥ Bso (ps) Q\UJL Bsy (p;) (3 19)
= Z/ (ph(pj)e”j+tf (1+..)+ E) + O(1).
j=1 Bs, (p5)
By the explicit expression of v;, we have
/ ph(p;)e’ i = 64r2e + O(1), (3.20)
BEo(pj)
/ ph(p;)e’ ™ (a; — 1) (v; — s5) = 12877 (a; — 1) A€ + O(|a; — 1]e"), (3.21)
Béo(pj)

/ ph(p;)evi+t (Z(al —1)3205G4(p1, p;) + Z la; — 1|O(|z — pj\)) = O(Z la; — 1]€%).
Bso (p5) I#£] 1=1 =1
(3.22)

Since these computations are straightforward, we skip the details. By (3.9) and the fact
VH;(p;) - (x — p;) is an odd function in Bj,(p,), we have

/ ( )ph(pj)ewj (v + Hj) = / ph(p;)e’i™i (v; + Hy — VH;(p;) - (z — pj))
Bs, (pj

= etj Aer — 6tj/ 7%
/350 (j) ! 0Bs, (p5) v (3.23)

A

L Aj J
=afeli"31;(Q) +o(eli ).

13



To estimate the terms involving w, we use (3.10) for u; at each p;. Then

/ ph(p;)e’iThiw = el (/ wA>uy, _/
By, (pj) Q B,

= ¢li (/ AwAuj — / wAy; — / wA*(u; — 320304(%%)))
Q Bs,(pj) Q\Bs, (p)

wA?y; — / wA?(u; — 3203G4($>pj))>
(pj) Q\BJO (pj)

)

< Celigi||lw] g2
(3.24)
since w € Opp.

As to / ph(p;)e’i ™% E, using the same method in [8], we can get
Bs, (pj)

| phtnpeoiEl = o) (3.25)
Bs, (p5)

By (3.20)-(3.25), we finish the proof of Lemma 3.1.

Now, we want to express u + T'(p)u in a formula similar to (3.17). For simplicity, we use
T to denote T'(p). We then have by (3.17) that

u UP,AA UP,AA
Jo he Jo he Johe
eli
= phip)e |1+ (f — = 1) + (a; = 1)(v; = 5;) + _ 3203(a — 1)Gap;, p)
Q I
3 = 10— pyl) + Hy(z) + 55+ w +O(F)| + F,
(3.26)
where
= ¢ 3.27)
8= b+ | 17— 1 S
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Thus, in Bs,(p;), we have

he* phe*
A2(u+Tu) = A2u— 2% — o (A2, + A2y) + A2 —
(u+Tu) u I he aj(A%v; + Ay;) + Aw I e
v phe*
= aiph(py)e” (L+ 5+ Hy = VH;(py) - (o = py)) + &%w = 70

eli

Jo he - 1>

= A% — ph(p;)e’ [(a; = (v — 5~ 1) +a;VH,(p) - (2~ pj) + (

+ 3 8205(a — 1)Galpi, py) + g:l(al - 1)0(z — i) +w] - B,

I#j
(3.28)
where
w pheuP,A,A Vs 2 2
E=(e"—1- M)W + ph(pj)e” (O(w?) + O(52).
Q
On Bag, (pj)\Bso (pj), since uj — 3203G4(z, p;) is small, we write A*(u + Tu) as
Nt Tu) = At a,A%, — 320,G(0,1,)
) (3.29)
. f P % (uj—3203Ga(z,p;))+> 012, 0;3203G(z,py)+w
het
0
and on Q\ UL, Bos,(p;), we have
A?(u+Tu) = A%w — Ph_ s, amosGiepsn, (3.30)

o, het

According to the above expression of A?(u + Tu) in different regions, the dominate terms of
u—+Tu € S,(Q) can be obtained as follows:

Lemma 3.2 Let u=wupp 4 +w € S,(Q), then as p — 32mos,

(1) (A(u+ Tu), Awi) = B(w, wr) + O(*|Jwi | ug),
where .
B(w,w;) = / AwAw; — Z/ ph(p;)e’ ww,
Q j=1 Bs, (pj)
is a positive, symmetric, bilinear form satisfying B(w,w) > c||w||H§ for some constant ¢ > 0;
(ii) (Au+Tu), Adyu;) = 647V H, () + O (|ay — 1|, + |fe—zeu —1]+¢2);
Q

