INTRODUCTION TO LYAPUNOV SMICHDT
REDUCTION METHODS FOR SOLVING PDE’S

MANUEL DEL PINO AND JUNCHENG WEI

1. ALLEN CAHN EQUATION

Energy: Phase transition model.
Let Q C RY of a “binary mixture”: Two materials coexisting (or one
material in two phases). We can take as an example of this: Water in
solid phase (+1), and water in liquid phase (—1). The configuration of
this mixture in €2 can be described as a function

«/ N ) 1 in A
=121 im0\ A

where A is some open subset of 2. We will say that u* is the phase

function.
1
3 fa-wy
4 Jo

Consider the functional
minimizes if v = 1 or v = —1. Function «v* minimize this energy
functional. More generally this well happen for

/Q W (u)da

where W (u) minimizes at 1 and —1, i.e. W(+1) = W(-1) = 0,
W(z)>0ifz #1oraz#-1W'(+1),W"(-1) > 0.

1.1. The gradient theory of phase transitions. Possible configu-
rations will try to make the boundary dA as nice as possible: smooth
and with small perimeter. In this model the step phase function u* is
replaced by a smooth function u., where € > 0 is a small parameter,

and
(z) ~ +1 inside A
U= 21 inside Q \ A

and u, has a sharp transition between these values across a “wall” of

width roughly O(e): the interface (thin wall).
1
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In grad theory of phase transitions we want minimizers, or more
generally, critical points u. of the functional

Vu|> 1 / (1 —u?)?
Jw)y=e [ D2 [ T00
(u) 6/9 5 T - )1

Let us observe that the region where (1 —u?) > v > 0 has area of order
O(e) and the size of the gradient of u. in the same region is O(g?) in
such a way J(u.) = O(1). We will find critical points u. to functionals
of this type so that J(u.) = O(1).

Let us consider more generally the case in which the container isn’t
homogeneous so that distinct costs are paid for parts of the interface
in different locations

¢wy:4(ﬁi??+ylafy>qmm

3

a(x) non-constant, 0 < v < a(z) <  and smooth.

1.2. Critical points of J.. First variation of J, at u. is equal to zero.

0
§J5<us + t@)

We have

= DJ.(u)[p] =0, Vpe ()

t=0

J-(us +tp) =
ie. Vo € C(0)
0= DJ.(u:)|p] = a/Q(Vuan))a + é /Q W' (u.)da.

If u. € C%*(Q)

/ (—EV - (aVue) + gW’(u€)> =0, VYpelCrQ)
Q
This give us the weighted Allen Cahn equation in §2

—eV - (aVu) + gu(l —u?) =01in Q.

We will assume in the next lectures = RY, where N = 1 or N = 2.
If N =1 weight Allen Cahn equation is

!
(1.1) R (1 —u*)u =0, in (—o0,0).
a

Look for wu. that connects the phases —1 and +1 from —oo to oc.
Multiplying (1.1) against «’ and integrating by parts we obtain

*d (v (1—u?)? *ad L,
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Assume that u(—o0) = —1, u(oco) = 1, v/(—00) = u'(00) = 0, a > 0,
then (1.2) implies that

2\2 oo/
(1_u) +/ guazo
4
from which we conclude that unless a is constant, we need a’ to change
sign. So: if a is monotone and a’ # 0 implies the non-existence of
solutions as we look for. We need the existence (if a’ # 0) of local
maximum or local minimum of a. We will prove that under some
general assumptions on a(z), given a local max. or local min. xy of
a non-degenerate (a”(xy) # 0), then a solution to (1.1) exists, with
transition layer.

We consider first the problem with a =1, e = 1:

(1.3) W'+ (1-WHW =0, W(-00)=—1, W(c0) = 1.

The solution of this problem is

W (t) = tanh (%)

This solution is called “the heteroclinic solution”, and it’s the unique
solution of the problem (1.3)up to translations.

—00

Observation 1.1. This solution exists also for the problem

(1.4) w” + f(w) =0, w(—o00)=-1,w(oco)=1
where f(w) = —W'(w). Solutions satisfies “’T/Q — W(w) = E, where E
is constant, and w(—o0) = —1 and w(oo) = 1 if and only if E = 0.

This implies

/w ds y
0 2w(s)
t(w) — oo if w — 1, and t(w) — —o0 if w — —1, so the previous
relation defines a solution w such that w(0) = 0, and w(—o0) = —1,
w(oo) = 1.

If we wright the Hamiltonian system associated to the problem we
have:

V=-fla), d=p

Trajectories lives on level curves of H(p,q) = %2 —Wi(q), where W(q) =
(1-¢*)?

4

Let zp € R (we will make assumptions on this point). Fix a number
h € R and set

v(t) = u(zg+e(t+h)), V() =cu(zg+e(t+h))
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Using (1.1), we have

e2u (zo +e(t + h)) = —EQ%UI(IO +e(t+h)) — (1 —22(t)v(t)

so we have the problem
(1.5)
/
V() e (@ote (M) (O)+(1—v())o(t) = 0, w(—00) = —1, w(oc) = 1.
a
Let us observe that if € = 0 the previous problem becomes formally in
(1.3), so is natural to look for a solution v(t) = W(t) 4+ ¢, with ¢ a

small error in €.
Assumptions:
(1) There exists 3,7 > 0 such that v < a(z) < 3, Vx € R
(2) [lo/ |y, [la"[| o) < +00
(3) xgissuch that a’(zg) = 0, a”(x¢) # 0, i.e. x¢ is a non-degenerate
critical point of a.

Theorem 1.1. Ve > 0 sufficiently small, there exists a solution v = v,
to (1.5) for some h = he, where |h.| < Ce and v.(t) = w(t) + ¢:(t) and

[fell < Ce

Proof. We write in (1.5) v(t) = w(t) + ¢(t). From now on we write
f(v) =v(1 —v?). We get
/ !/

' () e S (e ()0 + (w0 0) = () = ()t () +f ()6 =
#(~00) = 9(00) = 0.

It can be written in the following way
(16) &'+ F'(wH)o+ B+ B(@) + N(6) =0, (~o0) = 4(00) =0
where
B(8) == (xo + <(t + M),
N(9) =f(w+ ) — f(w) = f'(w) = —3wd* — ¢,
E__Z@m+a@+h»w

We consider the problem
(1.7) ¢" + [(w(t)g+9(t) =0, ¢ L™(R),

and we want to know when (1.7) is solvable. We will assume g €
L>*(R). Multiplying (1.7) against w’ we get

| @ rwwes [~ g =0

—00 — 00
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the first integral is zero because (1.4). We conclude that a necessary

condition is
oo
/ guw' = 0.
— 0

This condition is actually sufficient for solvability. In fact, we write
¢ = w'V, we have
¢+ [(w)g =g & w'V+ 20"V = —g

Multiplying this last expression by w’ (integration factor), we get

[e.9]

(W) = g’ = w'2V'(t) = —/ g(s)w'(s)ds

Let us choose
t dT T
U(t) = — _ "(s)d
0=~ [ o |ty
Then the function

o) =) [ 5 [ oo

Recall that
w'(t) & 2v/2e VM

Claim: if [*° gw’ = 0 then we have

[¢lloe < Cliglloo-

/ guw'ds

For t < 0 a similar estimate yields, so we conclude

|6(8)] < Cl|glloc-

In fact, if ¢ >0
e

SOl <] | —

t
dr < Clglce™* / V7" dr < Ollglloe.
0

|
0

O

The solution of (1.7) is not unique because if ¢; is a solution implies
that ¢o = ¢ + Cw'(t) is also a solution. The solution we found is
actually the only one with ¢(0) = 0. For g € L™ arbitrary we consider
the problem

(1.8) "+ fl(w)p+ (g —cw') =0, inR, ¢eL®R)
where C' = C(g) = f;? iu/;

)2
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Lemma 1.1. Vg € L*(R) (1.8) has a solution which defines a operator
¢ = Tlg] with

IT[9)llo0 < Cllglloo-

In fact if T[Q] is the solution find in the previous step then ¢ = T[g —
C(g)w'] solves (1.8) and

(1.9) [6llse < Cliglloe +1C(9)IC < Cllglloe

Proof. Back to the original problem: We solve first the projected prob-
lem

¢" + [(w)o+ E+ B(¢) + N(¢) = Cu', ¢ € L*(R)

where

Jo(E + B(¢) + N(¢))w'"

fR w'?
We solve first (1.9) and then we find h = h. such that in (1.9) C=0

in such a way we find a solution to the original problem. We assume
|h| < 1. It’s sufficient to solve

¢ =T[E+ B(¢) + N(¢)] := M[g].
We have the following remark

|E] <O [IB(9)lloo < Celldlloos  IN@) < C16°[loc + 16°]]o0)

where C' is uniform on |h| < 1. We have

C:

d
1M lootll = Mlloo < CUE oI BONooHIN (@)oo < C”+e 1 |ooH 167 [loo+ 1 [|oc)
then if [|¢]|oc + [|¢'[|c < Me? we have
d

Moo + |57 M|l < C*>.

