INTRODUCTION TO LYAPUNOV SMICHDT REDUCTION METHODS FOR SOLVING PDE'S

MANUEL DEL PINO AND JUNCHENG WEI

1. Allen Cahn Equation

Energy: Phase transition model.

Let $\Omega \subseteq \mathbb{R}^N$ of a "binary mixture": Two materials coexisting (or one material in two phases). We can take as an example of this: Water in solid phase (+1), and water in liquid phase (-1). The configuration of this mixture in Ω can be described as a function

$$u^*(x) = \begin{cases} +1 & \text{in } \Lambda \\ -1 & \text{in } \Omega \setminus \Lambda \end{cases}$$

where Λ is some open subset of Ω . We will say that u^* is the phase function.

Consider the functional

$$\frac{1}{4}\int_{\Omega}(1-u^2)^2$$

minimizes if u = 1 or u = -1. Function u^* minimize this energy functional. More generally this well happen for

$$\int_{\Omega} W(u) dx$$

where W(u) minimizes at 1 and -1, i.e. W(+1) = W(-1) = 0, W(x) > 0 if $x \neq 1$ or $x \neq -1, W''(+1), W''(-1) > 0$.

1.1. The gradient theory of phase transitions. Possible configurations will try to make the boundary $\partial \Lambda$ as nice as possible: smooth and with small perimeter. In this model the step phase function u^* is replaced by a smooth function u_{ε} , where $\varepsilon > 0$ is a small parameter, and

$$u_{\varepsilon}(x) \approx \begin{cases} +1 & \text{inside } \Lambda \\ -1 & \text{inside } \Omega \setminus \Lambda \end{cases}$$

and u_{ε} has a sharp transition between these values across a "wall" of width roughly $O(\varepsilon)$: the interface (thin wall).

In grad theory of phase transitions we want minimizers, or more generally, critical points u_{ε} of the functional

$$J_{\varepsilon}(u) = \varepsilon \int_{\Omega} \frac{|\nabla u|^2}{2} + \frac{1}{\varepsilon} \int_{\Omega} \frac{(1-u^2)^2}{4}$$

Let us observe that the region where $(1 - u_{\varepsilon}^2) > \gamma > 0$ has area of order $O(\varepsilon)$ and the size of the gradient of u_{ε} in the same region is $O(\varepsilon^2)$ in such a way $J(u_{\varepsilon}) = O(1)$. We will find critical points u_{ε} to functionals of this type so that $J(u_{\varepsilon}) = O(1)$.

Let us consider more generally the case in which the container isn't homogeneous so that distinct costs are paid for parts of the interface in different locations

$$J_{\varepsilon}(u) = \int_{\Omega} \left(\varepsilon \frac{|\nabla u|^2}{2} + \frac{1}{\varepsilon} \frac{(1-u^2)^2}{4} \right) a(x) dx$$

a(x) non-constant, $0 < \gamma \leq a(x) \leq \beta$ and smooth.

1.2. Critical points of J_{ε} . First variation of J_{ε} at u_{ε} is equal to zero.

$$\left. \frac{\partial}{\partial t} J_{\varepsilon}(u_{\varepsilon} + t\varphi) \right|_{t=0} = D J_{\varepsilon}(u_{\varepsilon})[\varphi] = 0, \quad \forall \varphi \in C_{c}^{\infty}(\Omega)$$

We have

$$J_{\varepsilon}(u_{\varepsilon} + t\varphi) =$$

i.e. $\forall \varphi \in C_c^{\infty}(\Omega)$

$$0 = DJ_{\varepsilon}(u_{\varepsilon})[\varphi] = \varepsilon \int_{\Omega} (\nabla u_{\varepsilon} \nabla \varphi) a + \frac{1}{\varepsilon} \int_{\Omega} W'(u_{\varepsilon}) \phi a$$

If $u_{\varepsilon} \in C^2(\Omega)$

$$\int_{\Omega} \left(-\varepsilon \nabla \cdot (a \nabla u_{\varepsilon}) + \frac{a}{\varepsilon} W'(u_{\varepsilon}) \right) \varphi = 0, \quad \forall \varphi \in C_{c}^{\infty}(\Omega)$$

This give us the weighted Allen Cahn equation in Ω

$$-\varepsilon \nabla \cdot (a\nabla u) + \frac{a}{\varepsilon}u(1-u^2) = 0$$
 in Ω .