15



i) (A(u+Tu), Adyuy) = —(a; —1)(1287%); — 89072 + 12872 log 22 + (647°)* Ra(ps, p;)
Yl J VRN )

=Y (a; — 1)(6472)?G4(p1, pj) — 647%( ; - — 1)+ 0(e));

1] Jo he
(iv) (A(u+Tu),Auy) = (2); — 10+ 21og 2 + 6472 Ry (pj, p;) ) (A(u + Tu), Ady,u;)

—i—647’l’2 Z G4(pl,pj)<A(u + TU), A('),\juj) + 128%2(% — 1))\] + 0(83)
I#j

We prove Lemma 3.2 in Appendix because its proof involves a lot of computations. Using
Lemma 3.2, we can deform 7" to a simpler operator on S,(Q). For u = uppy 4 +w € S,(Q)
and 0 <t <1, define T; by the following inner products:

(A(u+ Tyu), Aw;) = tH{A(u+ Tu), Aw;) + (1 — t){Aw, Aw;)
for wy € S,(Q),

(A(u + Tyu), Aapjuj> =t{A(u+ Tu), Aapjuj) +(1-1) (647T2VHj(pj)),

(A(u+ Tyu), Ay uj) = H{A(u+Tu), Ady,uy) + (1 — t){—(aj ~1) (1287r2)\ 60,2,

12872 log 2222 + (647%) Ra(p;, 1)) — ¥ (o0 — 1)(647°)*Ga(pr, )

I£]
tj

Jo he - 1) },

—647 (

(A(u+Tyu), Auj) = t(2/\j— + 2log 2 (p’)+647r2R4(p],pj))(A(u+Tu),A8)\juj>

6472 56 (P p3) (A (u + Tu), Ady,uj) + t(O(eg))
J

+(1 — t)1287r2(aj — 1))\J

Then Tj is simpler than T, and it is trivial in the direction w; € Opy. Then, we have the
following:

Lemma 3.3 Assume (p — 32mo3)l(Q) > 0. There is ¢1 > 0 such that if |p — 32mo3| < ey,
then v+ Tyu # 0 for any u € 0S,(Q) and 0 <t < 1.

Although the proof is very similar as the proof of Lemma 4.3 in [8], here we prove it again for
completeness.

Proof: Assume u = upp 4+ w € 5’,,(@) and v + Tyu = 0 for some 0 < ¢t < 1. We will
show u ¢ 05,(Q).

16



From (A(u + Tyu), Aw) = 0, we have by Lemma 3.2
lwll% < O@E)wllug,
which implies that
|w||lx = O(s?) < Cs? (3.31)

provided that C is large.
Using (A(u+ Tiu), Ady,uj) = 0, (A(u+ Tiu), Auy) = 0, (3.31) and part (iv) of Lemma 3.2
yields

A
1287%2\(a; —1) = O0(e" %) for j=1,...,m,
that is, when p is close to 32mos,

A.
a;—1|=0(\'e F) < Ce ™" for 1<j<m. (3.32)

t.
e . . .
Next we estimate the term ——— — 1. Since p is close to 32mo3, we have that \; is large,

fQ he

67% = ef%ph(pj)e(;;épj) = ef%ph(pj)e(;;;pj) + 0(82)
Oy Oy
(3.33)
N h,(pj) G (pj)—Gi(p1) 9
—e 2 e 2 + O(g%).
() )
By (A(u + Tyu), Ady,u;) = 0, (iii) of Lemma 3.2 and (3.32) yield
etj(/ he')~! — 1 = (=42, (3.34)
Q
i ( / he") ' — 1420 5(a; — 1) = O(e 52, (3.35)
0
By (A(u + Tyu), Ady,u;) = 0 and (3.32), (ii) of Lemma 3.2 yields
t; 1 o
VH;(p;)| =0 (Nla; =11+ ef(/ he') =14
? (3.36)
< O Y.
Also we have ) @)
P — Q| < c|[VH,(p;)| <O(1)e= 2 <Ce "2 . (3.37)

17



. . @
It remains to estimate ¢; —t; and A\; — A\ (Q). By |t; —t1| < Ce™ - :

it =1+ (4 —t;) + O(C2e M @)

>\1(Q)

=14+t —t)+0( 7).

