INTRODUCTION TO LYAPUNOV SMICHDT REDUCTION METHODS FOR SOLVING PDE'S

MANUEL DEL PINO AND JUNCHENG WEI

1. Allen Cahn Equation

Energy: Phase transition model.
Let $\Omega \subseteq \mathbb{R}^{N}$ of a "binary mixture": Two materials coexisting (or one material in two phases). We can take as an example of this: Water in solid phase $(+1)$, and water in liquid phase (-1). The configuration of this mixture in Ω can be described as a function

$$
u^{*}(x)= \begin{cases}+1 & \text { in } \Lambda \\ -1 & \text { in } \Omega \backslash \Lambda\end{cases}
$$

where Λ is some open subset of Ω. We will say that u^{*} is the phase function.

Consider the functional

$$
\frac{1}{4} \int_{\Omega}\left(1-u^{2}\right)^{2}
$$

minimizes if $u=1$ or $u=-1$. Function u^{*} minimize this energy functional. More generally this well happen for

$$
\int_{\Omega} W(u) d x
$$

where $W(u)$ minimizes at 1 and -1 , i.e. $W(+1)=W(-1)=0$, $W(x)>0$ if $x \neq 1$ or $x \neq-1, W^{\prime \prime}(+1), W^{\prime \prime}(-1)>0$.
1.1. The gradient theory of phase transitions. Possible configurations will try to make the boundary $\partial \Lambda$ as nice as possible: smooth and with small perimeter. In this model the step phase function u^{*} is replaced by a smooth function u_{ε}, where $\varepsilon>0$ is a small parameter, and

$$
u_{\varepsilon}(x) \approx \begin{cases}+1 & \text { inside } \Lambda \\ -1 & \text { inside } \Omega \backslash \Lambda\end{cases}
$$

and u_{ε} has a sharp transition between these values across a "wall" of width roughly $O(\varepsilon)$: the interface (thin wall).

In grad theory of phase transitions we want minimizers, or more generally, critical points u_{ε} of the functional

$$
J_{\varepsilon}(u)=\varepsilon \int_{\Omega} \frac{|\nabla u|^{2}}{2}+\frac{1}{\varepsilon} \int_{\Omega} \frac{\left(1-u^{2}\right)^{2}}{4}
$$

Let us observe that the region where $\left(1-u_{\varepsilon}^{2}\right)>\gamma>0$ has area of order $O(\varepsilon)$ and the size of the gradient of u_{ε} in the same region is $O\left(\varepsilon^{2}\right)$ in such a way $J\left(u_{\varepsilon}\right)=O(1)$. We will find critical points u_{ε} to functionals of this type so that $J\left(u_{\varepsilon}\right)=O(1)$.

Let us consider more generally the case in which the container isn't homogeneous so that distinct costs are paid for parts of the interface in different locations

$$
J_{\varepsilon}(u)=\int_{\Omega}\left(\varepsilon \frac{|\nabla u|^{2}}{2}+\frac{1}{\varepsilon} \frac{\left(1-u^{2}\right)^{2}}{4}\right) a(x) d x
$$

$a(x)$ non-constant, $0<\gamma \leq a(x) \leq \beta$ and smooth.
1.2. Critical points of J_{ε}. First variation of J_{ε} at u_{ε} is equal to zero.

$$
\left.\frac{\partial}{\partial t} J_{\varepsilon}\left(u_{\varepsilon}+t \varphi\right)\right|_{t=0}=D J_{\varepsilon}\left(u_{\varepsilon}\right)[\varphi]=0, \quad \forall \varphi \in C_{c}^{\infty}(\Omega)
$$

We have

$$
J_{\varepsilon}\left(u_{\varepsilon}+t \varphi\right)=
$$

i.e. $\forall \varphi \in C_{c}^{\infty}(\Omega)$

$$
0=D J_{\varepsilon}\left(u_{\varepsilon}\right)[\varphi]=\varepsilon \int_{\Omega}\left(\nabla u_{\varepsilon} \nabla \varphi\right) a+\frac{1}{\varepsilon} \int_{\Omega} W^{\prime}\left(u_{\varepsilon}\right) \phi a .
$$

If $u_{\varepsilon} \in C^{2}(\Omega)$

$$
\int_{\Omega}\left(-\varepsilon \nabla \cdot\left(a \nabla u_{\varepsilon}\right)+\frac{a}{\varepsilon} W^{\prime}\left(u_{\varepsilon}\right)\right) \varphi=0, \quad \forall \varphi \in C_{c}^{\infty}(\Omega)
$$

This give us the weighted Allen Cahn equation in Ω

$$
-\varepsilon \nabla \cdot(a \nabla u)+\frac{a}{\varepsilon} u\left(1-u^{2}\right)=0 \text { in } \Omega .
$$

We will assume in the next lectures $\Omega=\mathbb{R}^{N}$, where $N=1$ or $N=2$. If $N=1$ weight Allen Cahn equation is

$$
\begin{equation*}
\varepsilon^{2} u^{\prime \prime}+\varepsilon^{2} u^{\prime} \frac{a^{\prime}}{a}+\left(1-u^{2}\right) u=0, \text { in }(-\infty, \infty) . \tag{1.1}
\end{equation*}
$$

Look for u_{ε} that connects the phases -1 and +1 from $-\infty$ to ∞. Multiplying (1.1) against u^{\prime} and integrating by parts we obtain

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d}{d x}\left(\varepsilon \frac{u^{\prime 2}}{2}-\frac{\left(1-u^{2}\right)^{2}}{4}\right)+\int_{-\infty}^{\infty} \frac{a^{\prime}}{a} u^{\prime 2}=0 \tag{1.2}
\end{equation*}
$$

Assume that $u(-\infty)=-1, u(\infty)=1, u^{\prime}(-\infty)=u^{\prime}(\infty)=0, a>0$, then (1.2) implies that

$$
\frac{\left(1-u^{2}\right)^{2}}{4}+\int_{-\infty}^{\infty} \frac{a^{\prime}}{a} u^{\prime 2}=0
$$

from which we conclude that unless a is constant, we need a^{\prime} to change sign. So: if a is monotone and $a^{\prime} \neq 0$ implies the non-existence of solutions as we look for. We need the existence (if $a^{\prime} \neq 0$) of local maximum or local minimum of a. We will prove that under some general assumptions on $a(x)$, given a local max. or local min. x_{0} of a non-degenerate $\left(a^{\prime \prime}\left(x_{0}\right) \neq 0\right)$, then a solution to (1.1) exists, with transition layer.

We consider first the problem with $a \equiv 1, \varepsilon=1$:

$$
\begin{equation*}
W^{\prime \prime}+\left(1-W^{2}\right) W=0, \quad W(-\infty)=-1, W(\infty)=1 \tag{1.3}
\end{equation*}
$$

The solution of this problem is

$$
W(t)=\tanh \left(\frac{t}{\sqrt{2}}\right)
$$

This solution is called "the heteroclinic solution", and it's the unique solution of the problem (1.3)up to translations.

Observation 1.1. This solution exists also for the problem

$$
\begin{equation*}
w^{\prime \prime}+f(w)=0, \quad w(-\infty)=-1, w(\infty)=1 \tag{1.4}
\end{equation*}
$$

where $f(w)=-W^{\prime}(w)$. Solutions satisfies $\frac{w^{\prime 2}}{2}-W(w)=E$, where E is constant, and $w(-\infty)=-1$ and $w(\infty)=1$ if and only if $E=0$. This implies

$$
\int_{0}^{w} \frac{d s}{\sqrt{2 w(s)}}=t
$$

$t(w) \rightarrow \infty$ if $w \rightarrow 1$, and $t(w) \rightarrow-\infty$ if $w \rightarrow-1$, so the previous relation defines a solution w such that $w(0)=0$, and $w(-\infty)=-1$, $w(\infty)=1$.

If we wright the Hamiltonian system associated to the problem we have:

$$
p^{\prime}=-f(q), \quad q^{\prime}=p
$$

Trajectories lives on level curves of $H(p, q)=\frac{p^{2}}{2}-W(q)$, where $W(q)=$ $\frac{\left(1-q^{2}\right)^{2}}{4}$.

Let $x_{0} \in \mathbb{R}$ (we will make assumptions on this point). Fix a number $h \in \mathbb{R}$ and set

$$
v(t)=u\left(x_{0}+\varepsilon(t+h)\right), \quad v^{\prime}(t)=\varepsilon u^{\prime}\left(x_{0}+\varepsilon(t+h)\right)
$$

Using (1.1), we have

$$
\varepsilon^{2} u^{\prime \prime}\left(x_{0}+\varepsilon(t+h)\right)=-\varepsilon^{2} \frac{a^{\prime}}{a} u^{\prime}\left(x_{0}+\varepsilon(t+h)\right)-\left(1-v^{2}(t)\right) v(t)
$$

so we have the problem

$$
\begin{equation*}
v^{\prime \prime}(t)+\varepsilon \frac{a^{\prime}}{a}\left(x_{0}+\varepsilon(t+h)\right) v^{\prime}(t)+\left(1-v(t)^{2}\right) v(t)^{2}=0, \quad w(-\infty)=-1, w(\infty)=1 . \tag{1.5}
\end{equation*}
$$

Let us observe that if $\varepsilon=0$ the previous problem becomes formally in (1.3), so is natural to look for a solution $v(t)=W(t)+\phi$, with ϕ a small error in ε.

Assumptions:

(1) There exists $\beta, \gamma>0$ such that $\gamma \leq a(x) \leq \beta, \forall x \in \mathbb{R}$
(2) $\left\|a^{\prime}\right\|_{L^{\infty}(\mathbb{R})},\left\|a^{\prime \prime}\right\|_{L^{\infty}(\mathbb{R})}<+\infty$
(3) x_{0} is such that $a^{\prime}\left(x_{0}\right)=0, a^{\prime \prime}\left(x_{0}\right) \neq 0$, i.e. x_{0} is a non-degenerate critical point of a.

Theorem 1.1. $\forall \varepsilon>0$ sufficiently small, there exists a solution $v=v_{\varepsilon}$ to (1.5) for some $h=h_{\varepsilon}$, where $\left|h_{\varepsilon}\right| \leq C \varepsilon$ and $v_{\varepsilon}(t)=w(t)+\phi_{\varepsilon}(t)$ and

$$
\left\|\phi_{\varepsilon}\right\| \leq C \varepsilon
$$

Proof. We write in (1.5) $v(t)=w(t)+\phi(t)$. From now on we write $f(v)=v\left(1-v^{2}\right)$. We get

$$
\begin{gathered}
w^{\prime \prime}+\phi^{\prime \prime}+\varepsilon \frac{a^{\prime}}{a}\left(x_{0}+\varepsilon(t+h)\right) \phi^{\prime}+\varepsilon \frac{a^{\prime}}{a}\left(x_{0}+\varepsilon(t+h)\right) w^{\prime}+f(w+\phi)-f(w)-f^{\prime}(w) \phi+f(w)+f^{\prime}(w) \phi=0 \\
\phi(-\infty)=\phi(\infty)=0
\end{gathered}
$$

It can be written in the following way

$$
\begin{equation*}
\phi^{\prime \prime}+f^{\prime}(w(t)) \phi+E+B(\phi)+N(\phi)=0, \quad \phi(-\infty)=\phi(\infty)=0 \tag{1.6}
\end{equation*}
$$

where

$$
\begin{aligned}
B(\phi) & =\varepsilon \frac{a^{\prime}}{a}\left(x_{0}+\varepsilon(t+h)\right) \phi^{\prime}, \\
N(\phi) & =f(w+\phi)-f(w)-f^{\prime}(w)=-3 w \phi^{2}-\phi^{3}, \\
E & =\varepsilon \frac{a^{\prime}}{a}\left(x_{0}+\varepsilon(t+h)\right) w^{\prime} .
\end{aligned}
$$

We consider the problem

$$
\begin{equation*}
\phi^{\prime \prime}+f^{\prime}(w(t)) \phi+g(t)=0, \quad \phi \in L^{\infty}(\mathbb{R}), \tag{1.7}
\end{equation*}
$$

and we want to know when (1.7) is solvable. We will assume $g \in$ $L^{\infty}(\mathbb{R})$. Multiplying (1.7) against w^{\prime} we get

$$
\int_{-\infty}^{\infty}\left(w^{\prime \prime \prime}+f^{\prime}(w) w^{\prime}\right) \phi+\int_{-\infty}^{\infty} g w^{\prime}=0
$$

the first integral is zero because (1.4). We conclude that a necessary condition is

$$
\int_{-\infty}^{\infty} g w^{\prime}=0 .
$$

This condition is actually sufficient for solvability. In fact, we write $\phi=w^{\prime} \Psi$, we have

$$
\phi^{\prime \prime}+f^{\prime}(w) \phi=g \Leftrightarrow w^{\prime} \Psi+2 w^{\prime \prime} \Psi^{\prime}=-g
$$

Multiplying this last expression by w^{\prime} (integration factor), we get

$$
\left(w^{\prime 2} \Psi^{\prime}\right)^{\prime}=g w^{\prime} \Rightarrow w^{\prime} 2 \Psi^{\prime}(t)=-\int_{-\infty}^{\infty} g(s) w^{\prime}(s) d s
$$

Let us choose

$$
\Psi(t)=-\int_{0}^{t} \frac{d \tau}{w^{\prime 2}(\tau)} \int_{-\infty}^{\tau} g(s) w^{\prime}(s) d s
$$

Then the function

$$
\phi(t)=-w^{\prime}(t) \int_{0}^{t} \frac{d \tau}{w^{\prime 2}(\tau)} \int_{-\infty}^{\tau} g(s) w^{\prime}(s) d s
$$

Recall that

$$
w^{\prime}(t) \approx 2 \sqrt{2} e^{-\sqrt{2}|t|}
$$

Claim: if $\int_{-\infty}^{\infty} g w^{\prime}=0$ then we have

$$
\|\phi\|_{\infty} \leq C\|g\|_{\infty}
$$

In fact, if $t>0$

$$
|\phi(t)| \leq\left|w^{\prime}(t)\right| \int_{0}^{t} \frac{C}{e^{-2 \sqrt{2} \tau}}\left|\int_{\tau}^{\infty} g w^{\prime} d s\right| d \tau \leq C\|g\|_{\infty} e^{-\sqrt{2} t} \int_{0}^{t} e^{\sqrt{2} \tau} d \tau \leq C\|g\|_{\infty} .
$$

For $t<0$ a similar estimate yields, so we conclude

$$
|\phi(t)| \leq C\|g\|_{\infty} .
$$

The solution of (1.7) is not unique because if ϕ_{1} is a solution implies that $\phi_{2}=\phi_{1}+C w^{\prime}(t)$ is also a solution. The solution we found is actually the only one with $\phi(0)=0$. For $g \in L^{\infty}$ arbitrary we consider the problem

$$
\begin{equation*}
\phi^{\prime \prime}+f^{\prime}(w) \phi+\left(g-c w^{\prime}\right)=0, \text { in } \Re, \quad \phi \in L^{\infty}(\mathbb{R}) \tag{1.8}
\end{equation*}
$$

where $C=C(g)=\frac{\int_{-\infty}^{\infty} g w^{\prime}}{\int_{-\infty}^{\infty} w^{\prime 2}}$.

Lemma 1.1. $\forall g \in L^{\infty}(\mathbb{R})$ (1.8) has a solution which defines a operator $\phi=T[g]$ with

$$
\|T[g]\|_{\infty} \leq C\|g\|_{\infty} .
$$

In fact if $\hat{T}[\hat{g}]$ is the solution find in the previous step then $\phi=\hat{T}[g-$ $\left.C(g) w^{\prime}\right]$ solves (1.8) and

$$
\begin{equation*}
\|\phi\|_{\infty} \leq C\|g\|_{\infty}+|C(g)| C \leq C\|g\|_{\infty} \tag{1.9}
\end{equation*}
$$

Proof. Back to the original problem: We solve first the projected problem

$$
\phi^{\prime \prime}+f^{\prime}(w) \phi+E+B(\phi)+N(\phi)=C w^{\prime}, \quad \phi \in L^{\infty}(\mathbb{R})
$$

where

$$
C=\frac{\int_{\mathbb{R}}(E+B(\phi)+N(\phi)) w^{\prime}}{\int_{\mathbb{R}} w^{\prime 2}}
$$

We solve first (1.9) and then we find $h=h_{\varepsilon}$ such that in (1.9) $\mathrm{C}=0$ in such a way we find a solution to the original problem. We assume $|h| \leq 1$. It's sufficient to solve

$$
\phi=T[E+B(\phi)+N(\phi)]:=M[\phi] .
$$

We have the following remark

$$
|E| \leq C \varepsilon^{2}, \quad\|B(\phi)\|_{\infty} \leq C \varepsilon\left\|\phi^{\prime}\right\|_{\infty}, \quad\|N(\phi)\| \leq C\left(\left\|\phi^{2}\right\|_{\infty}+\left\|\phi^{3}\right\|_{\infty}\right)
$$

where C is uniform on $|h| \leq 1$. We have

$$
\|M\|_{\infty}+\left\|\frac{d}{d t} M\right\|_{\infty} \leq C\left(\|E\|_{\infty}+\|B(\phi)\|_{\infty}+\|N(\phi)\|_{\infty} \leq C\left(\varepsilon^{2}+\varepsilon\left\|\phi^{\prime}\right\|_{\infty}+\left\|\phi^{2}\right\|_{\infty}+\left\|\phi^{3}\right\|_{\infty}\right)\right.
$$

then if $\|\phi\|_{\infty}+\left\|\phi^{\prime}\right\|_{\infty} \leq M \varepsilon^{2}$ we have

$$
\|M\|_{\infty}+\left\|\frac{d}{d t} M\right\|_{\infty} \leq C^{*} \varepsilon^{2}
$$

We define the space $X=\left\{\phi \in C^{1}(\mathbb{R}):\|\phi\|_{\infty}+\left\|\phi^{\prime}\right\|_{\infty} \leq C^{*} \varepsilon^{2}\right\}$. Let us observe that $M(X) \subset X$. In addition

$$
\left\|M\left(\phi_{1}\right)-M\left(\phi_{2}\right)\right\|_{\infty}+\left\|\frac{d}{d t}\left(M\left(\phi_{1}\right)-M\left(\phi_{2}\right)\right)\right\|_{\infty} \leq C \varepsilon\left(\left\|\phi_{1}-\phi_{2}\right\|_{\infty}+\left\|\phi_{1}^{\prime}-\phi_{2}^{\prime}\right\|_{\infty}\right)
$$

So if ε is small M is a contraction mapping which implies that there exists a unique $\phi \in X$ such that $\phi=M[\phi]$.

In summary: We found for each $|h| \leq 1$

$$
\phi=\Phi(h), \text { solution of1.7 }
$$

. We recall that

$$
h \rightarrow \Phi(h)
$$

is continuous (in $\left\|\|_{C^{1}}\right.$). Notice that from where we deduce that M is continuous in h.