We will assume in the next lectures $\Omega = \mathbb{R}^N$, where N = 1 or N = 2. If N = 1 weight Allen Cahn equation is

(1.1)
$$\varepsilon^2 u'' + \varepsilon^2 u' \frac{a'}{a} + (1 - u^2)u = 0, \text{ in } (-\infty, \infty).$$

Look for u_{ε} that connects the phases -1 and +1 from $-\infty$ to ∞ . Multiplying (1.1) against u' and integrating by parts we obtain

(1.2)
$$\int_{-\infty}^{\infty} \frac{d}{dx} \left(\varepsilon \frac{u'^2}{2} - \frac{(1-u^2)^2}{4} \right) + \int_{-\infty}^{\infty} \frac{a'}{a} u'^2 = 0$$

Assume that $u(-\infty) = -1$, $u(\infty) = 1$, $u'(-\infty) = u'(\infty) = 0$, a > 0, then (1.2) implies that

$$\frac{(1-u^2)^2}{4} + \int_{-\infty}^{\infty} \frac{a'}{a} u'^2 = 0$$

from which we conclude that unless a is constant, we need a' to change sign. So: if a is monotone and $a' \neq 0$ implies the non-existence of solutions as we look for. We need the existence (if $a' \neq 0$) of local maximum or local minimum of a. We will prove that under some general assumptions on a(x), given a local max. or local min. x_0 of a non-degenerate $(a''(x_0) \neq 0)$, then a solution to (1.1) exists, with transition layer.

We consider first the problem with $a \equiv 1$, $\varepsilon = 1$:

(1.3)
$$W'' + (1 - W^2)W = 0, \quad W(-\infty) = -1, \quad W(\infty) = 1.$$

The solution of this problem is

$$W(t) = \tanh\left(\frac{t}{\sqrt{2}}\right)$$

This solution is called "the heteroclinic solution", and it's the unique solution of the problem (1.3)up to translations.

Observation 1.1. This solution exists also for the problem

(1.4)
$$w'' + f(w) = 0, \quad w(-\infty) = -1, \ w(\infty) = 1$$

where f(w) = -W'(w). Solutions satisfies $\frac{w'^2}{2} - W(w) = E$, where E is constant, and $w(-\infty) = -1$ and $w(\infty) = 1$ if and only if E = 0. This implies

$$\int_0^w \frac{ds}{\sqrt{2w(s)}} = t$$

 $t(w) \to \infty$ if $w \to 1$, and $t(w) \to -\infty$ if $w \to -1$, so the previous relation defines a solution w such that w(0) = 0, and $w(-\infty) = -1$, $w(\infty) = 1$.

If we wright the Hamiltonian system associated to the problem we have:

$$p' = -f(q), \quad q' = p.$$

Trajectories lives on level curves of $H(p,q) = \frac{p^2}{2} - W(q)$, where $W(q) = \frac{(1-q^2)^2}{4}$.

Let $x_0 \in \mathbb{R}$ (we will make assumptions on this point). Fix a number $h \in \mathbb{R}$ and set

$$v(t) = u(x_0 + \varepsilon(t+h)), \quad v'(t) = \varepsilon u'(x_0 + \varepsilon(t+h))$$

Using (1.1), we have

$$\varepsilon^2 u''(x_0 + \varepsilon(t+h)) = -\varepsilon^2 \frac{a'}{a} u'(x_0 + \varepsilon(t+h)) - (1 - v^2(t))v(t)$$

so we have the problem

(1.5)
$$v''(t) + \varepsilon \frac{a'}{a} (x_0 + \varepsilon (t+h)) v'(t) + (1 - v(t)^2) v(t)^2 = 0, \quad w(-\infty) = -1, \ w(\infty) = 1.$$

Let us observe that if $\varepsilon = 0$ the previous problem becomes formally in (1.3), so is natural to look for a solution $v(t) = W(t) + \phi$, with ϕ a small error in ε .

Assumptions:

- (1) There exists $\beta, \gamma > 0$ such that $\gamma \leq a(x) \leq \beta, \forall x \in \mathbb{R}$
- (2) $||a'||_{L^{\infty}(\mathbb{R})}, ||a''||_{L^{\infty}(\mathbb{R})} < +\infty$
- (3) x_0 is such that $a'(x_0) = 0$, $a''(x_0) \neq 0$, i.e. x_0 is a non-degenerate critical point of a.

Theorem 1.1. $\forall \varepsilon > 0$ sufficiently small, there exists a solution $v = v_{\varepsilon}$ to (1.5) for some $h = h_{\varepsilon}$, where $|h_{\varepsilon}| \leq C\varepsilon$ and $v_{\varepsilon}(t) = w(t) + \phi_{\varepsilon}(t)$ and

$$\|\phi_{\varepsilon}\| \le C\varepsilon$$

Proof. We write in (1.5) $v(t) = w(t) + \phi(t)$. From now on we write $f(v) = v(1 - v^2)$. We get

$$w'' + \phi'' + \varepsilon \frac{a'}{a} (x_0 + \varepsilon (t+h))\phi' + \varepsilon \frac{a'}{a} (x_0 + \varepsilon (t+h))w' + f(w+\phi) - f(w) - f'(w)\phi + f(w) + f'(w)\phi = 0$$

$$\phi(-\infty) = \phi(\infty) = 0.$$

It can be written in the following way

(1.6) $\phi'' + f'(w(t))\phi + E + B(\phi) + N(\phi) = 0, \quad \phi(-\infty) = \phi(\infty) = 0$ where

$$B(\phi) = \varepsilon \frac{a'}{a} (x_0 + \varepsilon (t+h))\phi',$$

$$N(\phi) = f(w+\phi) - f(w) - f'(w) = -3w\phi^2 - \phi^3,$$

$$E = \varepsilon \frac{a'}{a} (x_0 + \varepsilon (t+h))w'.$$

We consider the problem

(1.7)
$$\phi'' + f'(w(t))\phi + g(t) = 0, \quad \phi \in L^{\infty}(\mathbb{R}).$$