By Lemma 3.1, we have

etj/he“ =
Q

2 20 3 AU it
647° + 1287%(a; — 1)\ + of 1) (Q)e 2 |et %

NE

=1

m
Z\al 1t + o3 i)

m (3.38)
1 A
- Z<647r2(1 it —t;) + 12872 (a; — 1)\ + ozjfl(Ql)e’?l>
=1
O 1) o3
and
e L N 3.39
p Jo het N 647T2m( + O(lzzlgl))' (3.39)
Thus
etj _ etj pr he"

(p—

eti )

9 =
Jo he p Jo he

= #{p — 647%m — i [64%2(tl _ tj) + 12872)\[(@[ 1)+ OQ%Z;(Q)@_%} }

6472m
=1

).

0(531 = 1) + o3 e
- (3.40)

18



Now taking the summation of (3.40) from j = 1,...,m and by (3.35), we obtain

0(1)e ¥ = Z[(ﬁ ~1) +2)(a; — 1)]

1 1 _A
= 512 (P — 32mos — ;O‘le(Q)e 2 )
Hence .
ey o UQ) eipn e oy
Ofe )= 6472 h(pl)e (e ¢ )’
which implies that
(@) — M| =0(1) < C. (3.41)

To obtain estimates for A\; — Ay, j > 2, or equivalently for ¢; —t1,j > 2, we have by part (iii)
of Lemma 3.2 and (3.40)

eli

Jo he - 1>

0 = (A(u+ Tyu), Ady,u;j) = O(e’A‘TI) - 647r2(

M 1 6472
=0(e 2)— E(p — 32mos) — - ;(tl —t;).

Therefore, )
A

o=y 2= 0(7)

and
[t =t <ty —m ol +1m t —
l l (3.42)

= O(e’%) <Ce 5 for j>2.
From (3.31), (3.32), (3.37), (3.41) and (3.42), we obtain u ¢ 05,(Q). The proof is complete.
(|

Next we start to derive our degree counting formulas. We denote
Br={ue X: |ullx <R}

Then as in [8], for p > 32mos3, the degree d(p) of the nonlinear map u + Tu can be counted
by
_ 1 1
dyy = dpy = — > deg(u+Tu;5,(Q:),0) = — D deg(u+Tu; S,(Q:),0),
l(Qi)>0 l(Q¢)<0
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where the summation is over all the critical points @; of f;, such that 1(Q;) > 0(I(Q;) < 0).
To computer deg(u + Tu; S,(Q;), 0), we set ®; := (; 1, D;0, Pi3) : S*(Qi) = R*™ x R™ x R™
by

@) = ( A(u+ Tou), Ady,uy),

@) = ( A(u+ Tou), Aug) = 12872(a; — 1)),

where S*(Q;) = {(P,A, A) : upaa+w € S,(Q;)} and (I)H ,j = 1,...,m are components of
®;;,0=1,2,3. Clearly,

deg(u + Tu; S,(Q:),0) = deg(®;; S*(Q4),0). (3.43)
Now we state the degree-counting formula for (3.43).

Lemma 3.4 Assume h satisfy the conditions (i) and (ii). Then

deg(®:; 5*(Qs),0) = sgn(p — 32mo) (—1)™+1d@),

where
1, if  p > 32mos,
sgn(p — 32mo3) = ¢ —1, if p < 32mos,
0, if p=32mos.

Note that the sign for p—32moj at a critical point ) is completely determined by the quantity

HQ).
Proof: Let

0j=647:2 {p 6471%m — 647> Z[tl—t)—l—Q)\lal—l] Za4ll 71}. (3.44)

=1
We note that in (A(u + Tou), Ady,u;), the term

eli

Q

tj
can be further deformed such that eiu — 1 is replaced by 6;. For simplicity, we still denote

Jo he

our new map by ®;.
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To compute the degree, we can simplify ®; further by setting qAJi’l =d,;,, Cfm = ®, 5, and

(i ; 5 1 ph(p;) = 3272 < ()
o) = o+ (1- 2+ 1 ) Ry(p;, ;) ) &
%,2 2,2 + 3A] + AJ 0og ay + AJ 4 (p.77 p]) 2,3

m

3272 . 1 A
+) S Galp )@ — =Y 6 (3.45)
e T

- (p — 32mos — 647° Z(tl —t;) — oz% le(Q)6_7>.

m 1=1 1=1

Clearly, we have . R .
(9(1%’,1 _ a(bi’l _ a(I)i,Q
ON 04  0A

=0, (3.46)

and
®;(P,A,A) =0 ifand onlyif &;(P,A,A)=0,
deg(®;; S*(Q;),0) = deg(dy; S*(Q)),0).
Note that ®;; = 6472V H,(p;). Therefore &;(P,A, A) = 0 if and only if

P =Q, A=(,...,1) and

1m by
—32mos =a; y 1 e__zL,
P 3 4 l:zjl (@) (3.47)

t=c=tpn.