The problem is reduced to finding h such that $C=0$ in (1.7) for $\phi \Phi(h)=$. Let us observe that

$$
\left.C=0 \Leftrightarrow \alpha_{\varepsilon}(h):=\int_{\mathbb{R}}\left(E_{h}+B[\Phi(h)]\right)+N[\Phi(h)]\right) w^{\prime}=0
$$

Let us observe that if we call $\psi(x)=\frac{a^{\prime}}{a}(x)$, then
$\psi\left(x_{0}+\varepsilon(t+h)\right)=\psi\left(x_{0}\right)+\psi^{\prime}\left(x_{0}\right) \varepsilon(t+h)+\int_{0}^{1}(1-s) \psi^{\prime \prime}\left(x_{0}+s \varepsilon(t+h)\right) \varepsilon^{2}(t+h)^{2} d s$
We add the assumption $a^{\prime \prime \prime} \in L^{\infty}(\mathbb{R})$ in order to have $\psi^{\prime \prime} \in L^{\infty}(\mathbb{R})$. We deduce that

$$
\int E_{h} w^{\prime}=\varepsilon^{2} \psi^{\prime}\left(x_{0}\right) \int(t+h) w^{\prime}(t)^{2}+\varepsilon^{3} \int_{\mathbb{R}}\left(\int_{0}^{1}(1-s) \psi^{\prime \prime}\left(x_{0}+s \varepsilon(t+h)\right) d s\right)(t+h)^{2} w^{\prime}(t) d t
$$

We recall that: $\int_{\mathbb{R}} t w^{\prime}(t)^{2}$ and

$$
\left|\int_{\mathbb{R}}(B[\phi(h)]+N[\phi(h)]) w^{\prime}\right| \leq C\left(\varepsilon\|\Phi(h)\|_{C^{1}}+\|\Phi(h)\|_{L^{\infty}}\right) \leq C \varepsilon^{3}
$$

So, we conclude that

$$
\alpha_{\varepsilon}(h)=\psi^{\prime}\left(x_{0}\right) \varepsilon^{2}(h+O(\varepsilon))
$$

and the term inside the parenthesis change sign. This implies that $\exists h_{\varepsilon}:\left|h_{\varepsilon}\right| \leq M \varepsilon$ such that $\alpha_{\varepsilon}(h)=0$, so $C=0$.

Observe that
$\bar{L}(\phi)=\phi^{\prime \prime}-2 \phi+\varepsilon \psi+3\left(1-w^{2}\right) \phi+\frac{1}{2} f^{\prime \prime}(w+s \phi) \phi \phi+O\left(\varepsilon^{2}\right) e^{-\sqrt{2}|t|}=0, \quad|t|>R$
We consider $t>R$. Notice that $\frac{1}{2} f^{\prime \prime}(w+s \phi) \phi=O\left(\varepsilon^{2}\right)$. Then using $\hat{\phi}=\varepsilon e^{-|t|}+\delta e^{|t|}$. Then using maximum principle and after taking $\delta \rightarrow 0$, we obtain $\phi \leq \varepsilon e^{-|t|}$.

A property: We call

$$
\mathcal{L}(\phi)=\phi^{\prime \prime}+f^{\prime}(w) \phi, \quad \phi \in H^{2}(\mathbb{R}) .
$$

We consider the bilinear form associated

$$
B(\phi, \phi)=-\int_{\mathbb{R}} \mathcal{L}(\phi) \phi=\int_{\mathbb{R}} \phi^{\prime 2}-f^{\prime}(w)^{2} \phi^{2}, \quad \phi \in H^{1}(\mathbb{R})
$$

Claim: $B(\phi, \phi) \geq 0, \forall \phi \in H^{1}(\mathbb{R})$ and $B(\phi, \phi)=0 \Leftrightarrow \phi=c w^{\prime}(t)$. In fact: $J^{\prime \prime}(w)[\phi, \phi]=B(\phi, \phi)$. We give now the proof of the claim:

Take $\phi \in C_{c}^{\infty}(\mathbb{R})$. Write $\phi=w^{\prime} \Psi \Longrightarrow \Psi \in C_{c}^{\infty}(\mathbb{R})$. Observe that $\mathcal{L}\left[w^{\prime} \Psi\right]=\frac{1}{w^{\prime}}\left(w^{\prime 2} \Psi^{\prime}\right)^{\prime}$ and

$$
B(\phi, \phi)=-\int \frac{1}{w^{\prime}}\left(w^{\prime 2} \Psi^{\prime}\right)^{\prime} w^{\prime} \Psi=\int_{\mathbb{R}} w^{\prime 2} \Psi^{\prime 2}, \quad \forall \phi \in C_{c}^{\infty}(\mathbb{R})
$$

Same is valid for all $\phi \in H^{1}(\mathbb{R})$, by density. So $B(\phi, \phi)=\int_{\mathbb{R}}\left|\phi^{\prime}\right|^{2}-$ $f^{\prime}(w) \phi^{2}=\int_{\mathbb{R}} w^{\prime} 2\left|\Psi^{\prime}\right|^{2} \geq 0$ and $B(\phi, \phi)=0 \Leftrightarrow \Psi^{\prime}=0$ which implies $\phi=c w^{\prime}$.

Corollary 1.1. Important for later porpuses There exists $r>0$ such that if $\phi \in H^{1}(\mathbb{R})$ and $\int_{\mathbb{R}} \phi w^{\prime}=0$ then

$$
B(\phi, \phi) \geq \gamma \int_{\mathbb{R}} \phi^{2}
$$

Proof. If not there exists $\phi_{n} \int H^{1}(\mathbb{R})$ such that $0 \leq B\left(\phi_{n}, \phi_{n}\right)<\frac{1}{n} \int_{\mathbb{R}} \phi_{n}^{2}$. We may assume without loss of generality $\int \phi_{n}^{2}=1$ which implies that up to subsequence

$$
\phi_{n} \rightharpoonup \phi \in H^{1}(\mathbb{R})
$$

and $\phi_{n} \rightarrow \phi$ uniformly and in L^{2} sense on bounded intervals. This implies that

$$
0=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \phi_{n} w^{\prime}=\int_{\mathbb{R}} \phi w^{\prime}
$$

On the other hand

$$
\int\left|\phi_{n}^{\prime}\right|^{2}+2 \int \phi_{n}^{2}-3 \int\left(1-w^{2}\right) \phi_{n}^{2} \rightarrow 0
$$

and also $\int\left|\phi_{n}^{\prime}\right|^{2}+2 \int \phi_{n}^{2}-3 \int\left(1-w^{2}\right) \phi_{n}^{2} \rightarrow \int\left|\phi^{\prime}\right|^{2}+2 \int \phi^{2}-3 \int\left(1-w^{2}\right) \phi^{2}$, so $B(\phi, \phi)=0$, and $\int w^{\prime} \phi=0$ so $\phi=0$. But also

$$
2 \leq 3 \int\left(1-w^{2}\right) \phi_{n}^{2}+o(1)
$$

which implies that $2 \leq 3 \int\left(1-w^{2}\right) \phi^{2}$ and this means that $\phi \neq 0$, so we obtain a contradiction.

Observation 1.2. If we choose $\delta=\frac{\gamma}{2\left\|f^{\prime}\right\|_{\infty}}$ then

$$
\int \phi^{\prime 2}-(1+\delta) f^{\prime}(w) \phi^{2} \geq 0 .
$$

This implies in fact that

$$
B(\phi, \phi) \geq \alpha \int \phi^{\prime 2}
$$

2. Nonlinear Schrödinger eqution (NLS)

$$
\varepsilon i \Psi_{t}=\varepsilon^{2} \Delta \Psi-W(x) \Psi+|\Psi|^{p-1} \Psi .
$$

A first fact is that $\int_{\mathbb{R}^{N}}|\Psi|^{2}=$ constant. We are interested into study solutions of the form $\left.\Psi_{(} x, t\right)=e^{-i E t} u(x)$ (we will call this solutions standing wave solution). Replacing this into the equation we obtain

$$
\varepsilon E u=\varepsilon^{2} \Delta u-W u-|u|^{p-1} u
$$

whose transforms into

$$
\varepsilon^{2} \Delta u-(W-\lambda) u+|u|^{p-1} u=0, \quad u(x) \rightarrow 0, \text { as }|x| \rightarrow \infty
$$

choosing $E=\frac{\lambda}{\varepsilon}$. We define $V(x)=(W(x)-\lambda)$

2.1. The case of dimension 1.

$$
\begin{equation*}
\varepsilon^{2} u^{\prime \prime}-V(x) u+u^{p}=0, \quad x \in \mathbb{R}, \quad 0<u(x) \rightarrow 0, \text { as }|x| \rightarrow \infty, p>1 . \tag{2.1}
\end{equation*}
$$

Assume: $V \geq \gamma>0, V, V^{\prime}, V^{\prime \prime}, V^{\prime \prime \prime} \in L^{\infty}$, and $V \in C^{3}(\mathbb{R})$. Starting point

$$
\begin{equation*}
w^{\prime \prime}-w+w^{p}=0, \quad w>0, \quad w(\pm \infty)=0, p>1 \tag{2.2}
\end{equation*}
$$

There exists a homoclinic solution

$$
w(t)=\frac{C_{p}}{\cosh \left(\frac{p-1}{2} t\right)^{\frac{2}{p-1}}}, \quad C_{p}=\left(\frac{p+1}{2}\right)^{\frac{1}{p-1}}
$$

Let us observe that $w(t) \approx 2^{2 /(p-1)} C_{p} e^{-|t|}$ as $t \rightarrow \infty$ and also that $W(t+c)$ satisfies same equation.

Staid at x_{0} with $V\left(x_{0}\right)=1$ we want $u_{\varepsilon}(x) \approx w\left(\frac{x-x_{0}}{\varepsilon}\right)$ of the problem (2.1).

Observation 2.1. Given x_{0} we can assume $V\left(x_{0}\right)=1$. Indeed writing

$$
u(x)=\lambda^{\frac{2}{p-1}} v\left(\lambda x_{0}+(1-\lambda) x_{0}\right)
$$

we obtain the equation

$$
\varepsilon^{2} v^{\prime \prime}(y)-\hat{V}(y) v+v^{p}=0
$$

where $y=\lambda x_{0}+(1-\lambda) x_{0}$, and $\hat{V}(y)=V\left(\frac{y-(1-\lambda) x_{0}}{\lambda}\right)$. Then choosing $\lambda=\sqrt{V\left(x_{0}\right.}$, we obtain $\hat{V}\left(x_{0}\right)=1$.
Theorem 2.1. We assume $V\left(x_{0}\right)=1, V^{\prime}\left(x_{0}\right)=0, V^{\prime \prime}\left(x_{0}\right) \neq 0$. Then there exists a solution to (2.1) with the form

$$
u_{\varepsilon}(x) \approx w\left(\frac{x-x_{0}}{\varepsilon}\right) .
$$

We define $v(t)=u\left(x_{0}+\varepsilon(t+h)\right)$, with $|h| \leq 1$. Then v solves the problem

$$
\begin{equation*}
v^{\prime \prime}-V\left(x_{0}+\varepsilon(t+h) v+v^{p}=0, \quad v(\pm \infty)=0\right. \tag{2.3}
\end{equation*}
$$

We define $v(t)=w(t)+\phi(t)$, so ϕ solves

$$
\begin{equation*}
\phi^{\prime \prime}-\phi+p w^{p-1} \phi-\left(V\left(x_{0}+\varepsilon(t+h)\right)-V\left(x_{0}\right)\right) \phi+(w+\phi)^{p}-w^{p}-p w^{p-1} \phi \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
-\left(V\left(x_{0}+\varepsilon(t+h)\right)-V\left(x_{0}\right)\right) w(t)=0 \tag{2.5}
\end{equation*}
$$

So we want a solution of

$$
\begin{equation*}
\phi^{\prime \prime}-\phi+p w^{p-1} \phi+E+N(\phi)+B(\phi)=0, \quad \phi(\pm)=0 . \tag{2.6}
\end{equation*}
$$

Observe that

$$
E=\frac{1}{2} V^{\prime \prime}\left(x_{0}+\xi \varepsilon(t+h)\right) \varepsilon^{2}(t+h)^{2} w(t)
$$

so $|E| \leq C \varepsilon^{2}\left(t^{2}+1\right) e^{-|t|} \leq C e^{-\sigma t}$ for $0<\sigma<1$.
We won't have a solution unless V^{\prime} doesn't change sign and $V \neq 0$. For instance consider $V^{\prime}(x) \geq 0$, and after multiplying the equation by u^{\prime} and integrating by parts, we see that $\int_{\mathbb{R}} v^{\prime} \frac{u^{2}}{2}=0$, which by ODE implies that $u \equiv 0$, because u and u^{\prime} equals 0 on some point.

2.2. Linear projected problem.

$$
L(\phi)=\phi^{\prime \prime}-\phi+p w^{p-1} \phi+g=0, \quad \phi \in L^{\infty}(\mathbb{R})
$$

For solvability we have the necessary condition $\int L(\phi) w^{\prime}=0$. Assume g such that $\int_{\mathbb{R}} g w^{\prime}=0$. We define $\phi=w^{\prime} \Psi$, but we have the problem that $w^{\prime}(0)=0$. We conclude that $\left(w^{2} \Psi^{\prime}\right)^{\prime}+w^{\prime} g=0$ for $t \neq 0$. We take for $t<0$

$$
\phi(t)=w^{\prime}(t) \int_{t}^{-1} \frac{d \tau}{w^{\prime}(\tau)^{2}} \int_{-\infty}^{\tau} g(s) w^{\prime}(s) d s
$$

and for $t>0$

$$
\phi(t)=w^{\prime}(t) \int_{1}^{t} \frac{d \tau}{w^{\prime}(\tau)^{2}} \int_{\tau}^{\infty} g(s) w^{\prime}(s) d s
$$

In order to have a solution of the problem we need $\phi\left(0^{-}\right)=\phi\left(0^{+}\right)$.

$$
\phi\left(0^{-}\right)=\lim _{t \rightarrow 0^{-}} \frac{-\int_{-1}^{t} \frac{d \tau}{w^{\prime}(\tau)^{2}} \int_{-\infty}^{\tau} g(s) w^{\prime}(s) d s}{\frac{1}{w^{\prime}(t)}}=\lim _{t \rightarrow 0^{-}} \frac{-\frac{1}{w^{\prime}(t)^{2}} \int_{-\infty}^{t} g w^{\prime}}{-\frac{1}{w^{\prime}(t)^{2}} w^{\prime \prime}(t)}=\frac{1}{w^{\prime \prime}(0) \int_{-\infty}^{0} g w^{\prime}}
$$

and

$$
\phi\left(0^{+}\right)=-\frac{1}{w^{\prime \prime}(0) \int_{0}^{\infty} g w^{\prime}}
$$

and the condition is satisfies because of the assumption of orthogonality condition.

We get $\|\phi\|_{\infty} \leq C\|g\|_{\infty}$. In fact we get also: $\forall 0<\sigma<1, \exists C>0$:

$$
\left\|\phi e^{\sigma t}\right\|_{L^{\infty}}+\left\|\phi^{\prime} e^{\sigma t}\right\|_{L^{\infty}} \leq C\left\|g e^{\sigma t}\right\|
$$

Observation: We use $g=g-c w^{\prime}$. (Correct this part!!!!)
2.3. Method for solving. In this section we consider a smooth radial cut-off function $\eta \in C^{\infty}(\mathbb{R})$, such that $\eta(s)=1$ for $s<1$ and $\eta(s)=0$ if $s>2$. For $\delta>0$ small fixed, we consider $\eta_{k, \varepsilon}=\eta\left(\frac{\varepsilon|t|}{k \delta}\right), k \geq 1$.
2.3.1. The gluing procedure. Write $\tilde{\phi}=\eta_{2, \varepsilon} \phi+\Psi$, then ϕ solves (2.5) if and only if

$$
\begin{gather*}
\eta_{2, \varepsilon}\left[\phi^{\prime \prime}+\left(p w^{p-1}-1\right) \phi+B(\phi)+2 \phi^{\prime} \eta_{2, \varepsilon}^{\prime}\right] \tag{2.7}\\
+\left[\Psi^{\prime \prime}+\left(p w^{p-1}-1\right) \Psi+B \Psi\right]+E+N\left(\eta_{2, \eta} \phi+\Psi\right)=0 . \tag{2.8}
\end{gather*}
$$

(ϕ, Ψ) solves (2.8) if is a solution of the system
$\phi^{\prime \prime}-\left(1-p w^{p-1}\right) \phi+\eta_{1, \varepsilon} E+\eta_{3, \varepsilon} B(\phi)+\eta_{1, \varepsilon} p w^{p-1} \Psi+\eta_{1, \eta} N(\phi+\Psi)=0$

$$
\begin{gather*}
\Psi^{\prime \prime}-\left(V\left(x_{0}+\varepsilon(t+h)\right)-p w^{p-1}\left(1-\eta_{1, \varepsilon}\right)\right) \Psi \tag{2.10}\\
+\left(1-\eta_{1, \varepsilon}\right) E+\left(1-\eta_{1, \varepsilon}\right) N\left(\eta_{2, \varepsilon} \phi+\Psi\right)+2 \phi^{\prime} \eta_{2, \varepsilon}^{\prime}+\eta_{2, \varepsilon}^{\prime \prime} \phi=0 \tag{2.11}
\end{gather*}
$$

We solve first (2.11). We look first the problem

$$
\Psi^{\prime \prime}-W(x) \Psi+g=0
$$

where $0<\alpha \leq W(x) \leq \beta$, W continuous and $g \in C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. We claim that (2.3.1) has a unique solution $\phi \in L^{\infty}(\mathbb{R})$. Assume first that g has compact support and consider the well defined functional in $H^{1}(\mathbb{R})$

$$
J(\Psi)=\frac{1}{2} \int_{\mathbb{R}}\left|\Psi^{\prime}\right|^{2}+\frac{1}{2} \int_{\mathbb{R}} w \Psi^{2}-\int_{\mathbb{R}} g \Psi .
$$

Also, this functional is convex and coercive. This implies that J has a minimizer, unique solution of (2.3.1) in $H^{1}(\mathbb{R})$ and it is bounded. Now we consider the problem

$$
\Psi_{R}^{\prime \prime}-W \Psi_{R}+g \eta\left(\frac{|t|}{R}\right)=0
$$

Let us see that Ψ_{R} has a uniform bound. Take $\varphi(t)=\frac{\|g\|_{\infty}}{\alpha}+\rho \cosh \left(\frac{\sqrt{\alpha}}{2}|t|\right)$ for $\rho>0$ very small. Since $\Psi_{R} \in L^{\infty}(\mathbb{R})$ we have

$$
\Psi_{R} \leq \varphi(t), \quad \text { for }|t|>t_{\rho, R} .
$$

Let us observe that in $\left[-t_{\rho, R}, t_{\rho, R}\right]$

$$
\varphi^{\prime \prime}-W \varphi+g \eta\left(\frac{|t|}{R}\right)<0
$$

From (2.3.1), we see that $\gamma=\left(\Psi_{R}-\varphi\right)$ satisfies

$$
\begin{equation*}
\gamma^{\prime \prime}-W \gamma>0 . \tag{2.12}
\end{equation*}
$$