and we want to know when (1.7) is solvable. We will assume $g \in L^{\infty}(\mathbb{R})$. Multiplying (1.7) against w' we get

$$\int_{-\infty}^{\infty} (w''' + f'(w)w')\phi + \int_{-\infty}^{\infty} gw' = 0$$

the first integral is zero because (1.4). We conclude that a necessary condition is

$$\int_{-\infty}^{\infty} gw' = 0.$$

This condition is actually sufficient for solvability. In fact, we write $\phi = w' \Psi$, we have

$$\phi'' + f'(w)\phi = g \Leftrightarrow w'\Psi + 2w''\Psi' = -g$$

Multiplying this last expression by w' (integration factor), we get

$$(w'^2\Psi')' = gw' \Rightarrow w'2\Psi'(t) = -\int_{-\infty}^{\infty} g(s)w'(s)ds$$

Let us choose

$$\Psi(t) = -\int_0^t \frac{d\tau}{w'^2(\tau)} \int_{-\infty}^\tau g(s)w'(s)ds$$

Then the function

$$\phi(t) = -w'(t) \int_0^t \frac{d\tau}{w'^2(\tau)} \int_{-\infty}^{\tau} g(s)w'(s)ds$$

Recall that

$$w'(t) \approx 2\sqrt{2}e^{-\sqrt{2}|t|}$$

Claim: if $\int_{-\infty}^{\infty} gw' = 0$ then we have

$$\|\phi\|_{\infty} \le C \|g\|_{\infty}.$$

In fact, if t > 0

$$|\phi(t)| \le |w'(t)| \int_0^t \frac{C}{e^{-2\sqrt{2}\tau}} \left| \int_{\tau}^{\infty} gw' ds \right| d\tau \le C ||g||_{\infty} e^{-\sqrt{2}t} \int_0^t e^{\sqrt{2}\tau} d\tau \le C ||g||_{\infty}$$

For t < 0 a similar estimate yields, so we conclude

$$|\phi(t)| \le C \|g\|_{\infty}.$$

The solution of (1.7) is not unique because if ϕ_1 is a solution implies that $\phi_2 = \phi_1 + Cw'(t)$ is also a solution. The solution we found is actually the only one with $\phi(0) = 0$. For $g \in L^{\infty}$ arbitrary we consider the problem

(1.8)
$$\phi'' + f'(w)\phi + (g - cw') = 0, \text{ in } \Re, \quad \phi \in L^{\infty}(\mathbb{R})$$

where $C = C(g) = \frac{\int_{-\infty}^{\infty} gw'}{\int_{-\infty}^{\infty} w'^2}.$

Lemma 1.1. $\forall g \in L^{\infty}(\mathbb{R})$ (1.8) has a solution which defines a operator $\phi = T[g]$ with

$$||T[g]||_{\infty} \le C ||g||_{\infty}.$$

In fact if $\hat{T}[\hat{g}]$ is the solution find in the previous step then $\phi = \hat{T}[g - C(g)w']$ solves (1.8) and

(1.9)
$$\|\phi\|_{\infty} \le C \|g\|_{\infty} + |C(g)|C \le C \|g\|_{\infty}$$

Proof. Back to the original problem: We solve first the projected problem

$$\phi'' + f'(w)\phi + E + B(\phi) + N(\phi) = Cw', \quad \phi \in L^{\infty}(\mathbb{R})$$

where

$$C = \frac{\int_{\mathbb{R}} (E + B(\phi) + N(\phi))w'}{\int_{\mathbb{R}} w'^2}$$

We solve first (1.9) and then we find $h = h_{\varepsilon}$ such that in (1.9) C=0 in such a way we find a solution to the original problem. We assume $|h| \leq 1$. It's sufficient to solve

$$\phi = T[E + B(\phi) + N(\phi)] := M[\phi].$$

We have the following remark

$$|E| \leq C\varepsilon^2$$
, $||B(\phi)||_{\infty} \leq C\varepsilon ||\phi'||_{\infty}$, $||N(\phi)|| \leq C(||\phi^2||_{\infty} + ||\phi^3||_{\infty})$
where C is uniform on $|h| < 1$. We have

$$\begin{split} \|M\|_{\infty} + \|\frac{d}{dt}M\|_{\infty} &\leq C(\|E\|_{\infty} + \|B(\phi)\|_{\infty} + \|N(\phi)\|_{\infty} \leq C(\varepsilon^{2} + \varepsilon \|\phi'\|_{\infty} + \|\phi^{2}\|_{\infty} + \|\phi^{3}\|_{\infty}) \\ \text{then if } \|\phi\|_{\infty} + \|\phi'\|_{\infty} \leq M\varepsilon^{2} \text{ we have} \end{split}$$

$$\|M\|_{\infty} + \|\frac{d}{dt}M\|_{\infty} \le C^* \varepsilon^2.$$

We define the space $X = \{\phi \in C^1(\mathbb{R}) : \|\phi\|_{\infty} + \|\phi'\|_{\infty} \le C^* \varepsilon^2\}$. Let us observe that $M(X) \subset X$. In addition

$$\|M(\phi_1) - M(\phi_2)\|_{\infty} + \|\frac{d}{dt}(M(\phi_1) - M(\phi_2))\|_{\infty} \le C\varepsilon(\|\phi_1 - \phi_2\|_{\infty} + \|\phi_1' - \phi_2'\|_{\infty}).$$

So if ε is small M is a contraction mapping which implies that there exists a unique $\phi \in X$ such that $\phi = M[\phi]$.