2o+ 1 a1 < O
We define the space X = {¢ € CY(R) : ||}l + [|¢']|co < C*e?}. Let us
observe that M (X) C X. In addition

HM(¢1)—M(¢2)Hoo+||%(M(¢1)—M(¢2))HOO < Ce([|or—=2lloot |91 —dloc)-

So if € is small M is a contraction mapping which implies that there
exists a unique ¢ € X such that ¢ = M|[¢]. d

In summary: We found for each |h| <1
¢ = ®(h), solution ofl.7

. We recall that
h — CI)(h)
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is continuous (in ||[|c1) . Notice that from where we deduce that M is
continuous in h.

The problem is reduced to finding h such that C' = 0 in (1.7) for
¢®(h) =. Let us observe that

C =0 a(h):= /R(Eh + BI®(R)]) + N[®(R)])u' = 0.

Let us observe that if we call 1(z) = £ (z), then

P(xote(t+h)) = w(x0)+w’(xo)5(t+h)+/0 (1—8)" (wo+se(t+h))e (t+h)>ds

We add the assumption a” € L>(R) in order to have ¢” € L>(R). We
deduce that

/Ehw' = 52@//(900)/(t+h)w'(t)2+53/R(/0 (1—8)" (wo+se(t+h))ds)(t+h)*w' (t)dt

We recall that: [, tw'(t)* and

\/R(B[aﬁ(h)] + N[p(Mhw'| < Clel @)l + [[@(R)|[1=) < CE°.
So, we conclude that

ac(h) = ¢/ (z0)e*(h + O(e))

and the term inside the parenthesis change sign. This implies that
Jh. : |he| < Me such that a.(h) =0, so C = 0.
Observe that

L(¢) = ¢”—2¢+ew+3<1—w2>¢+%f”(w+s¢>¢¢+0(52>eﬁt' =0, |t|>R

We consider ¢ > R. Notice that 3 f”(w + s¢)¢ = O(e?). Then using

<;A5 = ce Il + el Then using maximum principle and after taking
§ — 0, we obtain ¢ < ee” .
A property: We call

L(¢) = ¢" + ['(w)p, ¢ € H*(R).
We consider the bilinear form associated
Bloo) =~ [ L@ = [ 6"~ Fwpe’. oeH'®)

Claim: B(¢,¢) > 0,V¢ € H'Y(R) and B(¢,¢) = 0 & ¢ = cw'(t).
In fact: J"(w)[¢, ¢] = B(¢,$). We give now the proof of the claim:
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Take ¢ € C’OO( ). Write ¢ = w'V = W € C°(R). Observe that
Lw'V] = L (w?P') and

B(¢,¢) = —/%(w'Q\II’)’w’\II = /mew’ Vo € C°(R)

Same is valid for all ¢ € H'(R), by density. So B(¢,¢) = [, [¢'|* —
fl(w)¢? = [fw2|¥']? > 0 and B(¢,¢) = 0 < ¥ = 0 which implies
¢ =cw'.

Corollary 1.1. Important for later porpuses There exists r > 0 such
that if ¢ € H'(R) and [, pw’' =0 then

B(6,9) 27/R¢2

Proof. If not there exists ¢,, [ H*(R) such that 0 < B(¢y, ¢n) < = [, ¢2.

We may assume without loss of generahty | ¢2 =1 which 1mphes that
up to subsequence

¢n — ¢ € H'(R)
and ¢, — ¢ uniformly and in L?sense on bounded intervals. This
implies that

n—oo

0= lim gbnw —/gbw’
R
On the other hand

Jiorz 23 [a-uhe —o
and also [ |¢)|?+2 [ ¢2=3 [(1—w?)¢2 — [|¢']P+2 [ ¢*—3 [(1—w?)¢?
so B(¢,¢) =0, and [w'¢ =0so ¢ =0. But also
2 < 3/(1 — w2 +o(1)

which implies that 2 < 3 [(1 — w?)¢? and this means that ¢ # 0, so
we obtain a contradiction. O

Observation 1.2. If we choose § = then

2||f/Hoo
/ 0% — (14 8)f (w)é* > 0.

This implies in fact that
Bo.0)za [ o
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2. NONLINEAR SCHRODINGER EQUTION (NLS)

gil; = ?AV — W(x)U + ||~ 1D,
A first fact is that [, |¥|* = constant. We are interested into study

solutions of the form U z,t) = e *F'u(z) (we will call this solutions
standing wave solution). Replacing this into the equation we obtain

cBu = e*Au— Wu — |ulPu
whose transforms into
E2Au— W = Nu+ [uf fu=0, wulx)—0, as|zr| — oo
choosing E = 2. We define V(z) = (W(z) — \)
2.1. The case of dimension 1.

(2.1)

e —V(r)u+u? =0, z€R, 0<u(z)—0, as|z] — oo,p>1.
Assume: V > v > 0, V, V', V" V" € L*, and V € C3*(R). Starting
point

(2.2) w'—w+wP =0, w>0, w(*oo)=0,p>1

There exists a homoclinic solution

C p+1 =
w - — - ()
(:osh(p%t)'”‘1

Let us observe that w(t) ~ 2¥®VCe M as t — oo and also that
W (t + c¢) satisfies same equation.

Staid at 2o with V(z0) = 1 we want u.(z) ~ w (£2%2) of the problem
(2.1).

Observation 2.1. Given zq we can assume V(x¢) = 1. Indeed writing
u(z) = A\ Tv(Azg + (1 — \)o)
we obtain the equation
2" (y) = V(y)v + 0P =0
where y = Axo + (1 — Ao, and V(y) = V(M) Then choosing
A = /V (o, we obtain V(zo) = 1.

Theorem 2.1. We assume V(xg) = 1,V'(x9) = 0,V"(x¢) # 0. Then
there exists a solution to (2.1) with the form

ue () ~ w (x ;IO) -




10 MANUEL DEL PINO AND JUNCHENG WEI

We define v(t) = u(zo + €(t + h)), with |h| < 1. Then v solves the
problem

(2.3) V' = Vi(xg+e(t+hv+1P =0, v(foo)=0.
We define v(t) = w(t) + ¢(t), so ¢ solves
(2.4)

¢ — ¢+ puw o — (Vo +e(t+h)) = V(20))d+ (w+¢) —w’ —pu'¢

(2.5) —(V(xg+e(t+h)) —V(zg))w(t) =0
So we want a solution of
(2.6) ¢" —d+puw’o+ E+ N(¢)+ B(¢) =0, ¢(x)=0.
Observe that
o %v”(m T Ee(t + Bt + B)2wl(?),

s0 |E| <Ot +1)e Ml < Ce ot for 0 <o < 1.

We won’t have a solution unless V' doesn’t change sign and V' # 0.
For instance consider V’(z) > 0, and after multiplying the equation by
v and integrating by parts, we see that [; v’“; = 0, which by ODE
implies that © = 0, because v and u' equals 0 on some point.

2.2. Linear projected problem.
L(p)=¢" —o+puPlo+g=0, ¢cL™R)

For solvability we have the necessary condition [ L(¢)w’ = 0. Assume
g such that [, gw’ = 0. We define ¢ = w'U, but we have the problem
that w'(0) = 0. We conclude that (w?¥’) +w'g = 0 for t # 0. We
take for t < 0

o(t) = w'() / ) wi—) / " gy (s)ds
and for t > 0
o(t) = /(1) / wcg—) / g(s)u/(s)ds

In order to have a solution of the problem we need ¢(07) = ¢(07).

t - T t
50) — i I TR Lo 0 st g
t—0— w+@ t—0~ __w'(lt)2w//(t) w"(0) ff)oo qu’
and
1
¢(07) = —
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and the condition is satisfies because of the assumption of orthogonality
condition.
We get [|6]loo < C||g]loo- In fact we get also: V0 <o < 1,3C > 0:

g™ [z + [[¢'e” ||~ < Cllge™|

Observation: We use g = g — cw’.(Correct this part!!!!)

2.3. Method for solving. In this section we consider a smooth radial
cut-off function n € C*°(R), such that n(s) =1 for s < 1 and n(s) =0

it s > 2. For 6 > 0 small fixed, we consider 7. =7 <%|>, E>1.