It is not difficult to see that if |p — 32mo3| is sufficiently small, equation (3.47) possesses a
unique solution (A, ..., A,) up to permutation. Let A;(p) = (A1,...,An) denote the solu-
tion of (3.47). Hence (Q;, Ai(p), A1) is the unique solution of ®; = 0, where 4; = (1,...,1). By

~ ) ) 0D, 0P, 5 0P, 3
(3.46), the degree of ®; at (Q;, A;(p), A1) is the sign of the product of det 5P det oA deta—A.
Thus,
2 1 8&)%
deg(®;; 5 (Q4),0) = (—l)lnd(Qi)sgn det( aA’Z).
By (3.45), we have
1 9% m-—10y 1
b= - 1:(Q;)e2 2
6472 0N m o 128ma (@i o),

and for [ # j,

1 9% 1 a1 1
R N ) A T 2.
6472 O\ moN  128mmr? HQi)er + oley)
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Thus,

™ 9%y ot ™
647r2 Z N, Z N 128m7r2 lz (@i + ZEZ
and A(_)
j=1 1=1 =1
Therefore,
[ [ —m+1 1 .. 1 . ]
2 1 -m+1 ... 1 a
8CI>Z-,2 2m m 9
det[ I } = det 1 1 o o—ma+1 a”;;l’m +0(12215z)
Am1 Am2 e e —ﬁ l_zjlll(Qz)é‘%
= (=)™ Z L(Qi)ei + (; £;)
= (—1)"10(p — 32mas) + o(>_ €7),
=1
where
m—1 1 1
1 d 1 m-—1 ... 1 0
70 = Togzaet : S ~
1 1 m —

(m—1)x(m—1)

and a;; = O(> €7).
=1
Thus we have

b,
sgn det(aajf) = (—1)"sgn(p — 32mo3).

This proves Lemma 3.4.

Finally we are ready to complete the proof of Theorem 1.2.
Completion of the proof of Theorem 1.2: By Lemma 3.4 and the Hopf theorem, we get
by hand that




where @1, ..., Qy are all critical points of f, and x(£2) is the Euler characteristic of 2. Then
for any p € (32mo3,32(m + 1)os), we have

d(p) =1+ 3 (dF —d7) = —(=x(Q) +1) ... (~x(Q) +m).

~oml

The detail can be founded in the proof of Lemma 5.2 in [8]. 5

4  Proof of Theorem 1.5

In [24], Robert and Wei have given a complete proof of (P1)—(P3) when h(z) = 1 for problem
(1.9). Now let h(x) be a positive C%# function. Since the proof is very similar, we only give
an outline of proof of Theorem 1.5.

Let uy be a sequence of solution of (1.9). We assume that

max uy (x) = +o0 as k — +oo.
A4S

Let oy = log [, h(x)e™ and
ﬁk = Uk — O.

Define 1
ug(pr) = maxug(x), ’u_’f — ¢~ 10k (PK)
z€eN af

Then using Lemma 2.4 and Green’s representation, along the line of [24], we can prove the
following claims step by step. The proof is omitted here.

d o0
Claim 1: If max,cq ug(z) — 400, then o > C and limy_, o % = +o00.
k
1
Claim 2: limy_, o0 ug(pr + ) — ug(pr) = log in C} (R*).
K 1+ Vorh(pr)leP)t

Claim 3: Assume that oy — +oo. Since p, < C, there exists S = {p1,...,pm} C Q for

some positive integer m and ai, ..., an, > 3203 such that limg, o us(z) = 3 a;G, (-, p;) in
j=1

CL (O\S).

loc

Next we prove (P1), that is, we exclude the boundary blow-ups.