In summary: We found for each $|h| \leq 1$

$$\phi = \Phi(h)$$
, solution of 1.7

. We recall that

$$h \to \Phi(h)$$

is continuous (in $|| ||_{C^1}$). Notice that from where we deduce that M is continuous in h.

The problem is reduced to finding h such that C = 0 in (1.7) for $\phi \Phi(h) =$. Let us observe that

$$C = 0 \Leftrightarrow \alpha_{\varepsilon}(h) := \int_{\mathbb{R}} (E_h + B[\Phi(h)]) + N[\Phi(h)])w' = 0$$

Let us observe that if we call $\psi(x) = \frac{a'}{a}(x)$, then

$$\psi(x_0 + \varepsilon(t+h)) = \psi(x_0) + \psi'(x_0)\varepsilon(t+h) + \int_0^1 (1-s)\psi''(x_0 + s\varepsilon(t+h))\varepsilon^2(t+h)^2 ds$$

We add the assumption $a''' \in L^{\infty}(\mathbb{R})$ in order to have $\psi'' \in L^{\infty}(\mathbb{R})$. We deduce that

$$\int E_h w' = \varepsilon^2 \psi'(x_0) \int (t+h)w'(t)^2 + \varepsilon^3 \int_{\mathbb{R}} (\int_0^1 (1-s)\psi''(x_0+s\varepsilon(t+h))ds)(t+h)^2 w'(t)dt$$

We recall that: $\int_{\mathbb{R}} tw'(t)^2$ and

$$\left|\int_{\mathbb{R}} (B[\phi(h)] + N[\phi(h)])w'\right| \le C(\varepsilon \|\Phi(h)\|_{C^1} + \|\Phi(h)\|_{L^{\infty}}) \le C\varepsilon^3.$$

So, we conclude that

$$\alpha_{\varepsilon}(h) = \psi'(x_0)\varepsilon^2(h + O(\varepsilon))$$

and the term inside the parenthesis change sign. This implies that $\exists h_{\varepsilon} : |h_{\varepsilon}| \leq M \varepsilon$ such that $\alpha_{\varepsilon}(h) = 0$, so C = 0.

Observe that

$$\overline{L}(\phi) = \phi'' - 2\phi + \varepsilon\psi + 3(1 - w^2)\phi + \frac{1}{2}f''(w + s\phi)\phi\phi + O(\varepsilon^2)e^{-\sqrt{2}|t|} = 0, \quad |t| > R$$

We consider t > R. Notice that $\frac{1}{2}f''(w + s\phi)\phi = O(\varepsilon^2)$. Then using $\hat{\phi} = \varepsilon e^{-|t|} + \delta e^{|t|}$. Then using maximum principle and after taking $\delta \to 0$, we obtain $\phi \leq \varepsilon e^{-|t|}$.

A property: We call

$$\mathcal{L}(\phi) = \phi'' + f'(w)\phi, \quad \phi \in H^2(\mathbb{R}).$$

We consider the bilinear form associated

$$B(\phi,\phi) = -\int_{\mathbb{R}} \mathcal{L}(\phi)\phi = \int_{\mathbb{R}} \phi'^2 - f'(w)^2 \phi^2, \quad \phi \in H^1(\mathbb{R}).$$

Claim: $B(\phi, \phi) \ge 0, \forall \phi \in H^1(\mathbb{R})$ and $B(\phi, \phi) = 0 \Leftrightarrow \phi = cw'(t)$. In fact: $J''(w)[\phi, \phi] = B(\phi, \phi)$. We give now the proof of the claim: Take $\phi \in C_c^{\infty}(\mathbb{R})$. Write $\phi = w'\Psi \implies \Psi \in C_c^{\infty}(\mathbb{R})$. Observe that $\mathcal{L}[w'\Psi] = \frac{1}{w'}(w'^2\Psi')'$ and

$$B(\phi,\phi) = -\int \frac{1}{w'} (w'^2 \Psi')' w' \Psi = \int_{\mathbb{R}} w'^2 \Psi'^2, \quad \forall \phi \in C_c^{\infty}(\mathbb{R})$$

Same is valid for all $\phi \in H^1(\mathbb{R})$, by density. So $B(\phi, \phi) = \int_{\mathbb{R}} |\phi'|^2 - f'(w)\phi^2 = \int_{\mathbb{R}} w' 2|\Psi'|^2 \ge 0$ and $B(\phi, \phi) = 0 \Leftrightarrow \Psi' = 0$ which implies $\phi = cw'$.