Claim: $\gamma \leq 0$ on \mathbb{R}. It's for $|t|>t_{\rho, R}$ if $\gamma(\bar{t})>0$ there is a global maximum positive $\gamma \in\left[-t_{\rho, R}, t_{\rho, R}\right]$. This implies that $\gamma^{\prime \prime}(t) \leq 0$ which is a contradiction with (2.12). This implies that $\Psi_{R}(t) \leq \frac{\|g\|_{\infty}}{\alpha}+$ $\rho \cosh \left(\frac{\sqrt{\alpha}}{2} t\right)$. Taking the limit ρ going to 0 we get $\Psi_{R} \leq \frac{\|g\|_{\infty}}{\alpha}$, and similarly we can conclude that

$$
\left\|\Psi_{R}\right\|_{L^{\infty}} \leq \frac{\|g\|_{\infty}}{\alpha}, \quad \forall R
$$

Passing to a subsequence we get a solution $\Psi=\lim _{R \rightarrow \infty} \Psi_{R}$, and the convergence is uniform over compacts sets, to (2.3.1) with

$$
\|\Psi\|_{\infty} \leq \frac{\|g\|_{\infty}}{\alpha}
$$

. Also, the same argument shows that the solution is unique (in L^{∞} sense). Besides: We observe that if $\left\|e^{\sigma|t|} g\right\|_{\infty}<\infty, 0<\sigma<\sqrt{\alpha}$ then

$$
\left\|e^{\sigma|t|} \Psi\right\|_{\infty} \leq C\left\|e^{\sigma|t|} g\right\|
$$

The proof of this fact is similar to the previous one. Just take as the function φ as follows

$$
\varphi=M \frac{\left\|e^{\sigma|t|} g\right\|_{\infty}}{\alpha} e^{-\sigma|t|}+\rho \cosh \left(\frac{\sqrt{\alpha}}{2}|t|\right) .
$$

Observe now that Ψ satisfies (2.11) if and only if

$$
\Psi=\left(-\frac{d^{2}}{d t^{2}}+W\right)^{-1}[F[\Psi, \phi]]
$$

where $W(x)=V\left(x_{0}+\varepsilon(t+h)\right)-p w^{p-1}\left(1-\eta_{1, \varepsilon}\right)$ and $F[\phi]=\left(1-\eta_{1, \varepsilon}\right) E+$ $\left(1-\eta_{1, \varepsilon}\right) N\left(\eta_{2, \varepsilon} \phi+\Psi\right)+2 \phi^{\prime} \eta_{2, \varepsilon}^{\prime}+\eta_{2, \varepsilon}^{\prime \prime} \phi$. The previous result tell us that the inverse of the operator $\left(-\frac{d^{2}}{d t^{2}}+W\right)$ is well define. Assume that $\|\phi\|_{C^{1}}:=\|\phi\|_{\infty}+\left\|\phi^{\prime}\right\|_{\infty} \leq 1$, for some $\sigma<1$ and $\|\Psi\|_{\infty} \leq \rho$, where ρ
is a very small positive number. Observe that $\left\|\left(1-\eta_{1, \varepsilon}\right) E\right\|_{\infty} \leq e^{-c \delta / \varepsilon}$. Furthermore, we have

$$
|F(\Psi, \phi)| \leq e^{-c \delta / \varepsilon}+c \varepsilon\|\phi\|_{C^{1}}+\|\phi\|_{\infty}^{2}+\|\Psi\|_{\infty}^{2}
$$

This implies that

$$
\|M[\Psi]\| \leq C_{*}\left[\mu+\|\Psi\|_{\infty}^{2}\right]
$$

where $\mu=e^{-c \delta / \varepsilon}+c \varepsilon\|\phi\|_{C^{1}}+\|\phi\|_{\infty}^{2}$. If we assume $\mu<\frac{1}{4 C_{*} 2}$, and choosing $\rho=2 C_{*} \mu$, we have

$$
\|M[\Psi]\|<\rho .
$$

If we define $X=\left\{\Psi \mid\|\Psi\|_{\infty}<\rho\right\}$, then M is a contraction mapping in X. We conclude that

$$
\left\|M\left[\Psi_{1}\right]-M\left[\Psi_{2}\right]\right\| \leq C_{*} C\left\|\Psi_{1}-\Psi_{2}\right\|, \quad \text { where } C_{*} C<1
$$

Conclusion: There exists a unique solution of (2.11) for given ϕ (small in C^{1}-norm) such that

$$
\|\Psi(\phi)\|_{\infty} \leq\left[e^{-c \delta / \varepsilon}+\varepsilon\|\phi\|_{C^{1}}+\|\phi\|_{\infty}^{2}\right]
$$

Besides: If $\|\phi\| \leq \rho$, independent of ε, we have

$$
\left\|\Psi\left(\phi_{1}\right)-\Psi\left(\phi_{2}\right)\right\|_{\infty} \leq o(1)\left\|\phi_{1}-\phi_{2}\right\| .
$$

Next step: Solver for (2.9), with $\|\phi\|$ very small, the problem
$\phi^{\prime \prime}-\left(1-p w^{p-1}\right) \phi+\eta_{1, \varepsilon} E+\eta_{3, \varepsilon} B(\phi)+\eta_{1, \varepsilon} p w^{p-1} \Psi+\eta_{1, \eta} N(\phi+\Psi)-c w^{\prime}=0$
where $c=\frac{1}{J w^{\prime 2}} \int_{\mathbb{R}}\left(\eta_{3, \varepsilon} B(\phi)+\eta_{1, \varepsilon} p w^{p-1} \Psi+\eta_{1, \eta} N(\phi+\Psi)\right) w^{\prime}$. To solve (2.13) we write it as

$$
\phi=T\left[\eta_{3, \varepsilon} B \phi\right]+T\left[N(\phi+\Psi(\phi))+p w^{p-1} \Psi(\phi)\right]+T[E]=: Q[\phi]
$$

Choosing δ sufficiently small independent of ε we conclude that $Q(x) \subseteq$ X, and Q is a contraction in X for $\|\cdot\|_{C^{1}}$. This implies that (2.13) has a unique solution ϕ with $\|\phi\|_{C^{1}}<M \varepsilon^{2}$. Also the dependence $\phi=\Phi(h)$ is continuous. Now we only need to adjust h in such a way that $c=0$. After some calculations we obtain

$$
0=K \varepsilon^{2} V^{\prime \prime}\left(x_{0}\right) h+O\left(\varepsilon^{3}\right)+O\left(\delta \varepsilon^{2}\right)
$$

So we can find $h=h_{\varepsilon}$ and $\left|h_{\varepsilon}\right| \leq C \varepsilon$, such that $c=0$.

3. Schrodinger equation in dimension N

$$
\left\{\begin{array}{cc}
\varepsilon^{2} \Delta u-V(y) u+u^{p}=0 & \text { in } \mathbb{R}^{N} \tag{3.1}\\
0<u \text { in } \mathbb{R}^{n} & u(x) \rightarrow 0, \text { as }|x| \rightarrow \infty
\end{array}\right.
$$

We consider $1<p<\infty$ if $N \leq 2$, and $1<p<\frac{N+2}{N-2}$ if $N \geq 3$. The basic problem that we consider is

$$
\left\{\begin{array}{cc}
\Delta w-w+w^{p}=0 & \text { in } \mathbb{R}^{N} \\
0<u \text { in } \mathbb{R}^{n} & w(x) \rightarrow 0, \text { as }|x| \rightarrow \infty
\end{array}\right.
$$

We look for a solution $w=w(|x|)$, a radially symmetric solution. $w(r)$ satisfies the ordinary differential equation

$$
\left\{\begin{array}{cc}
w^{\prime \prime}+\frac{N-1}{r} w^{\prime}-w+w^{p}=0 & r \in(0, \infty) \tag{3.2}\\
w^{\prime}(0)=0,0<w \text { in }(0, \infty) & w(|x|) \rightarrow 0, \text { as }|x| \rightarrow \infty
\end{array}\right.
$$

Proposition 3.1. There exist a solution to (3.2).
Proof. Let us consider the space

$$
H_{r}^{1}=\left\{u=u(|x|): u \in H^{1}\left(\mathbb{R}^{N}\right)\right\}
$$

with the norm $\|u\|_{H^{1}}=\int_{0}^{\infty}\left(\left|u^{\prime}\right|^{2}+|u|^{2}\right) r^{N-1} d r$. Let

$$
S=\inf _{u \neq 0, u \in H_{r}^{1}} \frac{\int_{\mathbb{R}^{N}}|\nabla u|^{2}+u^{2}}{\left(\int_{\mathbb{R}^{N}}|u|^{p+1}\right)^{2 /(p+1)}}
$$

We recall that $H^{1}\left(\mathbb{R}^{N}\right) \rightarrow L^{p+1}\left(\mathbb{R}^{N}\right)$ continuously, which means that $S>0$ (the larger constant such that $c\|u\|_{L^{p+1}} \leq\|u\|_{H^{1}}$. Strategy: Take $u_{n} \geq 0$ a minimizing sequence for S. We may assume $\left\|u_{n}\right\|_{L^{p+1}}=$ 1. This means that $\left\|u_{n}\right\|_{H^{1}}^{2} \rightarrow S$. This means that the sequence is bounded in $H^{1} 1$. We may assume $u_{n} \rightharpoonup u \in H^{1}$. We have by lower weak s.c.i.

$$
\int|\nabla u|^{2}+u^{2} \leq \lim _{n} \int\left|\nabla u_{n}\right|^{2}+u_{n}^{2}=S .
$$

We could get existence of a minimizer for S if we prove that $\|u\|_{L^{p+1}=1}$. This is indeed the case thanks to:

Strauss Lemma: There exist a constant C such that $\forall u \in H_{r}^{1}\left(\mathbb{R}^{N}\right)$:

$$
|u(|x|)| \leq \frac{C}{|x|^{\frac{N-1}{2}}}\|u\|_{H^{1}}
$$

The proof of this fact is the following: Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right), u=u(|x|)$.

$$
u^{2}(r)=-2 \int_{r}^{\infty} u(s) u^{\prime}(s) d s \leq 2 \int_{r}^{\infty}|u(s)|\left|u^{\prime}(s)\right| \frac{s^{N-1}}{r^{N-1}} d s
$$

$$
\begin{equation*}
\leq \frac{2}{r^{N-1}}\left(\int_{0}^{\infty}|u|^{2} s^{n-1} d s\right)^{1 / 2}\left(\int_{0}^{\infty}\left|u^{\prime}\right|^{2} s^{N-1} d s\right)^{1 / 2} \leq \frac{C}{r^{N-1}}\|u\|_{H^{1}}^{2} \tag{3.3}
\end{equation*}
$$

By density we concludes the proof.
Let us observe that

$$
\left\|u_{n}\right\|_{L^{p+1}\left(\mathbb{R}^{N}\right)}^{p+1}=\left\|u_{n}\right\|_{L^{p+1}\left(B_{R}\right)}^{p+1}+\left\|u_{n}\right\|_{L^{p+1}\left(B_{R}^{c}\right)}^{p+1}
$$

and

$$
\left\|u_{n}\right\|_{L^{p+1}\left(B_{R}^{c}\right)}^{p+1} \leq\left\|u_{n}\right\|_{L^{\infty}(|x|>R)}^{p-1} \int_{\mathbb{R}^{N}} u_{n}^{2} \leq \varepsilon
$$

if $R \geq R_{0}(\varepsilon)$ (here we use the lemma of Strauss). On the other hand:

$$
u_{n} \rightarrow u
$$

strong in $L^{p+1}\left(B_{R}\right)$ since $H^{1}\left(B_{R}\right) \rightarrow L^{p+1}\left(B_{R}\right)$ compactly. This implies that $1 \leq \lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{p+1}\left(B_{R}\right)}^{p+1}+\varepsilon=\|u\|_{L^{p+1}\left(B_{R}\right)}+\varepsilon \leq\|u\|_{L^{p+1}\left(\mathbb{R}^{N}\right)}+\varepsilon$

This implies that $\|u\|_{L^{p+1}} \geq 1$ and we conclude $\|u\|_{L^{p+1}}=1$.
u is a minimizer for $S, u \geq 0, u \neq 0$. We define $\Phi(v)=\|v\|_{H^{1}} /\left(\int|v|^{p+1}\right)^{2} / p+$ 1. So u is a minimizer for Φ. This means that u is a weak solution of the problem

$$
-\Delta u+u=\alpha u^{p}
$$

where $\alpha=\|u\|_{H^{1}}$. We define $u=\alpha^{\frac{-1}{p-1}} \tilde{u}$, then \tilde{u} is a solution of

$$
-\Delta \tilde{u}+\tilde{u}=\tilde{u}^{p}
$$

And, with the aid of maximum strong principle we can conclude that \tilde{u} is in fact strictly positive everywhere. This concludes the proof

Observation 3.1. There no exist a solution of class C^{2} for $p \geq \frac{N+2}{N-2}$. The proof of this fact is an application of Pohozaev identity.

We claim that $w(r) \approx C r^{-\frac{N-1}{2}} e^{-r}$. This can be proved with the change of variables $k=r^{-\frac{N-1}{2}} h$. The equation that satisfies h is like $h^{\prime \prime}-h\left(1+\frac{c}{r^{2}}\right)=0$, and the solution of this equation is like e^{-r}.
Theorem 3.1. Kwong, 1989 The radial solution of (3.2) is unique.
3.1. Linear problem. Consequence of the proof of Kwong: We define

$$
L(\phi)=\Delta \phi+p w(x)^{p-1} \phi-\phi .
$$

Let us consider the problem

$$
L(\phi)=0, \quad \phi \in L^{\infty}\left(\mathbb{R}^{N}\right)
$$

A known fact is that if ϕ is a solution of this problem, then ϕ is a linear combination of the functions $\frac{\partial w}{\partial x_{j}}(x), j=1, \ldots, N$. This is known as non degeneracy of w.

We assume as always $0<\alpha \leq V \leq \beta$. We want to solve the problem

$$
\left\{\begin{array}{cc}
\varepsilon^{2} \Delta \tilde{u}-V(y) \tilde{u}+\tilde{u}^{p}=0 & \text { in } \mathbb{R}^{N} \tag{3.4}\\
0<\tilde{u} \text { in } \mathbb{R}^{n} & \tilde{u}(x) \rightarrow 0, \text { as }|x| \rightarrow \infty
\end{array}\right.
$$

We fix a point $\xi \in \mathbb{R}^{N}$. Observe that $U_{\varepsilon}(y)=V(\xi)^{\frac{1}{p-1}}\left(\sqrt{V(\xi) \frac{y-\xi}{\varepsilon}}\right)$, is a solution of the problem equation

$$
\varepsilon^{2} \Delta u-V(\xi) u+u^{p}=0
$$

We will look for a solution of (3.4) $u_{\varepsilon}(x) \approx U_{\varepsilon}(y)$. We define $w_{\lambda}=$ $\lambda^{\frac{1}{p-1}} w(\sqrt{\lambda} x)$.

Let us observe that if \tilde{u} satisfies (3.4), then $u(x)=\tilde{u}(\varepsilon z)$ satisfies the problem

$$
\left\{\begin{array}{cc}
\Delta u-V(\varepsilon z) u+u^{p}=0 & \text { in } \mathbb{R}^{N} \tag{3.5}\\
0<u \text { in } \mathbb{R}^{n} & u(x) \rightarrow 0, \text { as }|x| \rightarrow \infty
\end{array}\right.
$$

Let $\xi^{\prime}=\frac{\xi}{\varepsilon}$. We want a solution of (3.5) with the form $u(z)=w_{\lambda}(z-$ $\left.\xi^{\prime}\right)+\tilde{\phi}(z)$, with $\lambda=V(\xi)$ and $\tilde{\phi}$ small compared with $w_{\lambda}\left(z-\xi^{\prime}\right)$.
3.2. Equation in terms of $\phi . \phi(x)=\tilde{\phi}\left(\xi^{\prime}-x\right)$. Then ϕ satisfies the equation $\Delta_{x}\left[w_{\lambda}(x)+\phi(x)\right]-V(\xi+\varepsilon x)\left[w_{\lambda}(x)+\phi(x)\right]+\left[w_{\lambda}(x)+\phi(x)\right]^{p}=0$. We can write this equations as

$$
\Delta \phi-V(\xi) \phi+p w_{\lambda}^{p-1}(x) \phi-E+B(\phi)+N(\phi)=0
$$

where $E=(V(\xi+\varepsilon x)-V(\xi)) w_{\lambda}(x), B(\phi)=(V(\xi)-V(\xi+\varepsilon x)) \phi$ and $N(\phi)=\left(w_{\lambda}+\phi\right)^{p}-w_{\lambda}^{p}-p w_{\lambda}^{p-1} \phi$. We consider the linear problem for $\lambda=V(\xi)$,

$$
\left\{\begin{array}{r}
L(\phi)=\Delta \phi-V(\xi+\varepsilon x) \phi+p w_{\lambda}(x) \phi=g-\sum_{i=1}^{N} c_{i} \frac{\partial w}{\partial x_{i}} \tag{3.6}\\
\int_{\mathbb{R}^{N}} \phi \frac{\partial w_{\lambda}}{\partial x_{i}}=0, \quad i=1, \ldots, N
\end{array}\right.
$$

The $c_{i}^{\prime} s$ are defined as follows

$$
\int L(\phi)\left(w_{\lambda}\right)_{x_{i}}=\int L_{0}(\phi)\left(w_{\lambda}\right)_{x_{i}}+\int(V(\xi)-V(\xi+\varepsilon x)) \phi\left(w_{\lambda}\right)_{x_{i}}
$$

$w=w(|x|) .\left(w_{\lambda}\right)_{x_{i}}(x)=w_{\lambda}^{\prime} \frac{x_{i}}{|x|}$. This implies that

$$
\int\left(w_{\lambda}\right) x_{i}\left(w_{\lambda}\right) x_{j}=\int w_{\lambda}^{\prime}(|x|)^{2} x_{i} x_{j} \frac{1}{|x|^{2}}
$$

This integral is 0 if $i \neq j$ and equals to $\int_{\mathbb{R}^{N}} w_{\lambda}^{\prime}(|x|)^{2} x_{i}^{2} \frac{1}{|x|^{2}} d x=1 / N \int\left|\nabla w_{\lambda}\right|^{2}=$ γ. Then $c_{i}=\int g\left(w_{\lambda}\right) x_{i}+\int_{\mathbb{R}^{N}}[V(\xi+\varepsilon x)-V(\xi)] \phi\left(w_{\lambda}\right) x_{i} \frac{1}{\left(w_{\lambda}\right) x_{i}}$.