2.3.1. The gluing procedure. Write ¢ = n9.¢ + U, then ¢ solves (2.5)
if and only if

(2.7) M [¢" + (pwP™ = 1)¢ + B(¢) + 2¢'n} |

(2.8) + [9" + (pw*™" = 1)U + BU| + E + N(n2,¢ + ¥) = 0.
(¢, ¥

) solves (2.8) if is a solution of the system

(2.9)
¢ — (1 —pw" o+ n1E+n3.B(d) + mpw” W+ ,N(p+¥) =0

(2.10) U — (V(zog+e(t+h)) —pwP 11 —n )0

211)  +(L=me)E+ (1 =me)N(naed + W) +2¢"n5 . + 1.6 = 0
We solve first (2.11). We look first the problem
U — W (@)U +g=0

where 0 < a < W(x) < B, W continuous and g € C(R) N L*>*(R).
We claim that (2.3.1) has a unique solution ¢ € L*(R). Assume first
that ¢ has compact support and consider the well defined functional in

H'(R)
J(@):l/\qf’ml/wqﬂ—/g\p.
2 R 2 R R

Also, this functional is convex and coercive. This implies that J has a
minimizer, unique solution of (2.3.1) in H'(R) and it is bounded. Now
we consider the problem

t
\IJ’}E—W\I/RnLgn(’—R') =0
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«

Let us see that U has a uniform bound. Take o(t) = 124 5 cosh (‘/7&|t]>
for p > 0 very small. Since U € L>°(R) we have

Up <p(t), forlt|>t,r.

Let us observe that in [—t, g, t, g]

t]
"W 1] < 0.
¥ ®+gn (R)
From (2.3.1), we see that 7 = (Vg — ¢) satisfies
(2.12) ' —Wn > 0.

Claim: v < 0 on R. It’s for |t| > t, g if y() > 0 there is a global max-
imum positive v € [—t,r,t,x]. This implies that 7”(¢t) < 0 which
is a contradiction with (2.12). This implies that Wg(t) < lae 4

—_— (0%
llgll
(6%

p cosh <*/7at> Taking the limit p going to 0 we get Ui < , and

similarly we can conclude that

|V g|lLe < %, VR
8}

Passing to a subsequence we get a solution ¥ = limg_,, Y, and the
convergence is uniform over compacts sets, to (2.3.1) with

191]o0
(0%

[]loo <

. Also, the same argument shows that the solution is unique (in L
sense). Besides: We observe that if ||e?g||. < 00, 0 < 0 < /o then

le” o < ClleMg]|

The proof of this fact is similar to the previous one. Just take as the
function ¢ as follows

olt|
(0

Observe now that W satisfies (2.11) if and only if

2 i
U= <_ﬁ + W) [F[V, ¢]]
where W (x) = V(xo+e(t+h))—pwP~ (1—n; ) and Fl¢] = (1—m ) E+
(1 =me)N(n2ep+ W) +2¢"n5 . + 05 6. The previous result tell us that
the inverse of the operator (—% + W> is well define. Assume that

lollcr == l|@]loo + [|¢]l < 1, for some o < 1 and ||V]|o < p, where p
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is a very small positive number. Observe that ||(1 —n;.)E|/e < e7¢/.
Furthermore, we have
[F(W,0)] < e +celpllon + 19]1% + 1W]|5
This implies that
IMIP]] < Culu + (| W15]
where i = /% + cel|gllcr + [|9]%,. If we assume p < A, and

choosing p = 2C, u, we have
[M]¥]]| < p.

If we define X = {V|||¥||c < p}, then M is a contraction mapping
in X. We conclude that

| M[¥,] — M[U,]]| < C.C|| ¥ — Uy, where C.C' < 1.

Conclusion: There exists a unique solution of (2.11) for given ¢ (small
in C''-norm) such that

1¥()

Besides: If ||¢]| < p, independent of €, we have

W (1) = W(d2)lloe < 0(1)[|f1 — @2l

Next step: Solver for (2.9), with ||¢|| very small, the problem
(2.13)
¢"—(1=puw?™ o+ E+ns . B(¢)+m1 cpwP™ Wtn, y N(¢p+ ) —cw' =0

oo < 7" Helpllen + ll9]1%]

where ¢ = # Je(m3,2:B(@) + mcpw? "W 411 ,N(¢ + ¥))w'. To solve
(2.13) we write it as

¢ =T[nsBo] + T[N (¢ + ¥(¢)) + pu? " W(g)] + T[E] = Q[¢]

Choosing ¢ sufficiently small independent of € we conclude that Q(z) C
X, and @ is a contraction in X for || - ||c1. This implies that (2.13) has
a unique solution ¢ with ||@||c1 < Me?. Also the dependence ¢ = ®(h)
is continuous. Now we only need to adjust h in such a way that ¢ = 0.
After some calculations we obtain

0= Ke*V"(xg)h + O(e*) + O(0¢?).

So we can find h = h. and |h.| < Ce, such that ¢ = 0.



14 MANUEL DEL PINO AND JUNCHENG WEI

3. SCHRODINGER EQUATION IN DIMENSION N

(3.1) e2Au—V(y)u+u? =0 in RV
' 0 <wuinR"” u(x) — 0, as|z| — oo

We consider 1 < p < oo if N < 2, and1<p<%if]\723. The
basic problem that we consider is
Aw—w+wP =0 in RV
0 <wuinR” w(z) — 0, as|z| — oo
We look for a solution w = w(|z|), a radially symmetric solution. w(r)
satisfies the ordinary differential equation

w” + Y=Ly —w +wP =0 r € (0,00)
(3.2) , r .
w'(0) =0,0 <win (0,00) w(|z|]) — 0, as|z| — oo

Proposition 3.1. There exist a solution to (5.2).
Proof. Let us consider the space

H! = {u=u(lal) : u € HYRY)}
with the norm [Ju| g = [7(|o/|* + [u|?)rY~'dr. Let

Jan [Vul? +u?
u0,uc H} (fRN |u|p+1)2/(+1)

We recall that H'(RY) — LPFY(RY) continuously, which means that
S > 0 (the larger constant such that c||u||pp+1 < ||ul||gr). Strategy:
Take u,, > 0a minimizing sequence for S. We may assume ||u,||zr+1 =
1. This means that ||u,|%: — S. This means that the sequence is
bounded in H'1. We may assume u,, — u € H!. We have by lower
weak s.c.i.

S:

/\vu\2+u2 glim/|Vun]2+ui:S.

We could get existence of a minimizer for S if we prove that ||u||pr+1—1.
This is indeed the case thanks to:
Strauss Lemma: There exist a constant C such that Vu € H}(RY):

lu(lz])] < —x=llullm
x|z

The proof of this fact is the following: Let u € C®°(RY), u = u(|z|).
N-1

@) =2 [l (s)ds <2 [ lu)l (o) s
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2 o ee C
3.3) < rN—l(/O \u!23"1ds)1/2(/0 lu'|2sN~1ds)1/? < mHuHip

By density we concludes the proof.
Let us observe that

1 1 1
“unHZz—:Jrl(RN) = Hunle—:ﬂ (Br) + HunHi—:ﬂ (B)

and
1 -1
A P e
if R > Ry(e) (here we use the lemma of Strauss). On the other hand:
Up — U
strong in LP™(Bg) since H'(Bg) — LPT(Bg) compactly. This implies
that 1 <lim,,_, ”unHi—;l-l(BR) +e= H'LLHL;D+1(BR) +e< HUHLP+1(RN) +e
This implies that [|ul/z-+1 > 1 and we conclude ||u||pr+1 = 1.
u is a minimizer for S, u > 0, u # 0. We define ®(v) = [[v|| /([ [v[PT)?/p+
1. So w is a minimizer for ®. This means that u is a weak solution of

the problem
—Au+u = au?
where o = ||u||z1. We define u = ap%llﬂ, then @ is a solution of
—Au+u=1u"
And, with the aid of maximum strong principle we can conclude that
u is in fact strictly positive everywhere. This concludes the proof [

N+2

. . . 2
Observation 3.1. There no exist a solution of class C* for p > 575 .

The proof of this fact is an applicatz'on of Pohozaev identity.

We claim that w(r) = C’r "7 e~". This can be proved with the

change of variables k = r~ “*h. The equation that satisfies h is like
h" — h(1 + -5) = 0, and the solution of this equation is like e~".

Theorem 3.1. Kwong, 1989 The radial solution of (3.2) is unique.