Corollary 1.1. Important for later porpuses There exists r > 0 such that if $\phi \in H^1(\mathbb{R})$ and $\int_{\mathbb{R}} \phi w' = 0$ then

$$B(\phi,\phi) \geq \gamma \int_{\mathbb{R}} \phi^2$$

Proof. If not there exists $\phi_n \int H^1(\mathbb{R})$ such that $0 \leq B(\phi_n, \phi_n) < \frac{1}{n} \int_{\mathbb{R}} \phi_n^2$. We may assume without loss of generality $\int \phi_n^2 = 1$ which implies that up to subsequence

$$\phi_n \rightharpoonup \phi \in H^1(\mathbb{R})$$

and $\phi_n \to \phi$ uniformly and in $L^2 {\rm sense}$ on bounded intervals. This implies that

$$0 = \lim_{n \to \infty} \int_{\mathbb{R}} \phi_n w' = \int_{\mathbb{R}} \phi w'$$

On the other hand

$$\int |\phi'_n|^2 + 2 \int \phi_n^2 - 3 \int (1 - w^2) \phi_n^2 \to 0$$

and also $\int |\phi'_n|^2 + 2 \int \phi_n^2 - 3 \int (1-w^2) \phi_n^2 \to \int |\phi'|^2 + 2 \int \phi^2 - 3 \int (1-w^2) \phi^2$, so $B(\phi, \phi) = 0$, and $\int w' \phi = 0$ so $\phi = 0$. But also

$$2 \le 3 \int (1 - w^2)\phi_n^2 + o(1)$$

which implies that $2 \leq 3 \int (1 - w^2) \phi^2$ and this means that $\phi \neq 0$, so we obtain a contradiction.

Observation 1.2. If we choose $\delta = \frac{\gamma}{2\|f'\|_{\infty}}$ then

$$\int \phi'^2 - (1+\delta)f'(w)\phi^2 \ge 0.$$

This implies in fact that

$$B(\phi,\phi) \ge \alpha \int \phi'^2.$$

2. Nonlinear Schrödinger equation (NLS)

 $\varepsilon i\Psi_t = \varepsilon^2 \Delta \Psi - W(x)\Psi + |\Psi|^{p-1}\Psi.$

A first fact is that $\int_{\mathbb{R}^N} |\Psi|^2 = constant$. We are interested into study solutions of the form $\Psi(x,t) = e^{-iEt}u(x)$ (we will call this solutions standing wave solution). Replacing this into the equation we obtain

$$\varepsilon Eu = \varepsilon^2 \Delta u - Wu - |u|^{p-1}u$$

whose transforms into

$$\varepsilon^2 \Delta u - (W - \lambda)u + |u|^{p-1}u = 0, \quad u(x) \to 0, \text{ as } |x| \to \infty$$

choosing $E = \frac{\lambda}{\varepsilon}$. We define $V(x) = (W(x) - \lambda)$

2.1. The case of dimension 1. (2.1) $\varepsilon^2 u'' - V(x)u + u^p = 0, \quad x \in \mathbb{R}, \quad 0 < u(x) \to 0, \text{ as } |x| \to \infty, p > 1.$

Assume: $V \ge \gamma > 0, V, V', V'', V''' \in L^{\infty}$, and $V \in C^{3}(\mathbb{R})$. Starting point

(2.2)
$$w'' - w + w^p = 0, \quad w > 0, \quad w(\pm \infty) = 0, p > 1$$

There exists a homoclinic solution

$$w(t) = \frac{C_p}{\cosh\left(\frac{p-1}{2}t\right)^{\frac{2}{p-1}}}, \quad C_p = \left(\frac{p+1}{2}\right)^{\frac{1}{p-1}}$$

Let us observe that $w(t) \approx 2^{2/(p-1)}C_p e^{-|t|}$ as $t \to \infty$ and also that W(t+c) satisfies same equation.

Staid at x_0 with $V(x_0) = 1$ we want $u_{\varepsilon}(x) \approx w\left(\frac{x-x_0}{\varepsilon}\right)$ of the problem (2.1).

Observation 2.1. Given x_0 we can assume $V(x_0) = 1$. Indeed writing

$$u(x) = \lambda^{\frac{2}{p-1}} v(\lambda x_0 + (1-\lambda)x_0)$$

we obtain the equation

$$\varepsilon^2 v''(y) - \hat{V}(y)v + v^p = 0$$

where $y = \lambda x_0 + (1 - \lambda) x_0$, and $\hat{V}(y) = V(\frac{y - (1 - \lambda) x_0}{\lambda})$. Then choosing $\lambda = \sqrt{V(x_0)}$, we obtain $\hat{V}(x_0) = 1$.