Problem: Given $g \in L^{\infty}\left(\mathbb{R}^{N}\right)$ we want to find $\phi \in L^{\infty}\left(\mathbb{R}^{N}\right)$ solution to the problem (3.6). Assumptions: We assume $V \in C^{1}\left(\mathbb{R}^{N}\right),\|V\|_{C^{1}}<$ ∞. We assume in addition that $|\xi| \leq M_{0}$ and $0<\alpha \leq V$.

Proposition 3.2. There exists $\varepsilon_{0}, C_{0}>0$ such that $\forall 0<\varepsilon \leq \varepsilon_{0}$, $\forall|\xi| \leq M_{0}, \forall g \in L^{\infty}\left(\mathbb{R}^{N}\right) \cap C\left(\mathbb{R}^{N}\right)$, there exist a unique solution $\phi \in$ $L^{\infty}\left(\mathbb{R}^{N}\right)$ to (3.6), $\phi=T[g]$ satisfies

$$
\|\phi\|_{C^{1}} \leq C_{0}\|g\|_{\infty}
$$

Proof. Step 1: A priori estimates on bounded domains: There exist $R_{0}, \varepsilon_{0}, C_{0}$ such that $\forall \varepsilon<\varepsilon_{0}, R>R_{0},|\xi| \leq M_{0}$ such that $\forall \phi, g \in L^{\infty}$ solving $L(\phi)=g-\sum_{i} c_{i}\left(w_{\lambda}\right)_{x_{i}}$ in $B_{R}, \int_{B_{R}} \phi\left(w_{\lambda}\right)_{x_{i}}=0$ and $\phi=0$ on ∂B_{R}, we have

$$
\|\phi\|_{C^{1}\left(B_{R}\right)} \leq C_{0}\|g\|_{\infty}
$$

We prove first $\|\phi\|_{\infty} \leq C_{0}\|g\|_{\infty}$. Assume the opposite, then there exist sequences $\phi_{n}, g_{n}, \varepsilon \rightarrow 0, R_{n} \rightarrow \infty,\left|\xi_{n}\right| \leq M_{0}$ such that

$$
L\left(\phi_{n}\right)=g_{n}-c_{i}^{n} \frac{\partial w_{\lambda}}{\partial x_{i}}
$$

. The first fact is that $c_{i}^{n} \rightarrow 0$ as $n \rightarrow \infty$. This fact follows just after multiplying the equation against $\left(w_{\lambda}\right)_{x_{i}}$ and integrating by parts.

Observation: If $\Delta \phi=g$ in B_{2} then there exist C such that

$$
\|\nabla \phi\|_{L^{\infty}\left(B_{1}\right)} \leq C\left[\|g\|_{L^{\infty}\left(B_{2}\right)}+\|\phi\|_{L^{\infty}\left(B_{2}\right)}\right]
$$

Where B_{1} and B_{2} are concentric balls. This implies that $\left\|\nabla \phi_{n}\right\|_{L^{\infty}(B)} \leq$ C a given bounded set $B, \forall n \geq n_{0}$. This implies that passing to a subsequence $\phi_{n} \rightarrow \phi$ uniformly on compact sets, and $\phi \in L^{\infty}\left(\mathbb{R}^{N}\right)$. Observe that $\left\|\phi_{n}\right\|_{\infty}=1$, and this implies that $\|\phi\|_{\infty} \leq 1$. We can assume that $\xi_{n} \rightarrow \xi_{0}$.
ϕ satisfies the equation $\Delta \phi-V\left(\xi_{0}\right) \phi+p w_{\lambda_{0}}^{p-1}(x) \phi=0$, where $\lambda_{0}=$ $V\left(\xi_{0}\right)$, and this implies that $\phi \in \operatorname{Span}\left\{\frac{\partial w_{\lambda_{0}}}{x_{1}}, \ldots, \frac{\partial w_{\lambda_{0}}}{x_{N}}\right\}$, but also $\int_{\mathbb{R}^{N}} \phi\left(w_{\lambda_{0}}\right)_{x_{i}}=$ $0, i=1, \ldots, N$. Then $\phi=0$ and this implies that $\left\|\phi_{n}\right\|_{L^{\infty}\left(B_{M}(0)\right)} \rightarrow$ $0, \forall M<\infty$. Maximum principle implies that $\left\|\phi_{n}\right\|_{L^{\infty}\left(B_{R_{n}} \backslash B_{M_{0}}\right.} \rightarrow 0$, just because $\left|\phi_{n}\right|=o(1)$ on $\partial B_{R_{n}} \backslash B_{M_{0}}$ and $\left\|g_{n}\right\|_{\infty} \rightarrow 0$. Therefore $\left\|\phi_{n}\right\|_{\infty} \rightarrow 0$, a contradiction. This implies that $\|\phi\|_{L^{\infty}\left(B_{R}\right)} \leq$ $C_{0}\|g\|_{L^{\infty}\left(B_{R}\right)}$ uniformly on large R. The C^{1} estimate follows from elliptic local boundary estimates for Δ.

Step 2: Existence: $g \in L^{\infty}$. We want to solve (3.6). We claim that solving (3.6) is equivalent to finding $\phi \in X=\left\{\psi \in H_{0}^{1}: \int \psi\left(w_{\lambda}\right)_{x_{i}}=\right.$ $0, i=1, \ldots, N\}$ such that

$$
\int \nabla \phi \nabla \psi+\int V(\xi+\varepsilon x) \phi \psi-p w^{p-1} \phi \psi+\int g \psi=0, \quad \forall \psi \in X .
$$

Take general $\Psi \in H_{0}^{1}, \Psi=\psi+\sum_{i} \alpha_{i}\left(w_{\lambda}\right)_{x_{i}}$, with $\alpha_{i}=\frac{\int \Psi\left(w_{\lambda}\right) x_{i}}{\int\left(w_{\lambda}\right) x_{i}}$. We have

$$
-\int \Delta\left(\sum_{i} \alpha_{i}\left(w_{\lambda}\right)_{x_{i}}\right) \nabla \phi+\int V(\xi)\left(\sum_{i} \alpha_{i}\left(w_{\lambda}\right)_{x_{i}}\right) \phi-p w^{p-1}\left(\sum_{i} \alpha_{i}\left(w_{\lambda}\right)_{x_{i}}\right) \phi=0
$$

Which implies that

$$
\begin{gathered}
\int \nabla \phi \nabla \Psi+\int V(\xi) \phi \Psi-p w^{p-1} \phi \Psi \\
-\int(V(\xi)-V(\xi+\varepsilon x))\left(\Psi-\sum_{i} \alpha_{i}\left(w_{\lambda}\right)_{x_{i}}\right)+\int g\left(\Psi-\sum_{i} \alpha_{i}\left(w_{\lambda}\right)_{x_{i}}\right)
\end{gathered}
$$

Then

$$
\int[(V(\xi+\varepsilon x)-V(\xi)) \phi+g]\left(\Psi-\sum_{i} \alpha_{i}\left(w_{\lambda}\right)_{x_{i}}\right)
$$

and $\Pi_{X}(\Psi)=\sum_{i} \alpha_{i}\left(w_{\lambda}\right)_{x_{i}}$, then the previos integral is equal to

$$
\int \Pi_{X}([(V(\xi+\varepsilon x)-V(\xi)) \phi+g] \phi) \Psi
$$

This implies that

$$
-\Delta \phi+V(\xi) \phi-p w^{p-1} \phi+\Pi_{X}([(V(\xi+\varepsilon x)-V(\xi)) \phi+g] \phi)=0
$$

The problem is formulated weakly as

$$
\int \nabla \phi \nabla \psi+\int\left(V(\xi+\varepsilon x)-p w^{p-1}\right) \phi \psi+\int g \psi=0, \phi \in X, \forall \psi \in X
$$

This can be written as $\phi=A[\phi]+\tilde{g}$, where A is a compact operator. The a priori estimate implies that the only solution when $g=0$ of this equation is $\phi=0$. We conclude existence by Fredholm alternative.

We look for a solution which near $x_{j}=\xi_{j}^{\prime}=\xi_{j} / \varepsilon, j=1, \ldots, k$ looks like $v(x) \approx W_{\lambda_{j}}\left(x-\xi_{j}^{\prime}\right), \lambda_{j}=V\left(\xi_{j}\right)$, where W_{λ} solves

$$
\Delta W_{\lambda}-\lambda W+W^{p}=0, \quad W_{\lambda} \text { radial, } \quad W_{\lambda}(|x|) \rightarrow 0, \text { as }|x| \rightarrow \infty
$$

Observe that $W_{\lambda}(y)=\lambda^{1 /(p-1)} w(\sqrt{\lambda} y)$, where w solves the equation $\Delta w-w+w^{p}=0$. The equation

$$
\Delta v-V(\varepsilon x) v+v^{p}=0
$$

looks like $\Delta v-V\left(\xi_{j}\right) v+v^{p}=0$, where $\xi_{1}, \xi_{2}, \ldots \xi_{k} \in \mathbb{R}^{N}$ and we assume also $\left|\xi_{j}^{\prime}-\xi_{l}^{\prime}\right| \gg 1$, if $j \neq l$. We look for a solution $v(x) \approx \sum_{j=1}^{k} W_{\lambda_{j}}(x-$ $\left.\xi_{j}^{\prime}\right), \lambda_{j}=V\left(\xi_{j}\right)$. We assume $V \in C^{2}\left(R^{N}\right)$ and $\|V\|_{C^{2}}<\infty, 0<\alpha \leq V$.

We use the notation $W_{j}=W_{\lambda_{j}}\left(x-\xi_{j}^{\prime}\right), \lambda_{j}=V\left(\xi_{j}\right)$ and $W=\sum_{j=1}^{n} W_{j}$. Look for a solution $v=W+\phi$, so ϕ solves the problem

$$
\Delta \phi-V(\varepsilon x) \phi+p W^{p-1} \phi+E+N(\phi)=0
$$

where

$$
E=\Delta W-V W+W^{p}, \quad N(\phi)=(W+\phi)^{p}-W^{p}-p W^{p-1} \phi
$$

Observe that $\Delta W=\sum_{j} \Delta W_{j}=\sum_{j} \lambda_{j} W_{j}-W_{j}^{p}$. So we can write

$$
E=\sum_{j}\left(\lambda_{j}-V(\varepsilon x)\right) W_{j}+\left(\sum_{j} W_{j}\right)^{p}-\sum_{j} W_{j}^{p} .
$$

3.3. Linearized (projected) problem. We use the following notation $Z_{j}^{i}=\frac{\partial W_{j}}{\partial x_{i}}$. The linearized projected problem is the following

$$
\Delta \phi-V(\varepsilon x) \phi+p W^{p-1} \phi+g=\sum_{i, j} c_{j}^{i} Z_{j}^{i},
$$

with the orthogonality condition $\int \phi Z_{j}^{i}=0, \forall i, j$. The Z_{j}^{i} 's are "nearly orthogonal" if the centers ξ_{j}^{\prime} are far away one to each other. The c_{j}^{i} 's are, by definition, the solution of the linear system

$$
\int_{\mathbb{R}^{N}}\left(\Delta \phi-V(\varepsilon x) \phi+p W^{p-1} \phi+g\right) Z_{j_{0}}^{i_{0}}=\sum_{i, j} c_{j}^{i} \int_{\mathbb{R}^{N}} Z_{j}^{i} Z_{j_{0}}^{i_{0}},
$$

for $i_{0}=1, \ldots, N, j_{0}=1, \ldots, k$. The c_{j}^{i} 's are indeed uniquely determined provided that $\left|\xi_{l}^{\prime}-\xi_{j}^{\prime}\right|>\mathbb{R}_{0} \gg 1$, because the matrix with coefficients $\alpha_{i, j, i_{0}, j_{0}}=\int Z_{j}^{i} Z_{j_{0}}^{i_{0}}$ is "nearly diagonal", this means

$$
\alpha_{i, j, i_{0}, j_{0}}=\left\{\begin{array}{cl}
\frac{1}{N} \int\left|\nabla W_{j}\right|^{2} & \text { if }(i, j)=\left(i_{0}, j_{0}\right), \\
o(1) & \text { if not }
\end{array}\right.
$$

Moreover:

$$
\left|c_{j_{0}}^{i_{0}}\right| \leq C \sum_{i, j} \int|\phi|\left[\left|\lambda_{j}-V\right|+p\left|W^{p-1}-W_{j}^{p-1}\right|\right]\left|Z_{j}^{i}\right|+\int|g|\left|Z_{j}^{i}\right| \leq C\left(\|\phi\|_{\infty}+\|g\|_{\infty}\right)
$$

with C uniform in large R_{0}. Even more, if we take $x=\xi^{\prime}+y$

$$
\left|\left(\lambda_{j}-V(\varepsilon x)\right) Z_{j}^{i}\right| \leq\left|\left(V\left(\xi_{j}\right)-V\left(\xi_{j}+\varepsilon y\right)\right)\right|\left|\frac{\partial W_{\lambda_{j}}}{\partial y_{i}}\right| \leq C \varepsilon e^{-\frac{\sqrt{\alpha}}{2}|y|},
$$

because $\left|\frac{\partial W_{\lambda_{j}}}{\partial y_{i}}\right| \leq C e^{-|y| \sqrt{\lambda_{j}}}|y|^{-(N-1) / 2}$. Observe also that

$$
\left|\left(W^{p-1}-W_{j}^{p-1}\right) Z_{j}^{i}\right|=\left|\left(\left(1-\sum_{l \neq j} \frac{W_{l}}{W_{j}}\right)^{p-1}-1\right)\right| W_{j}^{p-1} Z_{j}^{i}
$$

Observe that if $\left|x-\xi_{j}^{\prime}\right|<\delta_{0} \min _{j_{1} \neq j_{2}}\left|\xi_{j_{1}}^{\prime}-\xi_{j_{2}}^{\prime}\right|$, then

$$
\frac{W_{l}(x)}{W_{j}(x)} \approx \frac{e^{-\sqrt{\lambda_{l}}\left|x-\xi_{l}^{\prime}\right|}}{e^{-\sqrt{\lambda_{j}}\left|x-\xi_{j}^{\prime}\right|}}<\frac{e^{-\sqrt{\lambda_{l}}\left|x-\xi_{l}^{\prime}\right|}}{e^{-\sqrt{\lambda_{j}} \delta_{0} \min _{j_{1} \neq j_{2}}\left|\xi_{j_{1}}^{\prime}-\xi_{j_{2}}^{\prime}\right|}}
$$

If $\delta_{0} \ll 1$ but fixed, we conclude that $e^{-\sqrt{\lambda_{l}}\left|\xi_{j}^{\prime}-\xi_{l}^{\prime}\right|+\delta_{0}\left(\sqrt{\lambda_{l}}-\sqrt{\lambda_{j}}\right) \min _{j_{1} \neq j_{2}}\left|\xi_{j_{1}}^{\prime}-\xi_{j_{2}}^{\prime}\right|}<$ $e^{-\rho \min _{j_{1} \neq j_{2}}\left|\xi_{j_{1}}^{\prime}-x i_{j_{2}}^{\prime}\right|<1}$. Conclusion: if $\left|x-\xi_{j}^{\prime}\right|<\delta_{0} \min _{j_{1} \neq j_{2}}\left|\xi_{j_{1}}^{\prime}-x i_{j_{2}}^{\prime}\right|$ implies that

$$
\left|\left(W^{p-1}-W_{j}^{p-1}\right) Z_{j}^{i}\right| \leq e^{-\rho \min _{j_{1} \neq j_{2}}\left|\xi_{j_{1}}^{\prime}-x i_{j_{2}}^{\prime}\right|} e^{-\frac{\alpha}{2}\left|x-\xi_{j}^{\prime}\right|}
$$

If $\left|x-\xi_{j}^{\prime}\right|>\delta_{0} \min _{j_{1} \neq j_{2}}\left|\xi_{j_{1}}^{\prime}-x i_{j_{2}}^{\prime}\right|$, then

$$
\left|\left(W^{p-1}-W_{j}^{p-1}\right) Z_{j}^{i}\right| \leq C\left|Z_{j}^{i}\right| \leq C e^{-\rho \min _{j_{1} \not j_{2}} \not j_{2}\left|\xi_{j_{1}}^{\prime}-x i_{j_{2}}^{\prime}\right|} e^{-\frac{\alpha}{2}\left|x-\xi_{j}^{\prime}\right|}
$$

As a conclusion we get

$$
\left|c_{j_{0}}^{i_{0}}\right| \leq C\left(\varepsilon+e^{-\rho \min _{j_{1} \neq j_{2}}\left|\xi_{j_{1}}^{\prime}-\xi_{j_{2}}^{\prime}\right|}\right)\|\phi\|_{\infty}+\|g\|_{\infty}
$$

Lemma 3.1. Given $k \geq 1$, there exist $R_{0}, C_{0}, \varepsilon_{0}$ such that for all points ξ_{j}^{\prime} with $\left|\xi_{j_{1}}^{\prime}-\xi_{j_{2}}^{\prime}\right|>R_{0}, j=1, \ldots, k$ and all $\varepsilon<\varepsilon_{0}$ then exist a unique solution ϕ to the linearized projected problem with

$$
\|\phi\|_{\infty} \leq C_{0}\|g\|_{\infty}
$$

Proof. We first prove the a priori estimate $\|\phi\|_{\infty} \leq C_{0}\|g\|_{\infty}$. If not there exist $\varepsilon_{n} \rightarrow 0,\left\|\phi_{n}\right\|_{\infty}=1,\left\|g_{n}\right\| \rightarrow 0, \xi_{j}^{\prime n}$ with $\min _{j_{1} \neq j_{2}}\left|\xi_{j_{1}}^{\prime n}-\xi_{j_{2}}^{\prime n}\right| \rightarrow$ ∞. We denote $W_{n}=\sum_{j} W_{j_{n}}$, and we have

$$
\Delta \phi_{n}-V\left(\varepsilon_{n} x\right) \phi_{n}+p W_{n}^{p-1} \phi_{n}+g_{n}=\sum_{i, j}\left(c_{j}^{i}\right)_{n}\left(z_{j}^{i}\right)_{n}
$$