3.1. Linear problem. Consequence of the proof of Kwong: We define
L(¢) = A¢ + pw(z)'™'¢ — ¢.
Let us consider the problem
L(¢) =0, ¢eL*R")

A known fact is that if ¢ is a solution of this problem, then ¢ is a linear
combination of the functions ‘97‘”( ), 7 =1,...,N. This is known as

non degeneracy of w.
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We assume as always 0 < o < V < 3. We want to solve the problem

(3.4) 2N — V(y)i+ @ =0 in RY
' 0<uinR" a(z) — 0, as|z| — oo

We fix a point £ € RY. Observe that U.(y) = V(f)v%l ( V(f)ﬂ>,
is a solution of the problem equation

2Au —V(&u+uP = 0.
We will look for a solution of (3.4) u.(z) ~ U.(y). We define w) =
/\ﬁw(\/Xx)

Let us observe that if @ satisfies (3.4), then u(z) = u(ez) satisfies
the problem

{ Au—V(ez)u+u? =0 in RY

(3.5) 0 <wuinR" u(z) — 0, as|z| — oo

Let ¢ = . We want a solution of (3.5) with the form u(z) = wx(z —
€) 4 ¢(z), with A = V(€) and ¢ small compared with wy(z — £).

3.2. Equation in terms of ¢. ¢(z) = ¢(¢' — ). Then ¢ satisfies the
equation Ag[wx(z)+¢ ()] =V (§+ex)[wa(z)+é(x)]+wi(x)+¢(x)]" = 0.
We can write this equations as

Ap—V(€)p+pul " (2)¢ — B+ B(¢) + N(¢) =0

where E = (V(§+ex) —V(&))wr(x), B(¢) = (V(§) =V (E+ex))¢ and
N(¢) = (wy + )P — wh — pw?~'é. We consider the linear problem for

A=V(E),
(3.6) { L(9) = Ap = V(£ + )+ pux(2)p = g — 1L, %xl

Jon 052 =0, i=1,...,N

The ¢}s are defined as follows

[ 2@ @ = [ L@+ [V - Ve + et

w =w(|z|). (W) (x) =w) 7oy~ This implies that

/(w)\)xi<w)\)$j = /w'A(ll‘DQmjﬁ

This integral is 0 if ¢ # j and equals to [ w)(Jz])*z?; ‘zdx =1/N [|[Vw,|* =

v. Then ¢; = [ g(wx)z; + [en[V(E+ex) — V(g)]gb(wA)mW.

Problem: Given g € L®(R") we want to find ¢ € L>(R") solution
to the problem (3.6). Assumptions: We assume V € CH(RY), ||V ]| <
0o0. We assume in addition that |{| < My and 0 < a < V.
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Proposition 3.2. There exists €9, Cy > 0 such that Y0 < & < g,
VIE| < My, Vg € L= (RY) N C(RY), there exist a unique solution ¢ €
L®(RN) to (3.6), ¢ = T|g] satisfies

[¢ller < Collglloe

Proof. Step 1: A priori estimates on bounded domains: There exist
Ry, €0, Cp such that Ve < eg, R > Ry, || < My such that V¢, g € L

solving L(¢) = g — >, ci(wz)s, in Bk, fBR d(wy)z, =0 and ¢ =0 on
0Bpg, we have
[eller(sry < Collgll

We prove first [|@]|o < Collg]|co- Assume the opposite, then there exist

sequences ¢, gn, € — 0, R, — 00, || < My such that

n@wA
L(d)n) =0n — G 8%

. The first fact is that ¢} — 0 as n — oo. This fact follows just after
multiplying the equation against (w,),, and integrating by parts.
Observation: If A¢ = g in By then there exist C' such that

VOl L) < Clllgllze sy + |9l Lo (By)]

Where By and B, are concentric balls. This implies that ||V, || 5y <
C a given bounded set B, Vn > ng. This implies that passing to a
subsequence ¢, — ¢ uniformly on compact sets, and ¢ € L>®(RY).
Observe that ||¢,||.c = 1, and this implies that ||¢]l.c < 1. We can
assume that &, — &.

¢ satisfies the equation A¢ — V(&) —i—pwf{?l(x)qﬁ = 0, where \g =

V (&), and this implies that ¢ € Span {8% e g }, but also [on ¢(Wrg)a; =

x1 TN
0,72=1,...,N. Then ¢ = 0 and this implies that ||¢,||r=(5,0) —
0,VM < co. Maximum principle implies that ¢y z= 55, \By, — 0,
just because |¢,| = o(1) on 0Bg, \ By, and ||gn]le — 0. There-
fore ||¢n|ls — 0, a contradiction. This implies that |[¢| e, <
Collg|lL(By) uniformly on large R. The C* estimate follows from el-
liptic local boundary estimates for A.

Step 2: Existence: g € L*. We want to solve (3.6). We claim that
solving (3.6) is equivalent to finding ¢ € X = {¢) € Hj : [(w))s, =
0,i=1,..., N} such that

/V¢V¢ + /V(f + ex)pp — pwPgnh + /gz/} =0, VyelX.
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Take general U € Hy, U = ¢ + Y. a;(wy)y,, with a; = ij(ll(:;;ir We

have

_/A(ZOZZ(QU)\) v¢+/ Zaz ’LU>\ Qb pwp ! Zaz QU)\ T; Qb:()

i

Which implies that

[vovu+ / V()6 — put o0

- [© - vie+en) V- Yo - [ o = 3 aulun)a)

J1v(e+e0 - vero + g - Y aitws).)

and IIx (V) = > . a;(wy),,, then the previos integral is equal to

/ My ([(V(E +2x) — V(E)d + glo)¥

This implies that
—A¢+V(§)d — pu ' + Ix ([(V(€ +ex) = V(€))¢ + gl¢) = 0.

The problem is formulated weakly as

/V¢V¢+/(V(§+€x>—pwp1)¢¢+/g1/1=0,¢€X,VwEX

This can be written as ¢ = A[¢] + g, where A is a compact operator.
The a priori estimate implies that the only solution when g = 0 of this
equation is ¢ = 0. We conclude existence by Fredholm alternative.

We look for a solution which near z; = £} = /e, j =1,...,k looks
like v(z) = Wy, (z — &), A\j = V(&;), where W) solves

AW, = AW + WP =0, W, radial, W,(|z|]) — 0, as |z| — oo

Observe that Wi(y) = AY®Dw(v/Ay), where w solves the equation
Aw — w 4+ wP = 0. The equation

Av—V(ex)v+1P =0
looks like Av—V (&;)v+vP = 0, where &, &, ... & € RY and we assume
also |§; —&| > 1, if j # [. We look for a solution v(x) ~ Z?Zl Wi, (z—
&), A = V(). Weassume V € C*(RY) and ||[V]|c> < 00,0 <a < V.
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We use the notation W; = Wy (z—¢&7), Aj = V(§;) and W =77 | W,
Look for a solution v = W + ¢, so ¢ solves the problem
Ap—V(ex)p+pWP ¢+ E+ N(¢) =0
where
E=AW VW 4+ WP, N(¢)= (W + o) — WP —pWP ¢
Observe that AW = 3" AW, = 3" \;W; — W}, So we can write

B =3 (= V(Em)W;+ QW) =3 Wy,

3.3. Linearized (projected) problem. We use the following nota-

. ; oW,
1 J
tion Zj = e

Ap —V(ex)p+pWP o+ g = Z cJZ;,
1,J
with the orthogonality condition [ ¢Z} =0, ¥i,j. The Z!’s are “nearly
orthogonal” if the centers & are far away one to each other. The c;'-’s
are, by definition, the solution of the linear system

/RN(Aqﬁ —V(ex)p +pWP o+ g) ZZO = Z / Z;Z]’g,

for ig = 1,...,N, jo = 1,..., k. The c;- s are indeed uniquely deter-
mined provided that |§ — &f[ > Ry > 1, because the matrix with
coefficients v j4,4, = [ Z;Z}) is “nearly diagonal”, this means

o N TIVWE A (i) = (o, o),
127:10,30 o(1) if not

Moreover:

a1 <03 [1olia-VEipwr=wr izt [ 19l123] < Cloll+ gl
.3
with C' uniform in large Ry. Even more, if we take x =& +y

Oy — Vi) Z] < [(V(E) — V(E + ay))lla;z S| < Coe—EW,

because | W ol < Cem |y‘\/_|y| /2 Observe also that

- —1\ i Wi - ~1r7i
W7 =Wy Z = (= 3 g - w2

I#j
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Observe that if |z — &| < do miny, 2, [§], — &), [, then
Wi) eVl o—Vla—E]|
~ <
Wi(z) — o=vVAile=gl  —y/Njdoming 5 1€ €, |