Claim 4: Assume that ay, — +00. Let 2y € 0). Then lim,_,qlimy_, | « fBT(:co)ﬂQ prh(z)et*dr =

0. In particular, S N 9Q = (.

Since we use different form of Pohozaev’s identity in the proof with respect to [24], we give
the proof of this claim for completeness.
Proof: Let 2o € 00 N S. Then lim,_olimy_, 4o [ By (20)002 pxh(z)e®dx > 3203. Thus there

exists dg > 0 small such that for any § < &, f Bj(20)n02 pkh(a:)eﬂkda: > 1605. Furthermore, we
may assume that S N By, (z9) = {x0}-
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Let yx, = 2o + prrv(x) with

0 fant,(mo)(x — Zo, V)(Auk)Qdm
ko — ,
faQnBT(xO)(V(xo) -v)(Auy)?dx

where r < §; such that % < v(mp) -v < 1 for x € B,(z9) NN Then it is easy to see that
|pkr| < 2r and

(4.1)

/ (x — yg, V)(Auk)2 = 0. (4.2)
QN By (zo)

Now applying the Pohozaev’s identity in QN B, (zo) with & = y, and using Dirichlet boundary
condition and (4.2), we obtain that

8uk

/ pr(4h + (x — y, Vh)) e = / Pe{T — Y, V)h(x)e™ ™% — 2/ — Ay,
QN B, (zo) QNOB,(zo) QNOB,(zo) ov
1 , O(—Auy)
+ E(Auk) (x — yg,v) + (x—yk,VUQT
QNOB; (o) v

Ous

+/ — & — Y, VAU == + {2 — Yo, ) (Vg VAuy)
QNOB; (o) ov

Note that uy — Y a;G,(z,p;) in C3(Q\S), where Gj(z, 7o) = 0. Thus we obtain that all the
7j=1
terms in the last three integrals are of the term

[ ow=o)
QNIBr(xo)

/ (x — yp, V) pph(z)e" ~*do = O(r*).
QNOBr(zo)

while

On the other hand,

/ (T — yp, Vh(z))e ™ dx = / p{x — yx, Vlog h(z))h(z)e dz = O(r).
QOBT(J:O) QﬂBr(mo)
Thus we obtain that
| 4pph(z)e dz| < Cr. (4.3)
QﬂBT((E())

O
Claim 5: We show that oy — +oo. This is exactly the same as Claim 12 of [24].
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Claim 6: a; = 3203,5 = 1,...,m and p; satisfies

V(log h(p;) + 3203 R, (p;, p;) + 3203 ZGQ(pi,pjﬂ =0, j=1,...,m  (44)
i#£]

Once we prove that there are no boundary bubbles for (1.9), to prove Theorem 1.5, we just
need to change the Navier boundary condition to Dirichlet boundary condition. By almost
the same computation in the proof of Theorem 1.1 and Theorem 1.2, we finish the proof of
Theorem 1.5.

5 Appendix : Proof of Lemma 3.2

This final section is devoted to the proof of Lemma 3.2. According to Appendix B in [18], we
get part (i) and the readers can also refer to Section 6 in [8].
Next we prove part (iii) at first. On Bas,(p;), we have

2 o; + O(e3) (5.1)

8,\juj = 8)\j (’Uj - Sj)O'j + O(E?) =

and on Q\ By, (p;),
8)\J.uj =0.
We compute (A(u + Tu), Ady,u;) = (A*(u + Tu), 0y, u;) by using (3.28)-(3.30).
Since w € Opy, we have

/ AwAdy,u; = 0. (5.2)
Q
By (5.1), ,
h(p;)e" 0\, u; =« / T dz+ O(e?
/Bso(pj)p (Ps)e" 05 Plra (L ]2 ) (5.3)
= 647> + O(c3)
and

; ph(p;) X 2
h(p;)e¥ |—4logll + ——%¢e2 |z — p; Oy Us;
/Béo(Pj)p (Z;]) [ g( 0y =P )} A
_ 2 2
= au TP |z|2)5[_ log(1 + [2[7)]dz + O(g3) (5.4)

448
= —?71'2 + 0(82)

J
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NIPY .
Using v; — s; = 2\, — 4log(1 + %ﬁ’”e?ﬂx — pj|2> + 2log %ﬁ”) + 647%R4(pj, pj), we have

[ (e (e~ 1)~ 5~ Das,u
Béo(pj)