First observation: $\left(c_{j}^{i}\right)_{n} \rightarrow 0$ (follows from estimate for $c_{j_{0}}^{i_{0}}$). Second: $\forall R>0\left\|\phi_{n}\right\|_{L^{\infty}\left(B\left(\xi_{j}^{\prime \prime}, R\right)\right)} \rightarrow 0, j=1, \ldots, k$. If not, there exist j_{0} $\left\|\phi_{n}\right\|_{L^{\infty}\left(B\left(\xi_{j_{0}^{\prime}}^{\prime n}, R\right)\right)} \geq \gamma>0$. We denote $\tilde{\phi}_{n}(y):=\phi_{n}\left(\xi_{j_{0}}^{\prime n}+y\right)$. We have $\left\|\tilde{\phi}_{n}\right\|_{L^{\infty}(B(0, R))} \geq \gamma>0$. Since $\left|\Delta \tilde{\phi}_{n}\right| \leq C,\left\|\tilde{\phi}_{n}\right\|_{\infty} \leq 1$. This implies that $\left\|\nabla \tilde{\phi}_{n}\right\| \leq C$. Passing to a subsequence we may assume $\tilde{\phi}_{n} \rightarrow$ $\tilde{\phi}$ uniformly on compacts sets. Observe that also $V\left(\varepsilon_{n}\left(\xi_{j_{0}}^{\prime n}+y\right)\right)=$ $V\left(\varepsilon_{n} \xi_{j_{0}}^{\prime n}\right)+O\left(\varepsilon_{n}|y|\right) \rightarrow \lambda_{j_{0}}$ over compact sets and $W_{n}\left(\xi_{j_{0}}^{\prime n}+y\right) \rightarrow W_{\lambda_{j_{0}}}(y)$ uniformly on compact sets. This implies that $\tilde{\phi}$ is a solution of the problem

$$
\Delta \tilde{\phi}-\lambda_{j_{0}} \tilde{\phi}+p w_{\lambda_{0}}^{p-1} p \sim \sim 1=0, \quad \int \tilde{\phi} \frac{\partial W_{\lambda_{j_{0}}}}{\partial y_{i}} d y=0, i=1, \ldots, N
$$

Non degeneracy of $w_{\lambda_{j_{0}}}$ implies that $\tilde{\phi}=\sum_{i} \alpha_{i} \frac{\partial w_{\lambda_{j_{0}}}}{\partial y_{i}}$. The orthogonality condition implies that $\alpha_{i}=0, \forall i=1, \ldots, N$. This implies that
$\tilde{\phi}=0$ but $\|\tilde{\phi}\|_{L^{\infty}(B(0, R))} \geq \gamma>0$, a contradiction. Now we prove: $\left\|\phi_{n}\right\|_{L^{\infty}}\left(\mathbb{R}^{N} \backslash \cup_{n} B\left(\xi_{j}^{\prime n}, R\right)\right) \rightarrow 0$, provided that $R \gg 1$ and fixed so that $\phi_{n} \rightarrow 0$ in the sense of $\left\|\phi_{n}\right\|_{\infty}$ (again a contradiction). We will denote $\Omega_{n}=\mathbb{R}^{N} \backslash \cup_{n} B\left(\xi_{j}^{\prime n}, R\right)$. For $R \gg 1$ the equation for ϕ_{n} has the form

$$
\Delta \phi_{n}-Q_{n} \phi_{n}+g_{n}=0
$$

where $Q_{n}=V(\varepsilon x)-p W_{n}^{p-1} \geq \frac{\alpha}{2}>0$ for some R sufficiently large (but fixed). Let's take for $\sigma^{2}<\alpha / 2$

$$
\bar{\phi}=\delta \sum_{j} e^{\sigma\left|x-\xi_{j}^{\prime n}\right|}+\mu_{n} .
$$

We denote $\varphi(y)=e^{\sigma|y|}, r=|y|$. Observe that $\Delta \varphi-\alpha / 2 \varphi=e^{\sigma|y|}\left(\sigma^{2}+\right.$ $\left.\frac{N-1}{|y|}-\alpha / 2\right)<0$ if $|y|>R \gg 1$. Then

$$
-\Delta \bar{\phi}+Q_{n} \bar{\phi}-g_{n}>-\Delta \bar{\phi}+\frac{\alpha}{2} \bar{\phi}-\left\|g_{n}\right\|_{\infty}>\frac{\alpha}{2} \mu_{n}-\left\|g_{n}\right\|_{\infty}>0
$$

if we choose $\mu_{n} \geq\left\|g_{n}\right\|_{\infty} \frac{2}{\alpha}$. In addition we take $\mu_{n}=\sum_{j}\left\|\phi_{n}\right\|_{L^{\infty}\left(B\left(\xi_{j}^{n}, R\right)\right)}+$ $\left\|g_{n}\right\|_{\infty} \frac{2}{\alpha}$. Maximum principle implies that $\phi_{n}(x) \leq \bar{\phi}$ for all $x \in \Omega_{n}$. Taking $\delta \rightarrow 0$ this implies that $\phi_{n}(x) \leq \mu_{n}$, for all $x \in \Omega_{n}$. Also true that $\left|\phi_{n}(x)\right| \leq \mu_{n}$ for all $x \in \Omega_{n}^{c}$, and this implies that $\left\|\phi_{n}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \rightarrow$ 0 .
Observation 3.2. If in addition we have $\theta_{n}=\left\|g_{n}\left(\sum_{j} e^{-\rho\left|x-\xi_{j}^{\prime n}\right|}\right)^{-1}\right\|_{\infty} \rightarrow$ 0 with $\rho<\alpha / 2$. Then we can use as a barrier

$$
\bar{\phi}=\delta \sum_{j} e^{\sigma\left|x-\xi_{j}^{\prime n}\right|}+\mu_{n} \sum_{j} e^{-\rho\left|x-\xi_{j}^{\prime n}\right|}
$$

with $\mu_{n}=e^{\rho R} \sum_{j}\left\|\phi_{n}\right\|_{L^{\infty}\left(B\left(\xi_{j}^{\prime n}, R\right)\right)}+\theta_{n}$, then $\bar{\phi}$ is a super solution of the equation and we have $\left|\phi_{n}\right| \leq \bar{\phi}$, and letting $\delta \rightarrow 0$ we get $\left|\phi_{n}(x)\right| \leq$ $\mu_{n} \sum_{j} e^{-\rho\left|x-\xi_{j}^{\prime \prime \mid}\right|}$. As a conclusion we also get the a priori estimate

$$
\left\|\phi\left(\sum_{j=1}^{k} e^{-\rho\left|x-\xi_{j}^{\prime}\right|}\right)^{-1}\right\|_{\infty} \leq C\left\|g\left(\sum_{j=1}^{k} e^{-\rho\left|x-\xi_{j}^{\prime}\right|}\right)^{-1}\right\|_{\infty}
$$

provided that $0 \leq \rho<\alpha / 2,\left|\xi_{j_{1}}^{\prime}-\xi_{j_{2}}^{\prime}\right|>R_{0} \gg 1, \varepsilon<\varepsilon_{0}$.
We now give the proof of existence
Proof. Take g compactly supported. The weak formulation for

$$
\begin{equation*}
\Delta \phi-V(\varepsilon x) \phi+p W^{p-1} \phi+g=\sum_{i, j} c_{j}^{i} Z_{j}^{i}, \quad \int \phi Z_{j}^{i}, \forall i, j \tag{3.7}
\end{equation*}
$$

is find $\phi \in X=\left\{\phi \in H^{1}\left(\mathbb{R}^{N}\right): \int \phi Z_{j}^{i}=0, \forall i, j\right\}$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \nabla \phi \nabla \psi+V \phi \psi-p w^{p-1} \phi \psi-g \psi=0, \quad \forall \psi \in X \tag{3.8}
\end{equation*}
$$

Assume ϕ solves (3.7). For $g \in L^{2}$, write $g=\tilde{g}+\Pi[g]$ where $\int \tilde{g} Z_{j}^{i}=0$, for all i, j. Π is the orthogonal projection of g onto the space spanned by the Z_{j}^{i} 's. Take $\psi \in H^{1}\left(\mathbb{R}^{N}\right)$ arbitrary and use $\psi-\Pi[\psi]$ as a test function in (3.8). Then if $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$, then

$$
\int_{\mathbb{R}^{N}} \nabla \varphi \nabla(\Pi[\psi])=-\int_{\mathbb{R}^{N}} \Delta \varphi \Pi[\psi]=-\int_{\mathbb{R}^{N}} \Pi[\Delta \varphi] \psi
$$

But $\Pi[\Delta \varphi]=\sum_{i, j} \alpha_{i, j} Z_{j}^{i}$, where

$$
\sum \alpha_{i, j} \int Z_{i, j} Z_{i_{0}, j_{0}}=\int \Delta \varphi Z_{i_{0}}^{j_{0}}=\int \varphi \Delta Z_{i_{0}}^{j_{0}}
$$

Then $\|\Pi[\Delta \varphi]\|_{L^{2}} \leq C\|\varphi\|_{H^{1}}$. By density is true also for $\varphi \in H^{1}$ where $\Delta \varphi \in H^{-1}$. Therefore

$$
\int \nabla \phi \nabla \psi+\int\left(V \phi-p W^{p-1} \phi-g\right) \psi=\int \Pi\left(V \phi-p W^{p-1} \phi+g\right) \psi
$$

then ϕ solves in weak sense

$$
-\Delta \phi+V \phi-p W^{p-1} \phi-g=\Pi\left[-\Delta \phi+V \phi-p W^{p-1} \phi-g\right]
$$

and $\Pi\left[-\Delta \phi+V \phi-p W^{p-1} \phi-g\right]=\sum_{i, j} c_{i}^{j} Z_{i} j$. Therefore by definition ϕ solves (3.8) implies that ϕ solves (3.8). Classical regularity gives that this weak solution is solution of (3.7) in strong sense, in particular $\phi \in L^{\infty}$ so that

$$
\|\phi\|_{\infty} \leq C\|g\|_{\infty}
$$

. Now we give the proof of existence for (3.7). We take g compactly supported. The equation (3.8) can be written in the following way (using Riesz theorem):

$$
\langle\phi, \psi\rangle_{H^{1}}+\langle B[\phi], \psi\rangle_{H^{1}}=\langle\tilde{g}, \psi\rangle_{H^{1}}
$$

or $\phi+B[\phi]=\tilde{g}, \phi \in X$. We claim that B is a compact operator. Indeed if $\phi_{n} \rightharpoonup 0$ in X, then $\phi_{n} \rightarrow 0$ in L^{2} over compacts.

$$
\left|\left\langle B\left[\phi_{n}\right], \psi\right\rangle\right| \leq\left|\int p W^{p-1} \phi_{n} \psi\right| \leq\left(\int p w^{p-1} \phi_{n}^{2}\right)^{1 / 2}\left(\int p W^{p-1} \psi^{2}\right)^{1 / 2}
$$

then

$$
\left|\left\langle B\left[\phi_{n}\right], \psi\right\rangle\right| \leq c\left(\int p W^{p-1} \phi_{n}^{2}\right)^{1 / 2}\|\psi\|_{H^{1}}
$$

Take $\psi=B\left[\phi_{n}\right]$, which implies

$$
\left\|B\left[\phi_{n}\right]\right\|_{H^{1}} \leq c\left(\int p W^{p-1} \phi_{n}^{2}\right)^{1 / 2} \rightarrow 0
$$

This implies that B is a compact operator. Now we prove existence with the aid of fredholm alternative. Problem is solvable if for $\tilde{g}=0$ implies that $\phi=0$. But $\phi+B[\phi]=0$ implies solve (3.7)(strongly) with $g=0$. This implies $\phi \in L^{\infty}$, and the a priori estimate implies $\phi=0$. Considering $g \Xi_{B_{R}(0)}$ we conclude that

$$
\left\|\phi_{R}\right\|_{\infty} \leq\|g\|_{\infty}
$$

Taking $R \rightarrow \infty$ then along a subsequence $\phi_{R} \rightarrow \phi$ uniform over compacts.

We take $g \in L^{\infty}$. We have $\phi=T_{\xi^{\prime}}[g]$, where $\xi^{\prime}=\left(\xi_{1}^{\prime}, \ldots, \xi_{k}^{\prime}\right)$. We want to analyze derivatives $\partial_{\xi_{j i}^{\prime}} T_{\xi^{\prime}}[g]$. We know that $\left\|T_{\xi^{\prime}}[g]\right\| \leq$ $C_{0}\|g\|_{\infty}$. First we will make a formal differentiation. We denote $\Phi=$ $\frac{\partial \phi}{\partial \xi_{i_{0}}}$.

We have $\Delta \phi-V \phi+p W^{p-1} \phi+g=\sum_{i, j} c_{j}^{i} Z_{j}^{i}$ and $\int \phi Z_{j}^{i}=0$, for all i, j. Formal differentiation yields

$$
\Delta \Phi-V \Phi+p W^{p-1} \Phi++\partial_{\xi_{i_{0} j_{0}}}\left(W^{p-1}\right) \phi-\sum_{i, j} c_{j}^{i} \partial_{\xi_{i_{0} j_{0}}} Z_{i}^{j}=\sum_{i, j} \tilde{c}_{j}^{i} Z_{j}^{i}
$$

where formally $\tilde{c}_{i}^{j}=\partial_{\xi_{i_{0} j_{0}}} c_{i}^{j}$. The orthogonality conditions traduces into

$$
\int_{\mathbb{R}^{N}} \Phi Z_{j}^{i}=\left\{\begin{array}{cc}
0 & \text { if } j \neq j_{0} \\
-\int \phi \partial_{\xi_{i_{0} j_{0}} Z_{j_{0}}^{i}} & \text { if } j=j_{0}
\end{array}\right.
$$

Let us define $\tilde{\Phi}=\Phi-\sum_{i, j} \alpha_{i, j} Z_{j}^{i}$. We want $\int \tilde{\Phi} Z_{j}^{i}=0$, for all i, j. We need

$$
\sum_{i, j} \alpha_{i, j} \int Z_{j}^{i} Z_{\bar{j}}^{\bar{i}}=\left\{\begin{array}{cc}
0 & \text { if } \bar{j} \neq j_{0} \\
-\int \phi \partial_{\xi_{i_{0} j_{0}} Z_{j_{0}}^{i}} & \text { if } \bar{j}=j_{0}
\end{array}\right.
$$

The system has a unique solution and $\left|\alpha_{i, j}\right| \leq C\|\phi\|_{\infty}$ (since the system is almost diagonal). So we have the condition $\int \tilde{\Phi} Z_{j}^{i}=0$, for all i, j. We add to the equation the term $\sum_{i, j} \alpha_{i, j}\left(\Delta-V+p W^{p-1}\right) Z_{j}^{i}$, so $\tilde{\Phi}$ satisfies the equation $\Delta \phi-V \phi+p W^{p-1} \phi+g=\sum_{i, j} c_{j}^{i} Z_{j}^{i}$
$\Delta \tilde{\Phi}-V \tilde{\Phi}+p W^{p-1} \tilde{\Phi}+\partial_{\xi_{i_{0} j_{0}}}\left(W^{p-1}\right) \phi-\sum_{i, j} c_{j}^{i} \partial_{\xi_{i_{0} j_{0}}} Z_{i}^{j}=\sum_{i, j} \tilde{c}_{j}^{i} Z_{j}^{i}-\sum_{i, j} \alpha_{i, j}\left(\Delta-V+p W^{p-1}\right) Z_{j}^{i}$
This implies $\|\tilde{\Phi}\| \leq C(\|h\|+\|g\|) \leq C\|g\|_{\infty}$. This implies $\|\Phi\| \leq$ $C\|g\|_{\infty}$. We do this in a discrete way, and passing to the limit all these calculations are still valid. Conclusion: The map $\xi \rightarrow \partial_{\xi} \phi$ is well
defined and continuous (into L^{∞}). Besides $\left\|\partial_{\xi} \phi\right\|_{\infty} \leq C\|g\|_{\infty}$, and this implies

$$
\left\|\partial_{\xi} T_{\xi}[\phi]\right\| \leq C\|g\|
$$

3.4. Nonlinear projected problem. Consider now the nonlinear projected problem

$$
\Delta \phi-V \phi+p w^{p-1} \phi+E+N(\phi)=\sum_{i, j} c_{i}^{j} Z_{j}^{i}, \quad \int \phi Z_{i}^{j}=0, \forall i, j
$$

We solve this by fixed point. We have $\phi=T(E+N(\phi))=: M(\phi)$. We define $\Lambda=\left\{\phi \in C\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(R^{N}\right):\|\phi\|_{\infty} \leq M\|E\|_{\infty}\right\}$. Remember that $E=\sum_{i}\left(\lambda_{j}-V(\varepsilon x)\right) W_{j}+\left(\sum_{j} W_{j}\right)^{p}-\sum_{j} W_{j}^{p}$. Observe that

$$
|E| \leq \varepsilon \sum_{i} e^{-\sigma\left|x-\xi_{j}^{\prime}\right|}+c e^{-\delta_{0} \min _{j_{1} \neq j_{2}}\left|\xi_{j_{1}}^{\prime}-\xi_{j_{2}}^{\prime}\right|} \sum_{j} e^{-\sigma\left|x-\xi_{j}^{\prime}\right|}
$$

so, for existence we have $\|E\| \leq C\left[\varepsilon+e^{-\delta_{0} \min _{j_{1} \neq j_{2}}\left|\xi_{j_{1}}^{\prime}-\xi_{j_{2}}^{\prime}\right|}\right]=$: ρ (see that ρ is small). Contraction mapping implies unique existence of $\phi=\Phi(\xi)$ and $\|\Phi(\xi)\| \leq M \rho$.
3.5. Differentiability in ξ^{\prime} of $\Phi\left(\xi^{\prime}\right)$. We have

$$
\Phi-T_{\xi}^{\prime}\left(E_{\xi}^{\prime}+N_{\xi}^{\prime}(\phi)\right)=A\left(\Phi, \xi^{\prime}\right)=0
$$

If $\left(D_{\Phi} A\right)\left(\Phi\left(\xi^{\prime}\right), \xi^{\prime}\right)$ is invertible in L^{∞}, then $\Phi\left(\xi^{\prime}\right)$ turns out to be of class C^{1}. This is a consequence of the fixed point characterization, i.e., $D_{\Phi} A\left(\Phi\left(\xi^{\prime}\right), \xi^{\prime}\right)=I+o(1)$ (the order $o(1)$ is a direct consequence of fixed point characterization). Then is invertible. Theorem and the C^{1} derivative of $A\left(\Phi, \xi^{\prime}\right)$ in $\left(\phi, \xi^{\prime}\right)$. This implies $\Phi\left(\xi^{\prime}\right)$ is C^{1}. $\left\|D_{\xi}^{\prime} \Phi\left(\xi^{\prime}\right)\right\| \leq$ $C \rho$ (just using the derivate given by the implicit function theorem).
3.6. Variational reduction. We want to find ξ^{\prime} such that the $c_{j}^{i}=0$, for all i, j, to get a solution to the original problem. We use a procedure that we call Variational Reduction in which the problem of finding ξ^{\prime} with $c_{j}^{i}=0$, for all i, j, is equivalent to finding a critical point of a functional of ξ^{\prime}. Recall:

$$
J(v):=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2}+V(\varepsilon x) v^{2}-\frac{1}{p+1} \int_{\mathbb{R}^{N+1}} v_{+}^{p+1}
$$

is defined in $H^{1}\left(\mathbb{R}^{N}\right)$, since $1<p<\frac{N+2}{N-2}$. v is a solution of $\Delta v-V v+$ $v^{p}=0, v \rightarrow 0$ if and only if $v \in H^{1}\left(\mathbb{R}^{N}\right)$ and $J^{\prime}(v)=0$. Observe that $\left\langle J^{\prime}(v), \varphi\right\rangle=\int \nabla v \nabla \varphi+V v \varphi-v_{+}^{p} \varphi$.