If 6o < 1 but ﬁxed we conclude that e~V & &+ (VA= V) ming, iy 15, =€, | <
PN 2y 185, — |<<1. Conclusion: if [z — &| < dominy, 4, |, — 27,

implies that
(WP~ W) Z1] < i e 2o
If [x — &i| > dg ming, »j, |€), — 27, [, then
(WPt = WP ZI| < C|Z)| < Cemmmnznl6 o5 lgl
As a conclusion we get
o] < Cle + e ™26 8l) 6] oo + |9l
Lemma 3.1. Given k > 1, there exist Ry, Cy, g such that for all points

& with [§; — &1 > Ro, j=1,...,k and all ¢ < ¢ then exist a unique
solution ¢ to the linearized projected problem with
[6]lcc < Collglloe-

Proof. We first prove the a priori estimate [|¢||oc < Col|g|lco. If not
there exist £, — 0, [ loc = 1, gall — 0, €7 with min, 45, [€71—€71] —
co. We denote W, = >, W;,, and we have

Adp = V(en) b+ pWE ' n 4 gn = Y ()2
i,J

First observation: (c}), — 0 (follows from estimate for c;g) Second:

VR > 0 ||¢n||zn Berr) — 0, = 1,...,k If not, there exist jo
@nll o5 B(en.p) = 7 > 0. We denote Only) = én (& +y). We have
|énll=(B0.r) > 7 > 0. Since |Ad,| < O, [[¢ulle < 1. This implies
that IVn|| < C. Passing to a subsequence we may assume ¢, —

¢ uniformly on compacts sets. Observe that also V(e, () +y)) =
V(en&)+0(enlyl) — Ajy over compact sets and W,,(§77 +y) — Wy, (y)

uniformly on compact sets. This implies that ¢ is a solution of the
problem

- - - ~OW,y.
A~ Ao+ pul'p T1=0, /¢de:o,z'=1,...,fv

Non degeneracy of wy,, implies that ¢ Z 042 a . The orthogonal-
ity condition implies that a; = 0,V = 1,. N . This implies that



LYAPUNOV SCHMIDT REDUCTION METHOD 21

¢ = 0 but H&HLm(B(QR)) > v > 0, a contradiction. Now we prove:
[énllLoe RN\ U, B(£, R)) — 0, provided that R > 1 and fixed so that
®n — 0 in the sense of ||¢, || (again a contradiction). We will denote
Q, =RY\ U,B(£}", R). For R>> 1 the equation for ¢, has the form

where Q,, = V(ex) —pWP™! > $ > 0 for some R sufficiently large (but
fixed). Let’s take for 02 < /2

¢ = 52 el ..
J

We denote ¢(y) = el r = |y|. Observe that Ap — a/2p = e’ (0? +

S —a/2) <0if [yl > R> 1. Then

_ _ - o - (6%
_A¢+ Qn¢ —gn > _Agb_’_ E(b - ||gn||oo > §/~Ln - ”gnHoo >0

if we choose fin, > ||gnlloo 2. In addition we take p,, = > | Pnll oo (mer, my+
|gnlloo2. Maximum principle implies that ¢,(z) < ¢ for all z € Q.
Taking 6 — 0 this implies that ¢, (z) < p,, for all x € Q,,. Also true
that |¢,(z)| < py, for all 2 € €2, and this implies that ||@y,|| fe@y) —
0. U

-1
Observation 3.2. If in addition we have 6,, = ||g,, (Z] e_p‘m_ﬁﬁ'"') oo —

0 with p < a/2. Then we can use as a barrier
=83 G g, Y e
J J

with p, = e’? > ||¢n||Loo(B(£;_n’R)) + 0, then ¢ is a super solution of
the equation and we have |¢,| < ¢, and letting 6 — 0 we get |¢,(z)| <
L Zj e 278" As a conclusion we also get the a priori estimate

k -1 k -1
H¢<Ze‘”‘§“> oo < Cllg (Ze‘”‘fﬂ) loc

j=1 j=1
provided that 0 < p < /2, €} — & | > Ry > 1, € < .

We now give the proof of existence
Proof. Take g compactly supported. The weak formulation for

(3.7) Ap—V(ex)p+pW"'o+g=> ¢ 7, /gz)Z;,vz‘,j

1]
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is find ¢ € X = {¢p € H'(RY) : [ $Z} = 0,Vi, j} such that
(3.8) VoV + Vo — puP g — g =0, Vi € X.
RN

Assume ¢ solves (3.7). For g € L?, write g = §+1I[g] where [ §Z} =0,
for all 4, 5. II is the orthogonal projection of g onto the space spanned
by the Z’s. Take i) € H'(R") arbitrary and use ¢ — II[¢)] as a test
function in (3.8). Then if ¢ € C°(RY), then

/RN VeV(I[Y]) = —/RN APl = _/RN TI[Ay]y.

But M[Ag] = 3, ;@ ;Z;, where

Zai,j/zi,jzio,jo :/AQOZZJ(;) :/QOAZZJ(;)

Then ||TI[A¢]||z2 < O]l By density is true also for ¢ € H' where
Ap € H!. Therefore

[vover [Vo-pwrio- g = [1ve-pwr st g
then ¢ solves in weak sense
—Ap+ Ve —pWPe — g =TI[-Ap+ V¢ — pW" ¢ — g]
and [I[-A¢+ Vo —pWPlp —g| = Z” ! Z;j. Therefore by definition
¢ solves (3.8) implies that ¢ solves (3.8). Classical regularity gives

that this weak solution is solution of (3.7) in strong sense, in particular
¢ € L™ so that

[6lle < Cligll

. Now we give the proof of existence for (3.7). We take g compactly
supported. The equation (3.8) can be written in the following way
(using Riesz theorem):

<¢7 w>H1 + <B[¢]’¢>H1 = <§7¢>H1

or ¢ + Blg] = g, ¢ € X. We claim that B is a compact operator.
Indeed if ¢, — 0 in X, then ¢, — 0 in L? over compacts.

(Bléa). )] < | / PP, < ( / pu? 1212 ( / PPLyR)12
then
[(Blon) )] < [ WP 16202
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Take 1) = B[¢,], which implies

1Bl < cf / PP g2)2 .

This implies that B is a compact operator. Now we prove existence
with the aid of fredholm alternative. Problem is solvable if for g = 0
implies that ¢ = 0. But ¢+ B[¢] = 0 implies solve (3.7)(strongly) with
g = 0. This implies ¢ € L*, and the a priori estimate implies ¢ = 0.
Considering g=pg, ) we conclude that

[6Rllo < llgllos

Taking R — oo then along a subsequence ¢p — ¢ uniform over com-
pacts. U

We take g € L™. We have ¢ = Tg[g], where £ = (&,...,&,).
We want to analyze derivatives Jg Ter[g]. We know that |[Te[g]|| <
Collglloo- First we will make a formal differentiation. We denote ® =

¢

ag1/'01'0
We have Ap — Vo +pWP o+ g=3" ¢Z; and [ ¢Z} =0, for all
1, 7. Formal differentiation yields
AD = VO +pW @+ +0;, , (W) = Y 0k, 2 = Y 82,
/L'hj Z?j
where formally 6'27 = 8&0].00; . The orthogonality conditions traduces
into

i 0 if j # jo
/I%N (PZ] - { —fqba&ojozjio lf] :jO

Let us define ® = & — Z” ozm-Z;. We want [ i)Z; =0, for all 7,j. We

need B
i i 0 if j # jo
S [25-{ _peg, . 000
1,

The system has a unique solution and |«; ;| < C||¢||w (since the system
is almost diagonal). So we have the condition [ i)Z; = 0, for all 7, j.
We add to the equation the term Y, - (A =V + pWP~1)ZL, so o
satisfies the equationA¢ — Vo + pWP=lp+g=> 7!

(2% ]
AD—VO+pWP D40, (WP o= e, 2! =Y EZ=) aij(A=V+pW» ) Z!
i3 i,3 1,3

This implies ||| < C(||h]| + |lg]]) < C||g|loo- This implies ||®|| <
Cllglloo- We do this in a discrete way, and passing to the limit all
these calculations are still valid. Conclusion: The map § — J¢¢ is well
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defined and continuous (into L>). Besides ||0¢#]/occ < C||g|, and this
implies

19:Te[l]| < Cllgl

3.4. Nonlinear projected problem. Consider now the nonlinear pro-
jected problem

Bo=Vorpr o+ E+N@) =3 dZ, [0zl =¥
4,J

We solve this by fixed point. We have ¢ = T(E 4+ N(¢)) =: M(¢). We
define A = {¢ € C(RY) N L®(RY) : [|[¢|lc < M||E||s}. Remember
that £'=>,(A; — V(ex))W; + (32, Wj)P — >, W?. Observe that

B < &3 ol 4 co-bomimnn 6,1 3 o)

i J
so, for existence we have || E|| < Cle+e ™M 18,7651 = p (sce that
p is small). Contraction mapping implies unique existence of ¢ = ®(¢)

and [[B(€)] < Mo.