Theorem 2.1. We assume $V(x_0) = 1, V'(x_0) = 0, V''(x_0) \neq 0$. Then there exists a solution to (2.1) with the form

$$u_{\varepsilon}(x) \approx w\left(\frac{x-x_0}{\varepsilon}\right).$$

We define $v(t) = u(x_0 + \varepsilon(t+h))$, with $|h| \le 1$. Then v solves the problem

(2.3)
$$v'' - V(x_0 + \varepsilon(t+h)v + v^p = 0, \quad v(\pm \infty) = 0.$$

We define $v(t) = w(t) + \phi(t)$, so ϕ solves (2.4)

$$\phi'' - \phi + pw^{p-1}\phi - (V(x_0 + \varepsilon(t+h)) - V(x_0))\phi + (w+\phi)^p - w^p - pw^{p-1}\phi$$

(2.5)
$$-(V(x_0 + \varepsilon(t+h)) - V(x_0))w(t) = 0$$

So we want a solution of

(2.6)
$$\phi'' - \phi + pw^{p-1}\phi + E + N(\phi) + B(\phi) = 0, \quad \phi(\pm) = 0.$$

Observe that

$$E = \frac{1}{2}V''(x_0 + \xi\varepsilon(t+h))\varepsilon^2(t+h)^2w(t),$$

so $|E| \leq C\varepsilon^2(t^2+1)e^{-|t|} \leq Ce^{-\sigma t}$ for $0 < \sigma < 1$.

We won't have a solution unless V' doesn't change sign and $V \neq 0$. For instance consider $V'(x) \geq 0$, and after multiplying the equation by u' and integrating by parts, we see that $\int_{\mathbb{R}} v' \frac{u^2}{2} = 0$, which by ODE implies that $u \equiv 0$, because u and u' equals 0 on some point.

2.2. Linear projected problem.

$$L(\phi) = \phi'' - \phi + pw^{p-1}\phi + g = 0, \quad \phi \in L^{\infty}(\mathbb{R})$$

For solvability we have the necessary condition $\int L(\phi)w' = 0$. Assume g such that $\int_{\mathbb{R}} gw' = 0$. We define $\phi = w'\Psi$, but we have the problem that w'(0) = 0. We conclude that $(w'^2\Psi')' + w'g = 0$ for $t \neq 0$. We take for t < 0

$$\phi(t) = w'(t) \int_{t}^{-1} \frac{d\tau}{w'(\tau)^2} \int_{-\infty}^{\tau} g(s)w'(s)ds$$

and for t > 0

$$\phi(t) = w'(t) \int_1^t \frac{d\tau}{w'(\tau)^2} \int_{\tau}^{\infty} g(s)w'(s)ds$$

In order to have a solution of the problem we need $\phi(0^-) = \phi(0^+)$.

$$\phi(0^{-}) = \lim_{t \to 0^{-}} \frac{-\int_{-1}^{t} \frac{d\tau}{w'(\tau)^{2}} \int_{-\infty}^{\tau} g(s)w'(s)ds}{\frac{1}{w'(t)}} = \lim_{t \to 0^{-}} \frac{-\frac{1}{w'(t)^{2}} \int_{-\infty}^{t} gw'}{-\frac{1}{w'(t)^{2}} w''(t)} = \frac{1}{w''(0) \int_{-\infty}^{0} gw'}$$

and

$$\phi(0^+) = -\frac{1}{w''(0)\int_0^\infty gw'}$$

10

and the condition is satisfies because of the assumption of orthogonality condition.

We get $\|\phi\|_{\infty} \leq C \|g\|_{\infty}$. In fact we get also: $\forall 0 < \sigma < 1, \exists C > 0$:

$$\|\phi e^{\sigma t}\|_{L^{\infty}} + \|\phi' e^{\sigma t}\|_{L^{\infty}} \le C \|g e^{\sigma t}\|$$

Observation: We use g = g - cw'.(Correct this part!!!!)

2.3. Method for solving. In this section we consider a smooth radial cut-off function $\eta \in C^{\infty}(\mathbb{R})$, such that $\eta(s) = 1$ for s < 1 and $\eta(s) = 0$ if s > 2. For $\delta > 0$ small fixed, we consider $\eta_{k,\varepsilon} = \eta\left(\frac{\varepsilon|t|}{k\delta}\right), k \ge 1$.

2.3.1. The gluing procedure. Write $\tilde{\phi} = \eta_{2,\varepsilon}\phi + \Psi$, then ϕ solves (2.5) if and only if

(2.7)
$$\eta_{2,\varepsilon} \left[\phi'' + (pw^{p-1} - 1)\phi + B(\phi) + 2\phi' \eta'_{2,\varepsilon} \right]$$

(2.8)
$$+ \left[\Psi'' + (pw^{p-1} - 1)\Psi + B\Psi \right] + E + N(\eta_{2,\eta}\phi + \Psi) = 0$$

 (ϕ, Ψ) solves (2.8) if is a solution of the system

(2.9)

$$\phi'' - (1 - pw^{p-1})\phi + \eta_{1,\varepsilon}E + \eta_{3,\varepsilon}B(\phi) + \eta_{1,\varepsilon}pw^{p-1}\Psi + \eta_{1,\eta}N(\phi + \Psi) = 0$$

(2.10)
$$\Psi'' - (V(x_0 + \varepsilon(t+h)) - pw^{p-1}(1-\eta_{1,\varepsilon}))\Psi$$