The following fact happens: $v=W_{\xi_{*}^{\prime}}+\phi\left(\xi^{\prime}\right)$ is a solution of the original problem (for $\rho \ll 1$) if and only if

$$
\left.\partial_{\xi^{\prime}} J\left(W_{\xi^{\prime}}+\phi\left(\xi^{\prime}\right)\right)\right|_{\xi^{\prime}=\xi^{\prime}}=0 .
$$

Indeed, observe that $v\left(\xi^{\prime}\right):=W_{\xi^{\prime}}+\phi\left(\xi^{\prime}\right)$ solves the problem $\Delta v\left(\xi^{\prime}\right)-$ $V(\varepsilon x) v\left(\xi^{\prime}\right)+v\left(\xi^{\prime}\right)^{p}=\sum_{i, j} c_{j}^{i} Z_{j}^{i}$ and also that
$\partial_{\xi_{j_{0} i_{0}}^{\prime}} J\left(v\left(\xi^{\prime}\right)\right)=\left\langle J^{\prime}\left(v\left(\xi^{\prime}\right)\right), \partial_{\xi_{j_{0} i_{0}}^{\prime}} v\left(\xi^{\prime}\right)\right\rangle=-\sum_{j, i} c_{j}^{i} \int Z_{j}^{i} \partial_{\xi_{j_{0} i_{0}}^{\prime}} v=-\sum_{i, j} c_{j}^{i} \int Z_{i}^{j}\left(\partial_{\xi_{j_{0} i_{0}}^{\prime}} W_{\xi^{\prime}}+\partial_{\xi_{j_{0} i_{0}}}\right.$
Remember that $W_{\xi^{\prime}}=\sum_{j=1}^{k} w_{\lambda_{j}}\left(x-\xi_{j}^{\prime}\right)$,
$\partial_{\xi_{j_{0} i_{0}}^{\prime}} W_{\xi}^{\prime}=\partial_{\xi_{j_{0} i_{0}}^{\prime}} w_{\lambda_{j_{0}\left(\xi^{\prime}\right)}}\left(x-\xi_{j}^{\prime}\right)=\left.\left(\partial_{\lambda} w_{\lambda}\left(x-\xi_{j_{0}}^{\prime}\right)\right)\right|_{\lambda=\lambda_{j_{0}}}-\partial_{x_{i_{0}}} w_{\lambda_{j_{0}}}\left(x-\xi_{j_{0}}^{\prime}\right)=O\left(e^{-\delta\left|x-\xi_{0}^{\prime}\right|}\right) o(\varepsilon)-Z_{j}$
This because $\partial_{\lambda} w_{\lambda}=O\left(e^{-\delta\left|x-\xi_{0}^{\prime}\right|}\right)$. On the other hand $\left|\partial_{\xi_{j_{0} i_{0}}} \phi\right| \leq$ $C \rho e^{-\delta\left|x-\xi_{j_{0}}\right|}$. Finally, observe that

$$
-\int Z_{j}^{i}\left(\partial_{\xi_{j_{0} i_{0}}^{\prime}} W_{\xi}^{\prime}+\partial_{\xi_{j_{0} i_{0}}^{\prime}} \phi\right)=\int Z_{j}^{i} Z_{j_{0}}^{i_{0}}+O(\rho)
$$

The matrix of these numbers is invertible provided $\rho \ll 1$.
A consequence (D, Felmer 1996): Assume $j=1$ and that there exist an open, bounded set $\Lambda \subset \mathbb{R}^{N}$ such that

$$
\inf _{\partial \Lambda} V>\inf _{\Lambda} V,
$$

then there exist a solution to the original problem, v_{ε} with $v_{\varepsilon}(x)=$ $W_{V\left(\xi_{\varepsilon}\right)}\left(\left(x-\xi_{\varepsilon}\right) / \varepsilon\right)+o(1)$ and $V\left(\xi_{\varepsilon}\right) \rightarrow \min _{\Lambda} V, \xi=\xi_{\varepsilon}$.

Another consequence (D, Felmer 1998): $\Lambda_{1}, \ldots, \Lambda_{k}$ disjoint bounded with $\inf _{\Lambda_{j}} V<\inf _{\partial \Lambda_{j}} V$, for all j. For the problem $\varepsilon^{2} \Delta u-V(x) u+$ $u^{p}=0,0<u \rightarrow 0$ at ∞, there exist a solution u_{ε} with $u_{\varepsilon}(x) \approx$ $\sum_{j=1}^{k} W_{V\left(\xi_{j}^{\varepsilon}\right)}\left(x-\xi_{j}^{\varepsilon} / \varepsilon\right), \xi_{j}^{\varepsilon} \in \Lambda_{j}$ and $V\left(\xi_{j}^{\varepsilon}\right) \rightarrow \inf _{\Lambda_{j}} V$ (in the case of non-degeneracy minimal or more generally non-degenerate critical points the result is due to Oh (1990))
Proof. First result: $j=1 . v\left(\xi^{\prime}\right)=W_{\xi^{\prime}}+\phi\left(\xi^{\prime}\right)$. Then $\left.J\left(W_{(} \xi^{\prime}\right)\right)=J\left(W_{\xi^{\prime}}+\phi\left(\xi^{\prime}\right)\right)+\left\langle J^{\prime}\left(W_{\xi}^{\prime}+\phi\right),-\phi\right\rangle+\frac{1}{2} J^{\prime \prime}\left(W_{\xi}^{\prime}+(1-t) \phi\right)[\phi]^{2}$
(Taylor expansion of the function $\alpha(t)=J\left(W_{\xi}^{\prime}+(1-t) \phi\right)$). Observe that $\left\langle J^{\prime}\left(W_{\xi}^{\prime}+\phi\right),-\phi\right\rangle=\sum_{i, j} c_{j}^{i} \int Z_{i}^{j} \phi=0$. Also observe that
$J^{\prime \prime}\left(W_{\xi}^{\prime}+(1-t) \phi\right)[\phi]^{2}=\int|\nabla \phi|^{2}+V(\varepsilon x) \phi^{2}-p\left(W_{\xi}^{\prime}+(1-t) \phi\right) \phi^{2}=O\left(\varepsilon^{2}\right)$
uniformly on ξ^{\prime} because $\nabla \phi, \phi=O\left(\varepsilon e^{-\delta\left|x-\xi^{\prime}\right|}\right)$. We call $\Phi(\xi):=J\left(v\left(\xi^{\prime}\right)\right)=$ $J\left(W_{\xi}^{\prime}\right)+O\left(\varepsilon^{2}\right)$, and
$J\left(W_{\xi}^{\prime}\right)=\frac{1}{2} \int\left|\nabla W_{\xi}^{\prime}\right|^{2}+V(\xi) W_{\xi}^{\prime 2}-\frac{1}{p+1} \int W_{\xi}^{\prime p+1}+\int\left(V(\varepsilon x)-V\left(\xi^{\prime}\right)\right) W_{\xi}^{2}$

Taking $\lambda=V(\xi)$, we have that
$\int\left|\nabla w_{\lambda}(x)\right|^{2}=\lambda^{-N / 2} \int\left|\nabla w\left(\lambda^{1} / 2 x\right)\right|^{2} \lambda^{1+2 /(p-1)} \lambda^{N / 2} d x=\lambda^{-N / 2+p+1 / p-1}|\nabla w(y)|^{2} d y$ and

$$
\lambda \int w_{\lambda}^{2}(x)=\lambda^{-N / 2 p+1 / p-1} \int w(y)^{p+1} d y
$$

This implies that

$$
\frac{1}{2} \int\left|\nabla W_{\xi}^{\prime}\right|^{2}+V(\xi) W_{\xi}^{\prime 2}-\frac{1}{p+1} \int W_{\xi}^{\prime p+1}=V(\xi)^{p+1 / p-1-N / 2} c_{p, N}
$$

also

$$
\int\left(V(\varepsilon x)-V\left(\xi^{\prime}\right)\right) w_{\lambda}\left(x-\xi^{\prime}\right)^{2}=O(\varepsilon)
$$

uniformly on ξ. In summary $\Phi(\xi)=J\left(v\left(\xi^{\prime}\right)\right)=V(\xi)^{p+1 / p-1-N / 2} c_{p, N}+$ $O(\varepsilon)$ and $\frac{p+1}{p-1}-\frac{N}{2}>0$. Then $\forall \varepsilon \ll 1$ we have

$$
\inf _{\xi \in \Lambda} \Phi(\xi)<\inf _{\xi \in \partial \Lambda} \Phi(\xi)
$$

therefore Φ has a local minimum $\xi_{\varepsilon} \in \Lambda$ and $V\left(\xi_{\varepsilon}\right) \rightarrow \min _{\Lambda} V$. Same thing works at a maximum.
For several spikes separated: $\left|\xi_{j_{1}}-\xi_{j_{2}}\right|>\delta$, for all $j_{1} \neq j_{2} . \rho=$ $e^{-\delta_{0} \min _{j_{1} \neq j_{2}}\left|\xi_{j_{1}}^{\prime}-\xi_{j_{2}}^{\prime}\right|}+\varepsilon \leq e^{-\delta_{0} \delta / \varepsilon}+\varepsilon<2 \varepsilon$, so we have

$$
\left|\nabla_{x} \phi\left(\xi^{\prime}\right)\right|+\left|\phi\left(\xi^{\prime}\right)\right| \leq C \varepsilon \sum_{j} e^{-\delta_{0}\left|x-\xi_{j}^{\prime}\right|}
$$

Now we get

$$
J\left(v\left(\xi^{\prime}\right)\right)=\sum_{j} V\left(\varepsilon_{j}\right)^{p+1 / p-1-N / 2} c_{p, N}+O(\varepsilon)
$$

$\xi^{\prime}=1 / \varepsilon\left(\xi_{1}, \ldots, \xi_{k}\right)$ implies for several minimal on the Λ_{j} we have the result desired.

Result at one non-degenerate critical point: if ξ_{0} is a non-degenerate critical point of $V\left(V^{\prime}\left(\xi_{0}\right)=0\right.$ and $V^{\prime \prime}\left(\xi_{0}\right)$ invertible), then there exist a solution $u_{\varepsilon}(x)$ such that

$$
u_{\varepsilon}(x) \approx W_{V\left(\xi_{\varepsilon}\right)}\left(x-\xi_{\varepsilon}\right) / \varepsilon, \quad \xi_{\varepsilon} \rightarrow \xi_{0}
$$

For small δ we have that $J(v)$ has degree different from 0 in a ball centered at x_{0} and of radius δ.

4. Back to Allen Cahn in \mathbb{R}^{2}

We consider the functional

$$
J(u)=\int_{\mathbb{R}^{2}}\left(\varepsilon^{2} \frac{|\nabla u|^{2}}{2}+\frac{\left(1-u^{2}\right)^{2}}{4}\right) a(x) d x .
$$

Critical points of J are solutions of

$$
\varepsilon^{2} \operatorname{div}(a(x) \nabla u)+a(x)\left(1-u^{2}\right) u=0,
$$

where we suppose $0<\alpha \leq a(x) \leq \beta$. This equation is equal to

$$
\begin{equation*}
\varepsilon^{2} \Delta u+\varepsilon^{2} \frac{\nabla a}{a}(x) \nabla u+\left(1-u^{2}\right) u=0 . \tag{4.1}
\end{equation*}
$$

Using the change of variables $v(x)=u(\varepsilon x)$, we find the equation

$$
\begin{equation*}
\Delta v+\varepsilon \frac{\nabla a}{a}(x) \nabla v+\left(1-v^{2}\right) v=0 \tag{4.2}
\end{equation*}
$$

We will study the problem: Given a curve Γ in \mathbb{R}^{2} we want to find a solution $u_{\varepsilon}(x)$ to (4.1) such that $u_{\varepsilon}(x) \approx w\left(\frac{z}{\varepsilon}\right)$, for points $x=y+z \nu(y)$, $y \in \Gamma,|z|<\delta$, where $\nu(y)$ is a vector perpendicular to the curve and $w(t)=\tanh \left(\frac{t}{\sqrt{2}}\right)$, which solves the problem

$$
w^{\prime \prime}+\left(1-w^{2}\right) w=0, \quad w(\pm \infty)= \pm 1
$$

First issue: Laplacian near Γ, which we will consider as smooth as we need.

Assume: Γ is parametrized by arc-length

$$
\gamma:[0, l] \rightarrow \mathbb{R}^{2}, s \rightarrow \gamma(s),|\dot{\gamma}(s)|=1, l=|\Gamma|
$$

Convention: $\nu(s)$ inner unit normal at $\gamma(s)$. We have that $|\nu(s)|^{2}=1$, which implies that $2 \nu \dot{\nu}=0$, so we take $\dot{\nu}(s)=-k(s) \dot{\gamma}(s)$, where $k(s)$ is the curvature.

Coordinates: $x(s, t)=\gamma(s)+z \nu(s), s \in(0, l)$ and $|z|<\delta$. If we take a compact supported function $\psi(x)$ near Γ, and we call $\tilde{\psi}(s, z)=$ $\psi(\gamma(s)+z \nu(s))$, then $\frac{\partial \tilde{\psi}}{\partial s}=\nabla \psi \cdot[\dot{\gamma}+z \dot{\nu}]=(1-k z) \nabla \psi \cdot \dot{\gamma}$ and $\frac{\partial \tilde{\psi}}{\partial t}=$ $\nabla \psi \cdot \nu$. Observe that $\nabla \psi=(\nabla \psi \cdot \dot{\gamma}) \dot{\gamma}(\nabla \cdot \nu) \nu$. This means that $\nabla \psi=\frac{1}{1-k z} \frac{\partial \tilde{\psi}}{\partial s} \dot{\gamma}+\frac{\partial \tilde{\psi}}{\partial z} \nu$, and $|\nabla \psi|^{2}=\frac{1}{(1-k z)^{2}}\left|\tilde{\psi}_{s}\right|^{2}+\left|\tilde{\psi}_{z}\right|^{2}$. Then

$$
\int_{\mathbb{R}^{2}}|\nabla \psi(x)|^{2} d x=\iint\left(\frac{1}{(1-k z)^{2}}\left|\tilde{\psi}_{s}\right|^{2}+\left|\tilde{\psi}_{z}\right|^{2}\right)(1-k z) d s d z
$$

$\psi \rightarrow \psi+t \varphi$ and differentiating at $t=0$ we get

$$
\int \nabla \psi \nabla \varphi d x=\iint \frac{1}{(1-k z)} \tilde{\psi}_{s} \tilde{\varphi}_{s}+\tilde{\psi}_{z} \tilde{\varphi}_{z}(1-k z) d s d z
$$

So

$$
-\int \Delta \psi \varphi d x=-\iint \frac{1}{(1-k z)}\left(\left(\frac{1}{(1-k z)} \tilde{\psi}_{s}\right)_{s}+\left(\tilde{\psi}_{z}(1-l z)\right)_{z}\right) \tilde{\varphi}(1-k z) d s d z
$$

then

$$
\Delta \tilde{\psi}=\frac{1}{(1-k z)} \frac{\partial}{\partial s}\left(\frac{1}{1-k z} \tilde{\psi}_{s}\right)+\tilde{\psi}_{z z}-\frac{k}{1-k z} \tilde{\psi}_{z}
$$

We just say

$$
\Delta \tilde{\psi}=\frac{1}{1-k z}\left(\frac{1}{1-k z} \psi_{s}\right)_{s}+\psi_{z z}-\frac{k}{1-k z} \psi_{z}
$$

Near $\Gamma(x=\gamma(s)+z \nu(s))$, we have the new equation for $u \rightarrow \tilde{u}(s, z)$
$S[u]=\varepsilon^{2} \frac{1}{1-k z}\left(\frac{1}{1-k z} u_{s}\right)_{s}+\varepsilon^{2} u_{z z}+\left(1-u^{2}\right) u-\frac{\varepsilon^{2} k}{1-k z} u_{z}+\frac{\varepsilon^{2}}{1-k z} \frac{a_{s}}{a} u_{s}+\frac{\varepsilon^{2}}{1-k z} \frac{a_{z}}{a} u_{z}=0$ we want a solution $u(s, z) \approx w\left(\frac{z}{\varepsilon}\right)$.

$$
S\left[w\left(\frac{z}{\varepsilon}\right)\right]=\varepsilon\left[\frac{a_{z}}{a}-\frac{k(s)}{1-k(s) z}\right] w^{\prime}\left(\frac{z}{\varepsilon}\right)
$$

The condition we ask (geodesic condition) is $\frac{a_{z}}{a}(s, 0)=k(s)$. In v language we want

$$
\Delta v+\varepsilon \frac{\nabla a}{a}(\varepsilon x) \cdot \nabla v+f(v)=0
$$

transition on $\Gamma_{\varepsilon}=\frac{1}{\varepsilon} \Gamma$. we use coordinates relative to Γ_{ε} rather than Γ

$$
X_{\varepsilon}(s, z)=\frac{1}{\varepsilon} \gamma(\varepsilon s)+z \nu(\varepsilon s), \quad|z|<\delta / \varepsilon
$$

Laplacian for coordinates relative to Γ_{ε} are
$\Delta \psi=\frac{1}{(1-\varepsilon k(\varepsilon s) z)}\left(\frac{1}{(1-\varepsilon k(\varepsilon s) z)} v_{s}\right)_{s}+\psi_{z z}-\frac{\varepsilon k(\varepsilon s)}{(1-\varepsilon k(\varepsilon s) z)}+\varepsilon \frac{a_{s}}{a} \frac{1}{(1-\varepsilon k(\varepsilon s) z)^{2}} v_{s}+\varepsilon \frac{a_{z}}{a} v_{z}$
where we use the computation $\frac{\partial \gamma(\varepsilon s)}{\partial s}=-k(\varepsilon) \dot{\gamma}_{\varepsilon}(s)$, where $k_{\varepsilon}=\varepsilon k(\varepsilon s)$
Hereafter we use \tilde{s} instead of s and \tilde{z} instead of \tilde{z}. Observation: The operator is closed to the Laplacian on ($\tilde{s}, \tilde{z})$ variables, at least on the curve Γ, if we assume the validity of the relation

$$
a_{\tilde{z}}(\tilde{s}, 0)=k(\tilde{s}) a(\tilde{s}, 0), \quad \forall \tilde{s} \in(0, l) .
$$