3.5. Differentiability in ¢ of ®(¢'). We have
® — T{(Ee + Ne(9)) = A(®, ) =0

If (DgeA)(P(&'),¢') is invertible in L™, then ®(¢’) turns out to be of
class C!. This is a consequence of the fixed point characterization, i.e.,
DaA(®(¢),&") = I+ o(1) (the order o(1) is a direct consequence of
fixed point characterization). Then is invertible. Theorem and the C*
derivative of A(®,¢') in (¢,¢'). This implies ®(¢') is C1. || Dy®(¢')|| <
Cp (just using the derivate given by the implicit function theorem).

3.6. Variational reduction. We want to find £ such that the cj- =0,
for all 7, j, to get a solution to the original problem. We use a procedure
that we call Variational Reduction in which the problem of finding &’
with c§- = 0, for all 7,7, is equivalent to finding a critical point of a
functional of &. Recall:

1 1
J —— \V4 2 1V 2 p+1
(0= / Vet - — [

is defined in H'(RY), since 1 < p < {£2. v is a solution of Av— Vv +

vP =0, v — 0 if and only if v € HY(RY) and J'(v) = 0. Observe that
(J'(v),¢) = [ VoV + Vup — v .

The following fact happens: v = Wy + ¢(¢’) is a solution of the
original problem (for p < 1) if and only if

g J(We + 6(£))le=¢, = 0.
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Indeed, observe that v(¢') := We + ¢(&’) solves the problem Awv(¢') —
Viex)v(&') + ()P =D, .. Z! and also that

i, 377

Der

7010 J0t0 Joto

Remember that Wy = Z?Zl wy, (z = &),
D

J0%0

[4/g = é?gl w

doio - No(&)

This because dywy = O(e~%*%l). On the other hand |8§90i0¢| <

C’pe_‘ﬂm_gfol. Finally, observe that

_/ Z}(0g,, We + 0g,,,9) = / 7172+ 0(p)

The matrix of these numbers is invertible provided p < 1.
A consequence (D, Felmer 1996): Assume j = 1 and that there exist
an open, bounded set A C RY such that

inf V> infV,
IA A

then there exist a solution to the original problem, v. with v.(x) =
Wye((z — £)/2) +ol1) and V(€.) — miny V., § = &.

Another consequence (D, Felmer 1998): A4, ..., Ay disjoint bounded
with infy, V' < infgy, V, for all j. For the problem e*Au — V(z)u +
w? = 0,0 < u — 0 at oo, there exist a solution u. with u.(z) ~
Y Wi (x — &§/2), & € Aj and V(&) — infy, V (in the case
of non-degeneracy minimal or more generally non-degenerate critical
points the result is due to Oh (1990))

Proof. First result: j = 1. v({') = We + ¢(£’). Then

1
TWE) = T(We + (&) + (T (Wi+6), =) + 51" (Wi + (1= 1)9) (6]
(Taylor expansion of the function a(t) = J(W{ + (1 —t)$)). Observe
that (J'(W{+ @), —¢) = >, ;¢ [ Z1¢ = 0. Also observe that

J' (Wit (1-1)¢)[0]* = / Vo[> +V (e2)¢® —p(Wi+(1-)¢)¢” = O(e?)

uniformly on & because Vo, ¢ = O(ge™1*=¢'l). We call ®(¢) := J(v(¢')) =
J(W¢) + O(£?), and

J(WY) = %/|VW§’!2+V(§)W£’2—I%/Wg’p“Jr/(V(aa:)—V(f’))Wg

(=&}) = (Ornwr(@—E]))amr,, — Oy Wi, (=& ) = O(e™ 1% )o(e)—

H(€) = (T8, (&) == 3 [ Ziog, =3¢, [ Zilog, Weroy,,
Ji 4,J

Z

J
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Taking A = V(&), we have that

/|Vw,\(x)|2 = \N/2 / |Vw()\1/2x)|2)\1+2/(p_1)/\N/2dx = /\_N/2+p+1/p_1|Vw(y)|2dy
and

3 i) =t [y

This implies that

1 W/p+1 _ V(g)erl/pflfN/Qcp’N

1 /2 ”
5 [ VW viewe - = [

also
[ - viEue - = 0@

uniformly on ¢. In summary (&) = J(v(¢')) = V(E)PH/P=1=N2¢ v +

O(e) and % — £ > 0. Then Ve < 1 we have

Inf ®(§) < inf @(£)

therefore ® has a local minimum &, € A and V(§.) — miny V. Same
thing works at a maximum.

For several spikes separated: [§;, — &;,| > 6, for all j; # jo. p =
e om0 IG5, "8l 4 ¢ < em000/e 4 g o 2¢, so we have

IVL6(E)| +16(€)] < Oy emd0le¢]]

Now we get

J(v(&) = Z V(g2 v+ O(e)

¢ =1/e(&, ..., &) implies for several minimal on the A; we have the
result desired. U

Result at one non-degenerate critical point: if & is a non-degenerate
critical point of V' (V'(&) = 0 and V" (&) invertible), then there exist
a solution u.(z) such that

ue(r) ® Wy (v = &)/e, & = o

For small § we have that J(v) has degree different from 0 in a ball
centered at zy and of radius ¢.
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4. BACK TO ALLEN CAHN IN R?

We consider the functional

J(u) = /R <€2|V2u|2 e _4“2)2> o(x)dz.

Critical points of J are solutions of
e2div(a(x)Vu) + a(x)(1 — u*)u = 0,

where we suppose 0 < a < a(x) < . This equation is equal to

(4.1) 2 Au + &? %( Wau+ (1 —u?)u = 0.
Using the change of variables v(z) = u(ex), we find the equation
(4.2) Av+5%( )Vo + (1 —v*)v = 0.

We will study the problem: Given a curve I' in R? we want to find a
solution u.(z) to (4.1) such that u.(r) ~ w(Z), for points v = y+2v(y),
y € I', |z| < §, where v(y) is a vector perpendicular to the curve and
w(t) = tanh(\/ii), which solves the problem

w' + (1 —w?)w =0, w(+oo)==+l1.

First issue: Laplacian near I', which we will consider as smooth as we
need.
Assume: T' is parametrized by arc-length

70, = R% s — 7(s), [9(s)| = 1,1 = |T|.
Convention: v(s) inner unit normal at v(s). We have that |v(s)]* = 1,
which implies that 2vr = 0, so we take v(s) = —k(s)¥(s), where k(s)

is the curvature.
Coordinates: z(s,t) = v(s) + zv(s), s € (0,1) and |z| < 0. If we

take a compact supported function ¥ (z) near I', and we call 9 (s, 2) =
U(v(s) + 2v(s)), then 22 = Vo - [y + 20] = (1 — kz)Ve) - 4 and 2 =
Vi - v. Observe that Vi = (Vi - ﬁ) y(V - v)v. This means that
Vw lkz Bs’y + V and |Vw|2 (1= kz 1—k2)2 |ws|2 + ‘w2|2 Then

Vi (x)Pde = 24 19e?) (1 = k2)dsd
[ 1voPde = [[ (el 4182 ) (@ = kpdsa:

¥ — ¥ + tp and differentiating at t = 0 we get

[vuveds = [f ﬁm T .3a(1 — kz)dsdz
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/Awdx = // e <( — k,-z)& ) + (. (1 — lz))z) G(1—kz)dsdz

then p .
Ay = (1—kz)85(1—kzw)+wzz_—wz
We just say
- 1 k
A — v
v= 1—kz<1 ws)s—i_wzz 1—kzwz
Near I' (z = ~(s) + zv(s)), we have the new equation for u — (s, 2)
1 1 g2k g2 a g2 a
S = ¢? s)s 2 2t (1— $u— z — s — :=0
i} = 1—kz(1—kzu) et (1-u)u 1— k2 +1—kz au+1—kz a
we want a solution u(s, z) ~ w(Z).
z a, k(s) z
Slw(=)] =¢e[— — (=
w3 = el - ()
The condition we ask (geodesic condition) is %(s,0) = k(s). In v
language we want
\Y
Av + 67&(6113) -Vu+ f(v) =
transition on I'y = %F. we use coordinates relative to I', rather than I'
1
X.(s,2) = gv(es) +zv(es), |z] <d/e
Laplacian for coordinates relative to I'. are
1 1 ek(es) ag 1 a,
Ay = s 2z - s -
¥ (1 —ck(es)z) ((1 —ck(es)z )U ) Y (1-— ek(as)z)+5 a (1— ekr(ss)z)?U e a

where we use the computation 87(58) —k(€)7:(s), where k. = ek(es)

Hereafter we use § instead of s and Z instead of zZ. Observation: The
operator is closed to the Laplacian on (3§, Z) variables, at least on the
curve I, if we assume the validity of the relation

a:(3,0) = k(3)a(3,0), V3 e (0,0).