(2.11)
$$+(1-\eta_{1,\varepsilon})E + (1-\eta_{1,\varepsilon})N(\eta_{2,\varepsilon}\phi + \Psi) + 2\phi'\eta'_{2,\varepsilon} + \eta''_{2,\varepsilon}\phi = 0$$

We solve first (2.11). We look first the problem

$$\Psi'' - W(x)\Psi + g = 0$$

where $0 < \alpha \leq W(x) \leq \beta$, W continuous and $g \in C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. We claim that (2.3.1) has a unique solution $\phi \in L^{\infty}(\mathbb{R})$. Assume first that g has compact support and consider the well defined functional in $H^1(\mathbb{R})$

$$J(\Psi) = \frac{1}{2} \int_{\mathbb{R}} |\Psi'|^2 + \frac{1}{2} \int_{\mathbb{R}} w \Psi^2 - \int_{\mathbb{R}} g \Psi.$$

Also, this functional is convex and coercive. This implies that J has a minimizer, unique solution of (2.3.1) in $H^1(\mathbb{R})$ and it is bounded. Now we consider the problem

$$\Psi_R'' - W\Psi_R + g\eta\left(\frac{|t|}{R}\right) = 0$$

Let us see that Ψ_R has a uniform bound. Take $\varphi(t) = \frac{\|g\|_{\infty}}{\alpha} + \rho \cosh\left(\frac{\sqrt{\alpha}}{2}|t|\right)$ for $\rho > 0$ very small. Since $\Psi_R \in L^{\infty}(\mathbb{R})$ we have

$$\Psi_R \le \varphi(t), \quad \text{for } |t| > t_{\rho,R}.$$

Let us observe that in $[-t_{\rho,R}, t_{\rho,R}]$

$$\varphi'' - W\varphi + g\eta\left(\frac{|t|}{R}\right) < 0$$

From (2.3.1), we see that $\gamma = (\Psi_R - \varphi)$ satisfies

(2.12)
$$\gamma'' - W\gamma > 0.$$

Claim: $\gamma \leq 0$ on \mathbb{R} . It's for $|t| > t_{\rho,R}$ if $\gamma(\bar{t}) > 0$ there is a global maximum positive $\gamma \in [-t_{\rho,R}, t_{\rho,R}]$. This implies that $\gamma''(t) \leq 0$ which is a contradiction with (2.12). This implies that $\Psi_R(t) \leq \frac{\|g\|_{\infty}}{\alpha} + \rho \cosh\left(\frac{\sqrt{\alpha}}{2}t\right)$. Taking the limit ρ going to 0 we get $\Psi_R \leq \frac{\|g\|_{\infty}}{\alpha}$, and similarly we can conclude that

$$\|\Psi_R\|_{L^{\infty}} \le \frac{\|g\|_{\infty}}{\alpha}, \quad \forall R$$

Passing to a subsequence we get a solution $\Psi = \lim_{R\to\infty} \Psi_R$, and the convergence is uniform over compacts sets, to (2.3.1) with

$$\|\Psi\|_{\infty} \le \frac{\|g\|_{\infty}}{\alpha}$$

. Also, the same argument shows that the solution is unique (in L^{∞} sense). Besides: We observe that if $\|e^{\sigma|t|}g\|_{\infty} < \infty$, $0 < \sigma < \sqrt{\alpha}$ then

$$\|e^{\sigma|t|}\Psi\|_{\infty} \le C \|e^{\sigma|t|}g\|$$

The proof of this fact is similar to the previous one. Just take as the function φ as follows

$$\varphi = M \frac{\|e^{\sigma|t|}g\|_{\infty}}{\alpha} e^{-\sigma|t|} + \rho \cosh\left(\frac{\sqrt{\alpha}}{2}|t|\right).$$

Observe now that Ψ satisfies (2.11) if and only if

$$\Psi = \left(-\frac{d^2}{dt^2} + W\right)^{-1} \left[F[\Psi, \phi]\right]$$

where $W(x) = V(x_0 + \varepsilon(t+h)) - pw^{p-1}(1-\eta_{1,\varepsilon})$ and $F[\phi] = (1-\eta_{1,\varepsilon})E + (1-\eta_{1,\varepsilon})N(\eta_{2,\varepsilon}\phi + \Psi) + 2\phi'\eta'_{2,\varepsilon} + \eta''_{2,\varepsilon}\phi$. The previous result tell us that the inverse of the operator $\left(-\frac{d^2}{dt^2} + W\right)$ is well define. Assume that $\|\phi\|_{C^1} := \|\phi\|_{\infty} + \|\phi'\|_{\infty} \leq 1$, for some $\sigma < 1$ and $\|\Psi\|_{\infty} \leq \rho$, where ρ

is a very small positive number. Observe that $||(1 - \eta_{1,\varepsilon})E||_{\infty} \leq e^{-c\delta/\varepsilon}$. Furthermore, we have

$$|F(\Psi,\phi)| \le e^{-c\delta/\varepsilon} + c\varepsilon \|\phi\|_{C^1} + \|\phi\|_{\infty}^2 + \|\Psi\|_{\infty}^2$$