We can write this relation also like $\partial_{\nu} a=k a$ on Γ (Geodesic condition). This relation means that Γ is a critical point of curve length weighted by a. Let $L_{a}[\Gamma]=\int_{\Gamma} a d l$. Consider a normal perturbation of Γ, say $\Gamma_{h}:=\{\gamma(\tilde{s})+h(\tilde{s}) \nu(\tilde{s}) \mid \tilde{s} \in(0, l)\},\|h\|_{C^{2}(\Gamma)} \ll 1$. We want: first variation along this type of perturbation be equal to zero. This is

$$
\left.D L_{a}\left[\Gamma_{h}\right]\right|_{h=0}=0
$$

This means

$$
\left.\frac{\partial}{\partial \lambda} L\left[\Gamma_{\lambda h}\right]\right|_{h=0}=0
$$

or just $\langle D L(\Gamma), h\rangle=0$ for all h. Observe that

$$
L\left(\Gamma_{\lambda h}\right)=\int_{0}^{l} a(\gamma(\tilde{s})+h(\tilde{s}) \nu(\tilde{s})) \cdot\left|\dot{\gamma}(\tilde{s})_{\lambda h}\right| d \tilde{s}
$$

and also $\dot{\gamma}_{\lambda h}(\tilde{s})=\dot{\gamma}(\tilde{s})+\lambda \dot{h} \nu+\lambda h \dot{\nu}$, and $\dot{\nu}=-k \dot{\gamma}$. With the taylor expansion
$\left(1-2 k \lambda h+\lambda^{2} k^{2} h^{2}+\lambda^{2} \dot{h}^{2}\right)^{1 / 2}=1+\frac{1}{2}\left(-2 k \lambda h+\lambda^{2} k^{2} h^{2}+\lambda^{2} \dot{h}^{2}\right)-\frac{1}{8} 4 k^{2} \lambda^{2} h^{2}+O\left(\lambda^{2} h^{3}\right)$
and
$a\left(\gamma((\tilde{s}))+\lambda h(\tilde{s} \nu(\tilde{s}))=a(\tilde{s}, \lambda h(\tilde{s}))=a(\tilde{s}, 0)+\lambda a_{\tilde{z}}(\tilde{s}, 0) h(\tilde{s})+\frac{1}{2} \lambda^{2} a_{\tilde{z} \tilde{z}}(\tilde{s}, 0) h(\tilde{s})^{2}+O\left(\lambda^{3} h^{3}\right)\right.$.
we conclude
$L_{h}\left[\Gamma_{\lambda h}\right]=L_{a}(\Gamma)=\lambda \int_{0}^{l}\left(-k a+a_{\tilde{z}}\right)(\tilde{s}, 0) h(\tilde{s}) d \tilde{s}+\lambda^{2} \int_{0}^{l}\left(a \frac{\dot{h}^{2}}{2}+a_{\tilde{z}} k^{2} h^{2}+\frac{1}{2} a_{\tilde{z} \tilde{l}} h^{2}\right)+O\left(\lambda^{3} h^{3}\right)$
This tells us:

$$
\left.\frac{\partial}{\partial \lambda} L_{h}\left[\Gamma_{\lambda h}\right]\right|_{\lambda=0}=0 \Leftrightarrow k(\tilde{s}) a(\tilde{s}, 0)=a_{\tilde{z}}(\tilde{s}, 0)
$$

the geodesic condition. Also we conclude that

$$
\left.\frac{\partial^{2}}{\partial \lambda^{2}} L\left(\Gamma_{\lambda h}\right)\right|_{\lambda=0}=\int_{0}^{l}\left(a \dot{h}^{2}-2 k^{2} a+a_{\tilde{z} \tilde{z}} h^{2}\right) d \tilde{s}=-\int_{0}^{l}(a(\tilde{s}, 0) \dot{h} \tilde{s})^{\prime} h+\left(2 a(\tilde{s}, 0) k^{2}-a_{\tilde{z} \tilde{z}}(\tilde{s}, 0) h\right) h
$$

This can be expressed as $D^{2} L(\Gamma)=J_{a}$, which means $D^{2} L(\Gamma)[h]^{2}=$ $-\int_{0}^{l} J_{a}[h] h . J_{a}[h]$ is called the Jacobi operator of the geodesic Γ. Assumption: J_{a} is invertible.

We assume that if $h(\tilde{s}), \tilde{s} \in(0, l)$ is such that $h(0)=h(l), \dot{h}(0)=\dot{h}(l)$ and $J_{a}[h]=0$ then $h \equiv 0 . \operatorname{Ker}\left(J_{a}\right)=\{0\}$, in the space of l-periodic C^{2} functions. This implies (exercise) that the problem

$$
J_{a}[h]=g, g \in C(0, l), g(0)=g(l), h(0)=h(l), \dot{h}(0)=\dot{h}(l)
$$

has a unique solution ϕ. Moreover $\|\phi\|_{C^{2, \alpha}(0, l)} \leq C\|g\|_{C^{\alpha}(0, l)}$.
Remember that the equation in coordinates (s, z) is

$$
\begin{gathered}
E(v)=\frac{1}{(1-\varepsilon k(\varepsilon s) z)}\left(\frac{1}{(1-\varepsilon k(\varepsilon s) z)} v_{s}\right)_{s}+v_{z z}-\frac{\varepsilon k(\varepsilon s)}{(1-\varepsilon k(\varepsilon s) z)} v_{z}+ \\
\varepsilon \frac{a_{\tilde{s}}}{a} \frac{1}{(1-\varepsilon k(\varepsilon s) z)^{2}} v_{s}+\varepsilon \frac{a_{\tilde{z}}}{a} v_{z}+f(v)=0
\end{gathered}
$$

Change of variables: Fix a function $h \in C^{2, \alpha}(0, l)$ with $\|h\| \leq 1$ and do the change of variables $z-h(\varepsilon s)=t$ and take as first approximation $v_{0} \equiv w(t)$. Let us see that $v_{0}(s, z)=w(z-h(\varepsilon s))$ so

$$
\begin{aligned}
& E\left(v_{0}\right)=\frac{1}{1-\varepsilon k z}\left(\frac{1}{1-\varepsilon k z} w^{\prime}(-\dot{h}(\varepsilon s, \varepsilon z))_{s}+w^{\prime \prime}+f(w)\right. \\
& +\varepsilon\left(\frac{a_{\tilde{z}}}{a}(\varepsilon s, \varepsilon z)-\frac{k(\varepsilon s)}{1-k(\varepsilon s) \varepsilon z}\right) w^{\prime}-\varepsilon \dot{h} \frac{\varepsilon}{(1-\varepsilon k z)^{2}} \frac{a_{\tilde{s}}}{a} w^{\prime}
\end{aligned}
$$

Error in terms of coordinates $(s, t) z=t+h(\varepsilon s)$:
$E\left(v_{0}\right)(s, t)=\varepsilon w^{\prime}(t)\left[\frac{a_{\tilde{z}}}{a}(\varepsilon s, \varepsilon(t+h))-\frac{k(\varepsilon s)}{1-k(\varepsilon s)(t+h) \varepsilon}\right]-\frac{\varepsilon^{2} w^{\prime}}{(1-k \varepsilon(t+h))^{2}} h^{\prime \prime}$
$+\frac{1}{(1-k \varepsilon(t+h))^{2}} w^{\prime \prime} \dot{h}^{2} \varepsilon^{2}-\frac{1}{(1-\varepsilon k(t+h))^{3}} \varepsilon^{2} \dot{k}(t+h) \dot{h} w^{\prime}(t)-\varepsilon \dot{h} \frac{\varepsilon}{(1-\varepsilon k z)^{2}} \frac{a_{\tilde{s}}}{a} w^{\prime}$
In fact

$$
\left|E\left(v_{0}\right)(t, s)\right| \leq C \varepsilon^{2} e^{-\sigma|t|}
$$

$\sigma<1$, and

$$
\left\|e^{\sigma|t|} E\left(v_{0}\right)\right\|_{C^{0, \alpha}\left(|t|<\frac{\delta}{\varepsilon}\right)} \leq C \varepsilon^{2}
$$

Formal computation: We would like $\int_{-\delta / \varepsilon}^{\delta / \varepsilon} E\left(v_{0}\right)(s, y) w^{\prime}(t) d t \approx 0$. Observe that

$$
-\varepsilon^{2} h^{\prime \prime}(\varepsilon s) \int_{|t|<\delta / \varepsilon} \frac{w^{\prime 2}}{(1-k \varepsilon(t+h))}=-\varepsilon^{2} h^{\prime \prime} \int_{\mathbb{R}} w^{\prime 2} d t+O\left(\varepsilon^{3}\right)
$$

Also

$$
\dot{h}^{2} \varepsilon^{2} \int \frac{1}{1-\varepsilon k(t+h)} w^{\prime \prime} w^{\prime} d t=0+O\left(\varepsilon^{3}\right)
$$

$\varepsilon^{2} \dot{h} \int \frac{a_{s}}{a}(\varepsilon s, \varepsilon(t+h)) w^{\prime 2} /(1+k \varepsilon(t+h))^{2}=\varepsilon^{2} \dot{h} \frac{a_{\tilde{s}}}{a}(\varepsilon s, 0) \int w^{\prime 2}+O\left(\varepsilon^{3}\right)$
and finally

$$
\varepsilon \int_{|t|<\delta / \varepsilon} w^{\prime 2}\left(\frac{a_{\tilde{z}}}{a}(\varepsilon s, \varepsilon(t+h))-\frac{k(\varepsilon s)}{1-k(\varepsilon s)(t+h) \varepsilon}\right)=\varepsilon^{2} \int_{\mathbb{R}} w^{\prime}(t)^{2}\left(\varepsilon^{2}\right)\left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s, 0)-k^{2}\right) h(\varepsilon s)+O(\varepsilon
$$

Then

$$
\frac{-\int E w^{\prime} d t}{\varepsilon^{2} \int w^{\prime 2}}=h^{\prime \prime}+h^{\prime} \frac{a_{\tilde{s}}}{a}-\left(\left(\frac{a_{\tilde{z}}}{a}\right)_{\tilde{z}}(\varepsilon s, 0)-k^{2}\right) h+O(\varepsilon)
$$

we call $\tilde{s}=\varepsilon s$, and we conclude that the right hand side of the above equality is equal to

$$
\frac{1}{a(\tilde{s}, 0)}\left((a(\tilde{s}, 0)) h^{\prime}(\tilde{s})^{\prime}+\left(2 k^{2} a(\tilde{s}, 0)-a_{\tilde{z} \tilde{z}}(\tilde{s}, 0)\right) h\right)+O(\varepsilon)
$$

and this is equal to

$$
\frac{1}{a(\tilde{s}, 0)}\left(J_{a}[h]+O(\varepsilon)\right)
$$

We need the equation for $v(s, z)=\tilde{v}(s, z-h(\varepsilon s))$. We have

$$
\frac{\partial v}{\partial s}=\frac{\partial \tilde{v}}{\partial s}-\frac{\partial \tilde{v}}{\partial t} \dot{h} \varepsilon
$$

We write $z=t+h$, so we have

$$
\begin{gathered}
S(\tilde{v})=\frac{1}{(1-\varepsilon k z)}\left(\frac{\partial}{\partial s}-\varepsilon \dot{h} \frac{\partial}{\partial t}\right)\left[\frac{1}{1-\varepsilon k(t+h)}\left(\frac{\partial}{\partial s}-\varepsilon \dot{h} \frac{\partial}{\partial t}\right)\right] \tilde{v}+\tilde{v}_{t t} \\
\varepsilon\left[-\frac{k}{1-\varepsilon k z}+\frac{a_{\tilde{z}}}{a}\right] \tilde{v}_{t}+\varepsilon \frac{a_{\tilde{s}}}{a} \frac{1}{1-k \varepsilon z}\left[\tilde{v}_{s}-\varepsilon \dot{h} \tilde{v}_{t}\right]+f(\tilde{v})=0
\end{gathered}
$$

The first term of this equation is equal to

$$
\begin{aligned}
& \frac{1}{1-\varepsilon k z}\left\{\frac{\varepsilon(\varepsilon \dot{k}(t+h)+\varepsilon k \dot{h})}{(1-\varepsilon k(t+h))^{2}}\left(\tilde{v}_{s}-\varepsilon \dot{h} v_{t}\right)+\frac{1}{1-k \varepsilon(t+h)}\left(-\varepsilon^{2} h^{\prime \prime} v_{t}-2 \varepsilon \dot{h} \tilde{v}_{t} s\right)+\frac{1}{1+\varepsilon k(t+h)} \tilde{v}_{s} s\right\} \\
& -\varepsilon \dot{h}\left\{\frac{\varepsilon k}{(1-\varepsilon k(t+h))^{2}}\left(\tilde{v}_{s}-\varepsilon \dot{h} \tilde{v}_{t}\right)+\frac{1}{1-\varepsilon k(t+h)}\left(-\varepsilon \dot{h} \tilde{v}_{t t}\right)\right\}+f(\tilde{v})=0
\end{aligned}
$$

Let us observe that for $|t|<\delta / \varepsilon, \delta \ll 1$

$$
S[\tilde{v}](s, t)=\tilde{v}_{s s}+\tilde{v}_{t t}+O(\varepsilon) \partial_{t s} \tilde{v}+O(\tilde{\varepsilon}) \partial_{t t} \tilde{v}+O(\varepsilon k(|t|+1)) \partial_{s s} \tilde{v}+O(\varepsilon) \partial_{t} \tilde{v}+O(\varepsilon) \partial_{s} \tilde{v}+f(v)=0
$$

We will call the operator that appears in the equation $B[\tilde{v}]$. We look for a solution of the form $\tilde{v}(s, t)=w(t)+\phi(s, t)$. The equation for ϕ is

$$
\phi_{s s}+\phi_{t t}+f^{\prime}(w(t)) \phi+E+B(\phi)+N(\phi)=0, \quad|t|<\delta / \varepsilon
$$

where $E=S(w(t))=O\left(\varepsilon^{2} e^{-\sigma t}\right), N(\phi)=f(w+\phi)-f(w)-f^{\prime}(w) \phi$, $s \in(0, l / \varepsilon)$. We use the notation $L(\phi)=\phi_{s s}+\phi_{t t}+f^{\prime}(w(t)) \phi$. We also need the boundary condition $\phi(0, t)=\phi(l / \varepsilon, t)$ and $\phi_{s}(0, t)=\phi_{s}(l / \varepsilon, t)$.

It is natural to study the linear operator in \mathbb{R}^{2} and the linear projected problem

$$
\phi_{s s}+\phi_{t t}+f^{\prime}(w(t)) \phi+g(t, s)=c(s) w^{\prime}(t)
$$

where $c(s)=\frac{\int_{\mathbb{R}} g(t, s) w^{\prime}(t) d t}{\int_{\mathbb{R}} w^{\prime}(t)^{2} d t}$ and under the orthogonally condition

$$
\int_{-\infty}^{\infty} \phi(s, t) w^{\prime}(t) d t=0, \quad \forall s \in \mathbb{R}
$$

Basic ingredient: (Even more general) Consider the problem in $\mathbb{R}^{m} \times$ \mathbb{R}, with variables (y, t) :

$$
\Delta_{y} \phi+\phi_{t t}+f^{\prime}(w(t)) \phi=0, \quad \phi \in L^{\infty}\left(\mathbb{R}^{m} \times \mathbb{R}\right)
$$

If ϕ is a solution of the above problem, then $\phi(y, t)=\alpha w^{\prime}(t)$ some $\alpha \in \mathbb{R}$. Ingredient: $\exists \gamma>0: \quad \int_{\mathbb{R}} p^{\prime}(t)^{2}-f^{\prime}(w(t)) p(t)^{2} \geq \gamma \int_{\mathbb{R}} p^{2}(t) d t$
for all $p \in H^{1}$ with $\int_{\mathbb{R}} p w^{\prime}=0 . \quad \psi(y)=\int_{\mathbb{R}} \phi^{2}(y, t) d t$. This is well defined (as we will see) Indeed: It turns out that $|\phi(y, t)| \leq C e^{-\sigma t}$, $\sigma<\sqrt{2}$, thanks to the fact that $\phi \in L^{\infty}$. We use $x=(y, t)$ and we obtain

$$
\Delta_{x} \phi-\left(2-3\left(1-w(t)^{2}\right)\right) \phi=0
$$

Observe that $1-w(t)^{2}$ is small if $|t| \gg 1$. Fix $0<\sigma<\sqrt{2}$, for $|t|>R_{0}$ we have $2-3\left(1-w^{2}(t)\right)>\sigma^{2}$. Let

$$
\bar{\phi}_{\rho}(y, t)=\rho \sum_{i=1}^{n} \cosh \left(\sigma y_{i}\right)+\rho \cosh (\sigma t)+\|\phi\|_{\infty} e^{\sigma R_{0}} e^{-\sigma|t|} .
$$

We have that

$$
\phi(y, t) \leq \bar{\phi}_{\rho}(y, t), \quad \text { for }|t|=R_{0}
$$

also true that for $|t|+|y|>R_{\rho} \gg 1, \phi(y, t) \leq \bar{\phi}_{\rho}$.

$$
-\Delta_{x} \phi+\left(2-3\left(1-w(t)^{2}\right)\right) \bar{\phi}=\left(2-\sigma^{2}-3\left(1-w(t)^{2}\right) \bar{\phi}_{\rho}\right)>0
$$

for $|t|>R_{0}$. So is a supersolution of the operator

$$
-\Delta_{x} \phi+\left(2-3\left(1-w(t)^{2}\right)\right) \phi
$$

in D_{ρ}, which implies that $\phi \leq \bar{\phi}_{\rho}$ for $|t|>R_{0}$. This implies that $|\phi(x)| \leq C \bar{\phi}_{\rho}$ for all x, and we conclude the assertion taking $\rho \rightarrow 0$. If ϕ solves $-\Delta \phi+\left(1-3 w^{2}\right) \phi=0$, then $\|\phi\|_{C^{2, \alpha}}\left(B_{1}\left(x_{0}\right)\right) \leq C\|\phi\|_{L^{\infty}\left(B_{2}\left(x_{0}\right)\right)}$. This implies that also

$$
\left|\phi_{y}\right|+\left|\phi_{y y}\right| \leq C e^{-\sigma t}
$$

Let $\phi(\tilde{y}, t)=\phi(y, t)-\frac{\int \phi(y, \tau) w^{\prime}(\tau) d \tau}{\int w^{\prime 2}} w^{\prime}$. We call $\beta(y)=\frac{\int \phi(y, \tau) w^{\prime}(\tau) d \tau}{\int w^{\prime 2}}$

$$
\Delta \tilde{\phi}+f^{\prime}(w) \tilde{\phi}=\Delta \phi+f^{\prime}(w) \phi+\left(\Delta_{y} \beta\right) w^{\prime}+\beta\left(\Delta w^{\prime}+f^{\prime}(w)\right) w^{\prime}=0
$$

because $\Delta_{y} \beta=0$ by integration by parts. Let $\psi(y)=\int_{\mathbb{R}} \tilde{\phi}^{2} d t$.
$\Delta_{y} \psi=\int_{\mathbb{R}} \nabla_{y}\left(2 \tilde{\phi} \nabla_{y} \tilde{\phi}\right) d t=2 \int\left|\nabla_{y} \tilde{\phi}\right|^{2} d t+2 \int \tilde{\phi} \Delta_{y} \tilde{\phi}=2 \int\left|\nabla_{y} \tilde{\phi}\right|^{2}-2 \int \tilde{\phi}\left[\tilde{\phi}_{t t}+f^{\prime}(w) \tilde{\phi}\right] d t$
Using $2 \int\left|\nabla_{y} \tilde{\phi}\right|^{2} d t+2 \int\left(\tilde{\phi}_{t}^{2}-f^{\prime}(w) \tilde{\phi}^{2}\right)$ This implies that $\Delta \psi \geq 2 \gamma \psi$ which implies $-\Delta \psi+2 \gamma \psi \leq 0,0 \leq \psi \leq c$.