(5.5)
640 h(p;
= (a; —1) [—1287r2Aj + ?# — 1287%log % — (647%)*R4(pj, p;) + O(c5) |-
4
and
[ el Y 64 e~ )G p3)0,
Bso (Pj) 1£]
(5.6)
= —>(647%)* (s — 1)Galpi; pj) + O |y — 1[eF)-
I#j I#j
Since VH,(p;) - (x — p;) is an odd function in By, (p;),
| b VH ) (@ - py)os,
Bs,y (pj)
9 ) (5.7)
= ph(p;)e VH (ps) - (@ — pi)(— - a; + 0(g5))
By (p) 14 228 | — ;|2
= O(e)).
To estimate the term with wdy;u;, we use the condition w € Opy, that is
0 = / AwA@Ajuj = /Q’U]AQa)\jUj
= f wA28>\juj + O(S?”’U)”Hg(g))
foot®s) (5.8)
= ’LUAQ(?)\]. (%] + O(E;L)
Bts()(p]')
= wph(p;)e’ Ox;v; + O(E;l-).
Bts()(pj)
Hence, by (3.24), we have
/ wph(p;)e’ Oy u; = / wph(p;)e’ (1 + 005 + O(ef))
Bs (pj) Bs, (pj) (5.9)
= O(gj).
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Just by the similar computation in [8], we can obtain that

/ E(%\juj = O(E’?)
BJO (pj)

On Q\ UL, Bs,(p)),

u w pheu _ =i\, W _
e’ = 0(e"), [her = O(e™)e”, Oy, u; = O(e3).
Thus,
phe” 4
-0 u; = 0(€}) (5.10)
/Q\U?L_lB&O (pj) fQ he* ’ ’
and

/ A*udy u; = / A*(u — 3203G4(x, p;)) 0y u; = O(e]).  (5.11)
Basg (pj)\B60 (5) Bssy (pj)\B(so (p;)

Hence
640 ph(p
(A(u+Tu), Adyu;) = —(a; —1) (128 2\ — ?’ﬂ' + 1287 log 0(14 ) + (647?) R4(pj,pj)>
> (e ) 06
- (6472 (a; — 1)G4(py, p;) — 647 - —1) +O0(g;).
r ’ Jq ke J
(5.12)
This proves part (iii).
For the proof of part (iv), since [, he* ~ eV, we write
(A(u+Tu),Auj) = (A*(u+Tu),u;) + / Au+ Tu)Vu,
0
(A%(u+ Tu),u;) + j;ﬂ ATuVu,
= (A*(u+ Tu), u;) + O(¢))

Since w € S,(Q),

By (3.10), on By, (p,) we have

ph(p h
;= 2\; +2log 0(44 ) + 6472 Ry (pj, p;) — 410g(1-|— %‘?)e 2|z — pjl ) + O(3)
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and

ph(p;)

ph(pj) A—J|
(7]

vj —8; — 1 =2)\; + 2log ———

By direct computation, we have

/ ph(p;)e” = 64m* + O(ej)
B50 (pj)

and
h(p;) 2 16072
/ ph(p;)e” log(1+ me%lﬂc—zog-IQ) = 2 1 0(EY).
Bs, (p5) Q4 3
Then
/ ph(p;)e® (v; — s; — 1)u;
350(1’])
ph
= / ph(p;) ”3{4)\24—2)\ [4log (p; )+1287T2R4(p],p])
Bs, (p5) Gy
h(p;)
~8log(1 + | /#e‘?ﬂx —p?) - 1} + 0(1)}
4
ph 23
= 256m2\2 + 51272), (1og P1) | 592 R, (p.ps) — E> +0().
(67
Similarly,

ph(p;)

(7]

/ ph(p;)e%u; = 1287°N\; + 12872 (log
Bs, (pj)

and
/ ph(p;)e”’V H;(p;) - (x — pj)u;
Bs, (pj)

- / ph(p;)e |V Hy(py) - (x — p)| X O(2)
B50(pj)

= O(g))
since VH,(p;) - (x — p;) is an odd function in Bj,(p;).
| phtn)es Y ota - 10(s - i) Z 0= 10,).
Bs, (ps) =1

28

+ 647 Ry(p;, p;) — 410g(1 + — ¢ 3 |
4

(5.13)

5)
+ 3272 Ry (p;, p;) — 5) +0(e2)  (5.14)

(5.15)

(5.16)