We can write this relation also like d,a = ka on I' (Geodesic condition).
This relation means that I" is a critical point of curve length weighted
by a. Let L,[T] = fF adl. Consider a normal perturbation of I, say
Iy o= {y(3) + h(3)v(3)|5 € (0,1)}, [[hllc2ary < 1. We want: first

variation along this type of perturbation be equal to zero. This is

DL4[Th]lp=0 =0
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This means

0
aL[F,\h] lh=o =0

or just (DL(I"),h) = 0 for all h. Observe that

L(Ty) — / o(4(3) + hEW(E)) - [1(3)mld3

and also 4y,(8) = 4(3) + Mw + A, and 7 = —k%. With the taylor
expansion

, 1 o 1
(1—2kAR4+N2E2R24A2H2)12 = 1+§(—2k/\h+>\2k2h2+>\2h2)—§4k2)\2h2+0()\2h3)

and
a(y((s))+Ah(5v(3)) = a(5, Ah(5)) = a(3, 0)+Aas(3, O)h(§)+%)\2agg(§, 0)h(3)24+O(N*h%).
we conclude

l I 72
LnlCan] = La(T) = A /0 (—ka+az)(3, 0)h(3) 54N> /0 (o'

1
9 +a5k2h2+§a25h2)+0()\3h3)

This tells us:

0 o -
aLh[FAh”)\:O =0« k(s)a(s, O) = ag(S, O),
the geodesic condition. Also we conclude that
2 l l .
%L(FMMA:O = / (ah®>—2k*a+az:h*)ds = — / (a(3,0)h3) h+(2a(3,0)k*—az:(3,0)h)h
0 0

This can be expressed as D*L(T") = J,, which means D*L(T)[h)? =
— fol Jaulh)h. J,]h] is called the Jacobi operator of the geodesic I'. As-

sumption: .J, is invertible. . .

We assume that if 2(8), § € (0,1) is such that h(0) = h(l), h(0) = h(l)
and J,[h] = 0 then h = 0. Ker(J,) = {0}, in the space of [—periodic
C? functions. This implies (exercise) that the problem

Ja[h] = 9.9 € C(0,1), 9(0) = g(1), h(0) = h(1), A(0) = h(l)

has a unique solution ¢. Moreover ||¢||c2.a 0y < C|lgllce(0,)-
Remember that the equation in coordinates (s, z) is

B 1 1 ek(es)
B0 = a9 ((1 - ek(ss)z)”$>s T T A k(e ) T

Qg 1 az .
6?(1 — 5k(5s)z)QUS +te—v. + f(v)=0
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Change of variables: Fix a function h € C*%(0,1) with ||| < 1 and do
the change of variables z — h(es) = t and take as first approximation
vo = w(t). Let us see that vy(s,z) = w(z — h(es)) so

1 1 .

E(vy) = "(—h(es,ez))s + " + f(w)

1 5kz(1 —chz
az k(es) € as
e a (es, €2) 1 — k(es)ez (1 —¢ckz)? a v
Error in terms of coordinates (s,t) z =t + h(es):
B k(es) B 2w/’
1—k(es)(t+h)e| (1—ke(t+h))?

Jw' — eh

hl/

Evo)(s,t) = ew'(t) %@s, e(t+h))

1 . 1 . ) _ . ..
//h22_ 2kt hh,t—h—_s/
+(1—k‘€(t+h))2w € (1—€/€(t+h))35 (t-+h)hw'(t)—e (1_€kz)2aw
In fact
|E(vo)(t, 5)] < Ce?e M
o <1, and

HGUME(UO)HCO»Q(|t|<g) < C€?

Formal computation: We would like ffgjg E(vo)(s,y)w'(t)dt ~ 0. Ob-
serve that

w/2

—2h"(es / = —szh”/wadt—l—O g3
©) ) s T el 1) : ()

Also

. 1
2.2 ", 1 — 3
he /—1—5k(t+h)w w'dt =04 O(e”).
5%/—28 (es,e(t+h))w?/(1+ ke(t+h))? =€2h—2§(€8,0)/w/2+0(63)

and finally

2% (s, e — k(es) =22 [ W (2D ((Z)(es,0)—k)h(es ¢
€/t|<5/8w< (es,e(t+h)) 1—k(5s)(t+h)g) /R (t)*( )((a)( ,0)—k2)h(e5)+0(

a
Then
—[Ewd , a; az 9

we call § = es, and we conclude that the right hand side of the above
equality is equal to
1

EX) ((a(3,0))H (8) + (2k*a(5,0) — az(5,0))h) + O(e)
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and this is equal to

1
We need the equation for v(s, z) = 0(s, z — h(es)). We have
o0 _ov v,
ds _ 0s ot -
We write z =t + h, so we have
- 1 0 . 0 1 0 AN
SO = Tk Bs ~ o) Tk as o)
k asz . . Qg 1 2 - L ~
5[—1 — + ;]vt + S - [0s — ehty] + f(0) =0

The first term of this equation is equal to
1 {e(ek(t + h) 4 ekh)
1—ckz" (1 —ck(t+h))?
ek 1 :
- (—ch® A
(1—ek(t + h)) T h ) e () =0
Let us observe that for |[t| < d/e, § < 1
S[0](s,t) = Vss+0u+0(€) O 0+O(E) O 0+0(ek([t|+1) ) 055040 (£) 0, 04+0(e) 050+ f (v) = 0
We will call the operator that appears in the equation B[t]. We look
for a solution of the form o(s,t) = w(t) 4+ ¢(s,t). The equation for ¢ is
Pss + du + ['(w(t))d+ E+ B(g) + N(¢) =0, [t| <d/e

whete E = S(u(t)) = O(e™"), N(9) = f(w+ @) — f(w) — f(w)é,
s € (0,1/e). We use the notation L(¢) = ¢ss + du + f'(w(t))p. We also
need the boundary condition ¢(0,t) = ¢(l/e,t) and ¢5(0,t) = ¢s(I/e,t).

It is natural to study the linear operator in R? and the linear pro-
jected problem

Pss + Pue + [ (w(t)¢ + g(t, 5) = c(s)w' (1)

s)w! (t)d
where ¢(s) = IR&(—%PSE t

/Oo (s, t)w' (t)dt =0, VseR

(?75—€hvt)—|— (—€2h”1}t—28}.l'[7t5)+

1— ke(t + h) AL

—eh{

(U — ehiy) +

and under the orthogonally condition

Basic ingredient: (Even more general) Consider the problem in R™ x
R, with variables (y,t):

Ayd+ ¢y + f(w(t)p =0, ¢ LR™ xR)

If ¢ is a solution of the above problem, then ¢(y,t) = aw'(t) some
o € R. Ingredient: 3y > 0: [ p/(t)* — f'(w(t))p(t)® > v [5p*(t)dt
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for all p € H! with prw =0. Yy fR ¢*(y,t)dt. This is well
defined (as we will see) Indeed: It turns out that |¢(y,t)] < Ce™ 7,

o < /2, thanks to the fact that ¢ € L>. We use z = (y,t) and we
obtain

Aud— (2= 3(1— w(t)?))6 = 0
Observe that 1 —w(t)? is small if [t| > 1. Fix 0 < o < v/2, for [t| > Ry
we have 2 — 3(1 — w?(t)) > o2. Let

B(y.t) = pY_ cosh(oy;) + pcosh(ot) + [[¢] e e

i=1
We have that

Py, 1) < @oly,t), for [t] = Ry
also true that for [t| + |y| > R, > 1, ¢(y,t) < &,.

D+ (2= 3(1 —w(t)))o = (2— 0" = 3(1 —w(t)*)¢p) > 0

for |t| > Ry. So is a supersolution of the operator

D0+ (2= 3(1 - w(t)*))o
in D,, which implies that ¢ < ¢, for |t| > Ro. This implies that
|p(x)| < C¢, for all z, and we conclude the assertion taking p — 0. If
¢ solves —Ap+(1—3w?)$ = 0, then ||¢]|c2a (Bi(20)) < C|@] Lo (Bs(z0))-
This implies that also

byl + byl < Ce™".

Let ¢(y,1) = ¢(y, 1) — LD 0. We call B(y) = Lm0

AG+ f'(w)d = A¢+ f'(w)d + (A, 8)w' + 6(Aw’ + f'(w))w' =0
because A, 3 = 0 by integration by parts. Let ¢ (y) = [, PAdt.