We obtain that $\psi \equiv 0$ and this implies $\tilde{\phi}=0$. This implies that $\phi(t)=\left(\int \phi w^{\prime}\right) w^{\prime}=\beta(y) w^{\prime}$ and $\Delta \beta=0, \beta \in L^{\infty}$. Liouville implies that $\beta=$ constant so $\phi=$ constantw $^{\prime}$.

Lemma: L^{∞} a priori estimates for the linear projected problem: $\exists C:\|\phi\|_{\infty} \leq C\|g\|_{\infty}$.

Proof: If not exists $\left\|g_{n}\right\|_{\infty} \rightarrow 0$ and $\left\|\phi_{n}\right\|_{\infty}=1$.

$$
L\left[\phi_{n}\right]=-g_{n}+c_{n}(t) w^{\prime}(t)=h_{n}(t)
$$

and $h_{n} \rightarrow 0$ in L^{∞}. $\left\|\phi_{n}\right\|=1$ which implies that $\exists\left(y_{n}, t_{n}\right):\left|\phi\left(y_{n}, t_{n}\right)\right| \geq$ $\gamma>0$. Assume that $\left|t_{n}\right| \leq C$ and define $\tilde{\phi}(y, t)=\phi_{n}\left(y_{n}+y, t\right)$. Then

$$
\Delta \tilde{\phi}_{n}+f^{\prime}(w(t)) \tilde{\phi}_{n}=\tilde{h}_{n}
$$

but $f^{\prime}(w(t)) \tilde{\phi}_{n}$ is uniformly bounded and the right hand side goes to 0 . This implies that $\|\phi\|_{C^{1}\left(\mathbb{R}^{m+1}\right)} \leq C$ This implies that $\tilde{\phi}_{n} \rightarrow \tilde{\phi}$ passing to subsequence, and the convergence is uniformly on compacts, where $\Delta \tilde{\phi}+f^{\prime}(w) \tilde{\phi}=0, \tilde{\phi} \in L^{\infty}$. We conclude after a classic argument that $\tilde{\phi}=0$. We have also that $\left\|e^{\sigma|t|} \phi\right\|_{\infty} \leq C\left\|e^{\sigma|t|} g\right\|_{\infty}, 0<\sigma<\sqrt{2}$. Elliptic regularity implies that $\left\|e^{\sigma|t|} \phi\right\|_{C^{2, \sigma}} \leq\left\|e^{\sigma|t|} g\right\|_{C^{0, \sigma}}$.

Existence: Assume g has compact support and take the weak formulation: Find $\phi \in H$ such that $\int_{\mathbb{R}^{m+1}} \nabla \phi \nabla \psi-f^{\prime}(w) \phi \psi=\int g y$, for all $\psi \in H$, where $H=\left\{f \in H^{1}\left(\mathbb{R}^{m+1}\right) \mid \int_{\mathbb{R}} \psi w^{\prime} d t=0, \forall y \in \mathbb{R}^{m}\right\}$. Let us see that $a(\psi, \psi)=\int|\nabla \psi|^{2}-f^{\prime}(w) \psi^{2} \geq \gamma \int \psi^{2}+\psi^{2}$. So $a(\psi, \psi) \geq C\|\psi\|_{H^{1}\left(\mathbb{R}^{m+1}\right)}^{2}$ This implies the unique existence solution. Observe that

$$
\int\left(\Delta \phi+f^{\prime}(w) \phi+g\right) \psi=0
$$

for all $\psi \in H$. Let $\psi \in H^{1}$ and $\psi=\tilde{\psi}-\frac{\int \tilde{\psi} w^{\prime} d t}{\int w^{\prime 2}} w^{\prime}=\Pi(\tilde{\psi})$. We have that

$$
\int d y \int g \Pi(\tilde{\psi}) d t=\int \Pi(g) \psi
$$

which implies that $\Pi\left(\Delta \phi+f^{\prime}(w) \phi+g\right)=0$ if and only if $\Delta \phi+$ $f^{\prime}(w)+\phi+g=\frac{\int\left(\Delta \phi+f^{\prime}(w)+g\right)}{\int w^{\prime 2}} w^{\prime}$ Regularity implies that $\phi \in L^{\infty}$ and $\|\phi\|_{\infty} \leq C\|g\|_{\infty}$. Approximating $g \in L^{\infty}$ by $g_{R} \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ locally over compacts. This implies existence result.

We can bound ϕ in other norms. For example if $0<\sigma<\sqrt{2}$, then

$$
\left\|e^{\sigma|t|} \phi\right\|_{\infty} \leq C\left\|e^{\sigma|t|} g\right\|_{\infty}
$$

Indeed, $f^{\prime}(w)<-\sigma^{2}-\eta$ if $|t|>R$, with $\eta=\left(2-\sigma^{2}\right) / 2$. We set

$$
\bar{\phi}=M e^{-\sigma|t|}+\rho \sum_{i=1}^{n} \cosh \left(\sigma y_{i}\right)+\rho \cosh (\sigma t)
$$

Therefore

$$
-\Delta \bar{\phi}+\left(-f^{\prime}(w)\right) \bar{\phi} \geq-\delta \bar{\phi}+\left(\sigma^{2}+\eta\right) \bar{\phi}=\eta \bar{\phi}>\tilde{g}=-g+c(y) w^{\prime}(t)
$$

if $M \geq \frac{A}{\eta}\left\|e^{\sigma|t|} g\right\|_{\infty}$. In addition we have $\bar{\phi} \geq \phi$ on $|t|=R$ if $M \geq$ $\|\phi\|_{\infty} e^{\sigma R}$. By an standard argument based on maximum principle, we conclude that $\phi \leq \bar{\phi}$. This means, letting $\rho \rightarrow 0, \phi \leq M e^{-\sigma|t|}$, where $M \geq C \max \left\{\|\phi\|_{\infty},\left\|g e^{\sigma|t|}\right\|_{\infty}\right\}$. Since $\|\phi\|_{\infty} \leq C\|g\|_{\infty} \leq C\left\|g e^{\sigma|t|}\right\|_{\infty}$, we can take $M=C\left\|g e^{\sigma|t|}\right\|_{\infty}$. Finally, we conclude $\left\|\phi e^{\sigma|t|}\right\|_{\infty} \leq\left\|g e^{\sigma|t|}\right\|_{\infty}$.

Reminder: If $\Delta \phi=p$ implies that

$$
\|\nabla \phi\|_{L^{\infty}\left(B_{1}(0)\right)} \leq C\left[\|\phi\|_{L^{\infty} B_{2}(0)}+\|p\|_{L^{\infty}\left(B_{1}(0)\right)}\right] .
$$

Remember that

$$
\|p\|_{C^{0, \alpha}(A)}=\|p\|_{\infty}+[\phi]_{0, \alpha, A}
$$

where $[\phi]_{0, \alpha, A}=\sup _{x_{1}, x_{2} \in A, x_{1} \neq x_{2}} \frac{\left|p\left(x_{1}\right)-p\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}}$. Also we have the following interior Schauder estimate: for $0<\alpha<1$

$$
\|\phi\|_{C^{2, \sigma}\left(B_{1}\right)} \leq C\left[\|\phi\|_{L^{\infty}\left(B_{2}(0)\right)}+\|p\|_{C^{0, \alpha}\left(B_{2}(0)\right)}\right] .
$$

Conclusion: If ϕ solves the equation in \mathbb{R}^{n+1} then

$$
\|\phi\|_{C^{2, \alpha}\left(\mathbb{R}^{n+1}\right)} \leq C\|g\|_{C^{0, \alpha}\left(\mathbb{R}^{n+1}\right)}
$$

Sketch of the proof of this fact: Fix $x_{0} \in \mathbb{R}^{n+1}$, then

$$
C[\phi]_{0, \alpha, B_{1}\left(x_{0}\right)} \leq\|\nabla \phi\|_{L^{\infty}\left(B_{1}\left(x_{0}\right)\right)} \leq C\left[\|\phi\|_{\infty}+\|g\|_{\infty}\right] \leq C\|g\|_{\infty}
$$

This implies that $\|\phi\|_{C^{0, \alpha}\left(B_{1}\left(x_{0}\right)\right)} \leq C\|g\|_{\infty}$, which implies $\|\phi\|_{C^{0, \alpha}\left(\mathbb{R}^{n}\right)} \leq$ $C\|g\|_{\infty}$. Clearly $\|p\|_{C^{0, \alpha}\left(B_{2}\left(x_{0}\right)\right)} \leq C\|g\|_{\infty}$, so $\|\phi\|_{C^{0, \alpha}\left(B_{1}\left(x_{0}\right)\right)} \leq C\|g\|_{C^{0, \alpha}\left(\mathbb{R}^{n+1}\right)}$, from where we deduce the estimate.

We also get

$$
\left\|e^{\sigma|t|} \phi\right\|_{C^{2, \alpha}\left(\mathbb{R}^{n+1}\right)} \leq C\left\|e^{\sigma|t|} g\right\|_{C^{0, \alpha}\left(\mathbb{R}^{n+1}\right)} .
$$

The proof of this fact is very similar to the previous one (use that $g \leq e^{-\sigma\left|t_{0}\right|\left\|g e^{\sigma|t|}\right\|}$, for $\left|t_{0}\right| \gg 1$).

Another result is the following

$$
\left\|\left(1+|y|^{2}\right)^{\mu / 2} \phi\right\|_{\infty} \leq C\left\|\left(1+|y|^{2}\right)^{\mu / 2} g\right\|_{\infty}
$$

 $\tilde{\phi}=\rho(\delta y) \phi$. Observe that
$\Delta \phi=\rho^{-1} \Delta \tilde{\phi}-2 \delta \nabla \tilde{\phi} \nabla\left(\rho^{-1}(\delta y)\right)+\tilde{\phi} \delta^{2} \Delta\left(\rho^{-1}\right)(\delta y)=f^{\prime}(w) \phi+g-c w^{\prime}$
We get $L[\tilde{\phi}]+O\left(\delta^{2}\right) \tilde{\phi}+O(\delta) \nabla \tilde{\phi}=\rho\left(g-c w^{\prime}\right)$. We get

$$
\|\nabla \tilde{\phi}\|_{\infty}+\|\tilde{\phi}\|_{\infty} \leq C\left[\delta^{2}\|\tilde{\phi}\|_{\infty}+\delta\|\nabla \tilde{\phi}\|_{\infty}+\|\rho g\|_{\infty}\right] .
$$

If δ is small we conclude that

$$
\|\tilde{\phi}\|_{\infty}+\|\nabla \tilde{\phi}\|_{\infty} \leq C\|\rho g\|_{\infty}
$$

and we obtain

$$
\|\rho \phi\| C \leq\|\rho g\| .
$$

Our setting:

$$
\begin{equation*}
\varepsilon^{2}\left[\delta u+\frac{\nabla a}{a} \cdot \nabla u\right]+f(u)=0 \tag{4.3}
\end{equation*}
$$

We want a solution to (4.3) $u_{\varepsilon}(x) \approx W(z / \varepsilon)$. Writing $x=y+z \gamma(y)$, $|z|<\delta$, we have

$$
\Delta v+\nabla a(\varepsilon x) / a \cdot \nabla v+f(v)=0
$$

in $\Gamma_{\varepsilon}=\frac{1}{\varepsilon} \Gamma: x=y+z \nu(\varepsilon y)$, which means $x=\frac{1}{\varepsilon} \gamma(\varepsilon s)+z \nu(\varepsilon s)$. Remember that $|\dot{\gamma}(\tilde{s})|=1$ which implies $\dot{\nu}(\tilde{s})=-k(\tilde{s}) \dot{\gamma}(\tilde{s})$. We also set $z=h(\varepsilon s)+t . x=\frac{1}{\varepsilon} \gamma(\varepsilon s)+(t+h(\varepsilon s)) \nu(\varepsilon s)$. We assume $\|h\|_{\alpha,(0, l)} \leq 1$, for $0<\alpha<1$. We wrote Δ_{x} in terms of this coordinates (t, s) and the equations $S(v)=0$ is rewritten taking as first approximation $w(t)$. We evaluated $S(w(t))$ and got that $S(w(t))=0$.

From the expression of Δ_{x} we get $\left(x=\frac{1}{\varepsilon} \gamma(\varepsilon s)+(t+h(\varepsilon s)) \nu(\varepsilon s)\right)$

$$
\Delta_{x} v=\partial_{s s}+\partial_{t t}+\varepsilon\left[b_{1}^{\varepsilon}(t, s) \partial_{s s}+b_{2}^{\varepsilon} \partial_{t t}+b_{3}^{\varepsilon} \partial_{s t}+b_{4}^{\varepsilon} \partial_{t}+b_{5}^{\varepsilon} \partial_{s}\right]
$$

$\left|\varepsilon b_{i}\right| \leq C \delta$ in the region $|t|<\delta / \varepsilon$. The coefficients are periodic (same values at $s=0$ and $s=l / \varepsilon)$. Our equation reads

$$
\partial_{s s} v+\partial_{t t} v+B_{\varepsilon}[v]+f(v)=0, \quad \text { for } s \in(0, l / \varepsilon),|t|<\delta / \varepsilon .
$$

This expression does not make sense globally. We consider $\delta \ll 1$. We define

$$
H(x)= \begin{cases}-1 & \text { in } \Omega_{-}^{\varepsilon} \\ +1 & \text { in } \Omega_{+}^{\varepsilon}\end{cases}
$$

where Ω_{+}^{ε} is a bounded component of $\mathbb{R}^{2} \backslash \Gamma$, and Ω_{-}^{ε} the other. For the equation

$$
\Delta v+\varepsilon \frac{\nabla a}{a} \cdot \nabla v+f(v)=0
$$

we take as first (global) approximation

$$
v_{0}(x)=w(t) \eta_{3}+\left(1-\eta_{4}\right) H(x)
$$

where

$$
\eta_{l}(x)=\left\{\begin{array}{cc}
\eta\left(\frac{\varepsilon|t|}{l \delta}\right) & \text { if }|t|<2 \delta l / \varepsilon \\
0 & \text { otherwise }
\end{array}\right.
$$

Look for a solution of the form $v=v_{0}+\tilde{\phi}$, so

$$
\Delta_{x} \tilde{\phi}+\varepsilon \frac{\nabla a}{a} \cdot \nabla \tilde{\phi}+f^{\prime}\left(v_{o}\right) \tilde{\phi}+E+N(\tilde{\phi})=0
$$

where $E=S_{\tilde{\phi}}\left(v_{0}\right)$ and $N(\tilde{\phi})=f\left(v_{0}+\tilde{\phi}\right)-f\left(v_{0}\right)-f^{\prime}\left(v_{0}\right) \tilde{\phi}$.
We write $\tilde{\phi}=\eta_{3} \phi+\psi$. We require that ϕ and ψ solve the system

$$
\begin{aligned}
& \Delta_{x} \psi-2 \psi+\left(2+f^{\prime}\left(v_{0}\right)\right)\left(1-\eta_{1}\right) \psi+\varepsilon \frac{\nabla a}{a} \nabla \psi+\left(1-\eta_{1}\right) E+\left(1-\eta_{1}\right) N\left(\eta_{3} \phi+\psi\right)+\nabla \eta_{3} \nabla \phi+\nabla \eta_{3} \nabla \phi+\varepsilon- \\
& \eta_{3}\left[\Delta_{x} \phi+f^{\prime}(w(t)) \phi+\eta_{1}\left(2+f^{\prime}(w(t))\right) \psi+\eta_{1} E+\eta_{1} N(\phi+\psi)+\varepsilon \frac{\nabla a}{a} \cdot \nabla \phi\right]=0 .
\end{aligned}
$$

We need that the ϕ above satisfies the equation just for $|t|<6 \delta / \varepsilon$. We assume that $\phi(s, t)$ is defined for all s and t (and it is l / ε - periodic in $s)$. We require that ϕ satisfies globally
$\phi_{t t}+\phi_{s s}+\eta_{6} B_{\varepsilon}[\phi]+f^{\prime}(w(t)) \phi+\eta_{1} E+\eta_{1} N(\phi+\psi)+\eta_{1}\left(2+f^{\prime}(w)\right) \psi=0$ and $\phi \in L^{\infty}(\mathbb{R} n+1)$ and periodic in s. Notice that $\phi_{t t}+\phi_{s s}+\eta_{6} B_{\varepsilon}[\phi]=$ $\Delta_{x} \phi$ inside the support of η_{3}. Rather than solving this problem directly we solve the projected problem
$\phi_{t t}+\phi_{s s}+\eta_{6} B_{\varepsilon}[\phi]+f^{\prime}(w(t)) \phi+\eta_{1} E+\eta_{1} N(\phi+\psi)+\eta_{1}\left(2+f^{\prime}(w)\right) \psi=c(s) w^{\prime}(t)$
and $\int_{\mathbb{R}} \phi w^{\prime}(t) d t=0$. We solve (4)-(4.4) first, then we find h such that $c(s) \equiv 0$. We consider ϕ with $\|\phi\|_{\infty}+\|\nabla \phi\|_{\infty} \leq \varepsilon$. The operator $-\Delta \psi+2 \psi$ is invertible $L^{\infty}\left(\mathbb{R}^{3}\right) \rightarrow C^{1}\left(\mathbb{R}^{2}\right)$. We conclude that if $g \in L^{\infty}$ the exist a unique solution $\psi=T[g] \in C^{1}\left(\mathbb{R}^{2}\right)$ with $\|\phi\|_{C^{1}} \leq C\|g\|_{\infty}$ of equation $-\Delta \psi+2 \psi=g$ in \mathbb{R}^{2}. Observe that (4) is equivalent to
$\psi=T\left[\left(2+f^{\prime}\left(v_{0}\right)\right)\left(1-\eta_{1}\right) \psi+\varepsilon \frac{\nabla a}{a} \nabla \psi+\left(1-\eta_{1}\right) E+\left(1-\eta_{1}\right) N\left(\eta_{3} \phi+\psi\right)+\nabla \eta_{3} \nabla \phi+\nabla \eta_{3} \nabla \phi+\varepsilon \frac{\nabla a}{a} \nabla\right.$
Using contraction mapping in C^{1} on $\|\psi\|_{C^{1}} \leq C \varepsilon$, we conclude that there exist a unique solution of the this problem $\psi=\psi(\phi, h)$ such that

$$
\|\psi\| \leq C\left[\varepsilon^{2}+\varepsilon\|\phi\|_{C^{1}}\right]
$$

Even more, $\left\|\psi\left(\phi_{1}, h\right)-\psi\left(\phi_{2}, h\right)\right\|_{C^{1}} \leq C \varepsilon\left\|\phi_{1}-\phi_{2}\right\|_{C^{1}}$.