Using (3.24) and Holder’s inequality, we have

elVi
/ p] ’U}U]
B,

50 (P
= / eﬁw[)\—s]—éllog 1+‘/ e2|m—p] +O0(e )]
B&g $2))
L (5.17)
< OElwlag) +C( [ phip)ein?)
B50(pj)
h(p;) *i 2\ 3
X {/ ph(p;j)e” [—410g(1 + me% |z — pj|2) + O(af)] }
B50(pj) Qg
= 0(1)||w||Hg(n)
By a similar argument as in [8], we can get
/ EJu; = of2). (5.18)
B50(pj)
For the integration over By, (p;),! # j, the dominated term is
el
— ph(pe” |(a — )(vi — s = 1) + (75— — 1) |y
/Bso(m) [ <fQ he )} ’
et
= —(64722Ga(pi,py) |2 — DA + (75 — 1) | + O(2) (5.19)

= 6471'2 Z G4(pl,pj)<A(u + T’LL), Aa,\juj) + O(E?)
I#j
It is easy to see that the other terms are bounded by O(e3).
For the integration outside of U, Bs,(p;), we have that [, he* = O(e%) and u; = O(1).
Then

h (73
/ PR = (™) = O(eY) (5.20)
Basg (pj)\Bs, (pj fQ he
and
/ ui A’y = / A?(u — 3203G4(x, pj))u; = O(€3). (5.21)
Basg (P)\Bso (P5) Basg (P)\Bso (Ps)
Similarly,
phe®
Q\UTL, Basy (Ps) fQ €
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and
/ u;A*u = O(e5). (5.23)
Q\U™, Bas, (p;)

So, according to the above estimates we have

(A(u+ Tu), Auy)
ph(p;) 23

= —(a; — 1) [256m°22 + 51272, (1og 22222 4 597 R (py, ) — T )|
Qg 12

h(p; 5
—2(647°)* Y _(a; — 1)Ga(pr, pj) N — 1287 (Aj + log % + 327%Ry(pj, p;) — §>

, 4
I#j

eli X 2
% (fg her 1) + 64 ; Ga(p, i) (A(u+ Tu), Ady,u;) + O(e])
J

10 h(p;
[2)\]- -y + 2log Phip;) + 647T2R4(pj,pj)] (A(u + Tu), Ady;u )

QY

+647TQZ G4(pl,pj)<A(U, + Tu), A@Aju]) + 12871’2(0,]' — 1)/\j + 0(6?)
I#]

Finally we prove part (ii). From w € Op,, we have

/ AwAdy;u; = 0. (5.24)
Q
On Bs, (p;), o)
0, h(p;
Opt; = —0pv; + 2 —~229, (v; — s;) + O(1
p; Uj vj + h(p;) Aj (v — 55) +O(1) (5.25)
= —8mvj + 0(1)
Since 0,v; is an odd function,
/ ph(p;)e® (v — 55 — 1)(Byw; + O(1)) = O(N), (5.26)
Bs, (p)
[ phlp)en (o, + o) = 0(), (5.2)
Bs, (pj)
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and
/ ph(p;)e'iV H;(p;) - (x — p;)Opv;
B&o(pj)

= 384V H,(p;) 2 (5.28)
oo P00 4 (1 [y

= 647*VH;(p;) + O(e)).

Thus
/ ph(p;)e”’ V H;(p;) - (x — p;) 0y, uj
350 (pj)

= (647> + O(c;))VH;(p;) + O(e?) (5.29)

= 647°VH;(p;) + O(e3)
since VH;(p;) = VH;(q;) + O(lp; — ¢;1) = O(lp; — ¢;]) = O(&3).

j
Using (3.24), by the similar computation as (5.8) and (5.9), we have

By, h(p;
/ ph(p;)e wdy,u; = / ph(p;)e”w (8,0, +27 (b))
B<50 (pj) 360 (pj) h(pj)

+ 128%23$R4($apj)|w=pj>

= O(llwlluze) = O(e).

j
(5.30)
Also we have
| Ed,,u;| = O(3). (5.31)
Bs (ps)
On O\ UL, Bs,(p;), Op;u; = O(1). Hence,
/ A2(u — 647°G(z, p;)) Dy, uj = O(e2) (5.32)
Q\Bs, (p;)
and by [, he* ~ eV,
ph’eu —Aj / w 4
——0pu; =0(e ™ [ ) =0(c). (5.33)
/Q\Bao () Jo her ( Q ) !

Combining (5.24)-(5.33), we get part (ii).
Hence, we finish the proof of Lemma 3.2.
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