Ay = / (209, 0)dt / Vo2 [ 68,6 =2 [ 1V,0P-2 [ louts

Using 2 [ |V,6[2dt + 2 [(¢? — f/(w)¢?) This implies that Az > 2y
which implies —Ay + 2y <0, O <y <ec

We obtain that ¢» = 0 and this implies ¢ = 0. This implies that

= ([ o' = B(y)w' and AB = 0, § € L*. Liouville implies

that 3 = constant so ¢ = constantw’.

Lemma: L* a priori estimates for the linear projected problem:
3C: [¢lleo < Cllglloo-

Proof: If not exists ||gnllcc — 0 and ||¢, |l =1

Lign] = =gn + ca(t)w' (1) = ha(t)
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and h, — 01in L. [|¢,|| = 1 which implies that 3(y,,tn): |¢(yn,tn)| >
v > 0. Assume that |t,| < C and define ¢(y,t) = ¢p(yn + y,1). Then
A + f1(w(t)) b = I

but f'(w(t))d, is uniformly bounded and the right hand side goes to 0.
This implies that ||¢[|c1gm+) < C This implies that ¢n — ¢ passing
to subsequence, and the convergence is uniformly on compacts, where
Agb + f(w )qb =0, ¢ € L™. We conclude after a classic argument that
¢ = 0. We have also that |[e”¢]|o < Cle?g||s, 0 < o < v/2. Elliptic
regularity implies that [|e?l¢||c20 < |le g co..

Existence: Assume g has compact support and take the weak for-
mulation: Find ¢ € H such that [g,.,, VoV — f'(w)gy = [ gy, for
all v € H, where H = {f € HY(R™)| [yw'dt = 0,Vy € R™}.
Let us see that a(¢y,v) = [|VY]? — f(w)y? > v [¢* +¢% So
a(,) > C ||wH§—Il(Rm+1) This implies the unique existence solution.
Observe that

/(A¢ + f(w)o+g)1 =0

for all ¢ € H. Let 1 € H' and ¢ = ¢ — M“’ ot = TI(¢). We have

that
[y [ aiyar = [ g

which implies that II(A¢ + f'(w)¢ + ¢g) = 0 if and only if A¢ +
fllw)+o+g= %w Regularity implies that ¢ € L™ and
|6]lce < Cl|g]|oo- Approximating g € L™ by gr € C°(RY) locally over
compacts. This implies existence result.

We can bound ¢ in other norms. For example if 0 < o < /2, then
10|00 < Clle” Mgl
Indeed, f'(w) < —o? —nif [t| > R, with n = (2 — 02)/2. We set

¢=Me 4 p Z cosh(oy;) + pcosh(ot).
i=1
Therefore

—Ap+ (= f(W)d = =0¢ + (0 +n)p =nd > § = —g + c(y)w'(1)
it M > %He"‘”g”oo. In addition we have ¢ > ¢ on |t| = R if M >
|#]|ce”®. By an standard argument based on maximum principle, we
conclude that ¢ < ¢. This means, letting p — 0, ¢ < Me " where
M = Cmax{|¢llw, lge” [} Since 6] < Cllglloe < Cllge o,

we can take M = C/||ge’!|| . Finally, we conclude lpe”! |00 < [19e”! || oo
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Reminder: If A¢ = p implies that
IVl (51(0)) < Cll|@ll L Bs0) + Pl oo (81 (0))]-

Remember that

[pllcoeay = [IPlloo + [@lo.a,4

where []o,0,4 = SUD,, 4ye A oo %. Also we have the following

interior Schauder estimate: for 0 < o < 1
[l (1) < Clllol e (Ba0)) + IPllcoa (B, 0))]-
Conclusion: If ¢ solves the equation in R"*! then
||¢||C2,DA(RTL+1) S C||g||CO,o¢(Rn+1).
Sketch of the proof of this fact: Fix zo € R"*!, then
O[¢]O,a,B1(xo) < HVQbHL‘”(Bl(xo)) < C[HQSHOO + HgHOO] < CHgHoo

This implies that |[¢||co.e(B, (@) < Cllgl|co, Which implies ||}||co.a@n) <

CHg”oo- Clearly HPHCO@(BZ(JCO)) < CHgHom S0 H¢”Cov&(31(:c0)) < CHQHOOva(R”“)a
from where we deduce the estimate.

We also get
Je7]lcaagnsny < ClleMgllooa s

The proof of this fact is very similar to the previous one (use that
g S e_a‘to‘”gealt‘”? for |t0‘ > 1)
Another result is the following

11+ [y 26l < CII+ [y ?glloo

In order to prove this result we define p(y) = (1+[y[*) and we consider
¢ = p(dy)¢. Observe that

Ap = p AP —26V6V (o7 (y)) + 0*Alp™")(dy) = f'(w)d + g — cu’
We get L[] + 0(62)¢ + O(0)V = p(g — cw’). We get
IVl + 9llcc < CL6*10lloc + 81V Dlloc + [lpgloc)-

If § is small we conclude that

[16llo + 1Vllse < Cllpgll
and we obtain

108|C < [l pgl-
Our setting:

(4.3) e[ou + % -Vu| + f(u) =0
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We want a solution to (4.3) u.(z) =~ W(z/e). Writing z = y + z7(y),
|z| < 6§, we have
Av+ Va(ex)/a-Vv+ f(v) =0,

in T. = i = = y + zv(ey), which means x = 1v(es) + zv(es).
Remember that |¥(5)| = 1 which implies ©(5) = —k(5)7%(5). We also set
z=h(es)+t. & =1y(es)+ (t+ h(es))v(es). We assume ||h]q,00) < 1,
for 0 < o < 1. We wrote A, in terms of this coordinates (¢, s) and the
equations S(v) = 0 is rewritten taking as first approximation w(t). We

evaluated S(w(t)) and got that S(w(t)) = 0.
From the expression of A, we get (x = 2y(es) + (t + h(es))v(es))
Ayv = 05 + Oy + €[b5(t, 5) 055 + V50, + 0505 + b30; + b50s]

leb;| < €9 in the region |t| < §/e. The coefficients are periodic (same
values at s = 0 and s = [/¢). Our equation reads

Ossv + Opv + Be[v] + f(v) =0, forse (0,l/¢e),|t] <d/e.

This expression does not make sense globally. We consider § < 1. We
define

—1 in Q°
H(z) _{ +1 in 0

where Q¢ is a bounded component of R* \ I', and Q¢ the other. For
the equation

\Y
Av—i—e—a'Vv—l—f(v) =0
a
we take as first (global) approximation

vo(x) = w(t)ns + (1 —na)H ()

n(z) = { n () if el < 201/

where

0 otherwise

Look for a solution of the form v = vg + (]3, SO
- \v4 - - -
App + gja Yo+ ['(0o)d+ E+N(@) =0

where E = S(v) and N(¢) = f(vo + &) — f(vo) — f'(v0).

We write ¢ = n3¢ + 1. We require that ¢ and 1 solve the system

A =20+ 2 F (00)) (1= e~ T (L) B (L) N (130 +)+ Vs V4 Vs Ve

ns | A + f(w(t)p +m2+ f'(wt)y +mE+mN(o+1) + 5% -Vo| =0.
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We need that the ¢ above satisfies the equation just for |t| < 6J/c. We
assume that ¢(s,t) is defined for all s and ¢ (and it is [/e- periodic in
s). We require that ¢ satisfies globally

D+ s +16Be[0] + [ (w(t)o+mE+mN(o+¢)+m 2+ f'(w)Y =0

and ¢ € L*(Rn + 1) and periodic in s. Notice that ¢+ ¢ss+16Be[d] =
A, ¢ inside the support of n3. Rather than solving this problem directly
we solve the projected problem

(4.4)

Gut+Gss 6 Be[@l+f (w(t))p+m E+m N (d+¢)+m (2+f'(w)) = c(s)w'(t)
and [, ¢pw'(t)dt = 0. We solve (4)-(4.4) first, then we find h such
that ¢(s) = 0. We consider ¢ with ||¢[/ec + || V@|lo < €. The operator

— A+ 21) is invertible L®(R3) — C'(R?). We conclude that if g € L™
the exist a unique solution ¢ = T'[g] € C*(R?) with ||¢[|c1 < C||g|ls of
equation —At + 21 = g in R% Observe that (4) is equivalent to

§ = T+ @) (1m0 Tk (L) B+ (1) N b Vs V64 Vs Ve 5

Using contraction mapping in C' on |[1||cx < Ce, we conclude that
there exist a unique solution of the this problem 1) = (¢, h) such that
1ol < Cle* +elldllea).

Even more, ||¢(¢1,h) — ¥(d2, h)|lcr < Celld1 — ¢al|cn.