This implies that

$$||M[\Psi]|| \le C_*[\mu + ||\Psi||_{\infty}^2]$$

where $\mu = e^{-c\delta/\varepsilon} + c\varepsilon \|\phi\|_{C^1} + \|\phi\|_{\infty}^2$. If we assume $\mu < \frac{1}{4C_{*2}}$, and choosing $\rho = 2C_*\mu$, we have

$$\|M[\Psi]\| < \rho.$$

If we define $X = \{\Psi | \|\Psi\|_{\infty} < \rho\}$, then M is a contraction mapping in X. We conclude that

$$||M[\Psi_1] - M[\Psi_2]|| \le C_* C ||\Psi_1 - \Psi_2||, \text{ where } C_* C < 1.$$

Conclusion: There exists a unique solution of (2.11) for given ϕ (small in C^1 -norm) such that

$$\|\Psi(\phi)\|_{\infty} \le [e^{-c\delta/\varepsilon} + \varepsilon \|\phi\|_{C^1} + \|\phi\|_{\infty}^2]$$

Besides: If $\|\phi\| \leq \rho$, independent of ε , we have

$$\|\Psi(\phi_1) - \Psi(\phi_2)\|_{\infty} \le o(1) \|\phi_1 - \phi_2\|.$$

Next step: Solver for (2.9), with $\|\phi\|$ very small, the problem (2.13) $\frac{1}{2} \left(1 - m e^{p-1}\right) + m e^{p-1} \left(1 - m e^{p-1}\right) = m e^{p-1} \left(1 - m e^{p-1}$

$$\phi'' - (1 - pw^{p-1})\phi + \eta_{1,\varepsilon}E + \eta_{3,\varepsilon}B(\phi) + \eta_{1,\varepsilon}pw^{p-1}\Psi + \eta_{1,\eta}N(\phi + \Psi) - cw' = 0$$

where $c = \frac{1}{1+\varepsilon}\int (n_2 - B(\phi) + n_1 - mv^{p-1}\Psi + n_1 - N(\phi + \Psi))w'$. To solve

where $c = \frac{1}{\int w'^2} \int_{\mathbb{R}} (\eta_{3,\varepsilon} B(\phi) + \eta_{1,\varepsilon} p w^{p-1} \Psi + \eta_{1,\eta} N(\phi + \Psi)) w'$. To solve (2.13) we write it as

$$\phi = T[\eta_{3,\varepsilon} B\phi] + T[N(\phi + \Psi(\phi)) + pw^{p-1}\Psi(\phi)] + T[E] =: Q[\phi]$$

Choosing δ sufficiently small independent of ε we conclude that $Q(x) \subseteq X$, and Q is a contraction in X for $\|\cdot\|_{C^1}$. This implies that (2.13) has a unique solution ϕ with $\|\phi\|_{C^1} < M\varepsilon^2$. Also the dependence $\phi = \Phi(h)$ is continuous. Now we only need to adjust h in such a way that c = 0. After some calculations we obtain

$$0 = K\varepsilon^2 V''(x_0)h + O(\varepsilon^3) + O(\delta\varepsilon^2).$$

So we can find $h = h_{\varepsilon}$ and $|h_{\varepsilon}| \leq C\varepsilon$, such that c = 0.

3. Schrodinger equation in dimension N

(3.1)
$$\begin{cases} \varepsilon^2 \Delta u - V(y)u + u^p = 0 & \text{in } \mathbb{R}^N \\ 0 < u \text{ in } \mathbb{R}^n & u(x) \to 0, \text{ as}|x| \to \infty \end{cases}$$

We consider $1 if <math>N \le 2$, and $1 if <math>N \ge 3$. The basic problem that we consider is

$$\begin{cases} \Delta w - w + w^p = 0 & \text{in } \mathbb{R}^N \\ 0 < u \text{ in } \mathbb{R}^n & w(x) \to 0, \text{ as}|x| \to \infty \end{cases}$$

We look for a solution w = w(|x|), a radially symmetric solution. w(r) satisfies the ordinary differential equation

(3.2)
$$\begin{cases} w'' + \frac{N-1}{r}w' - w + w^p = 0 & r \in (0, \infty) \\ w'(0) = 0, \ 0 < w \text{ in } (0, \infty) & w(|x|) \to 0, \ \text{as}|x| \to \infty \end{cases}$$

Proposition 3.1. There exist a solution to (3.2).

Proof. Let us consider the space

$$H_r^1 = \{ u = u(|x|) : u \in H^1(\mathbb{R}^N) \}$$

with the norm $||u||_{H^1} = \int_0^\infty (|u'|^2 + |u|^2) r^{N-1} dr$. Let

$$S = \inf_{u \neq 0, u \in H_r^1} \frac{\int_{\mathbb{R}^N} |\nabla u|^2 + u^2}{(\int_{\mathbb{R}^N} |u|^{p+1})^{2/(p+1)}}$$

We recall that $H^1(\mathbb{R}^N) \to L^{p+1}(\mathbb{R}^N)$ continuously, which means that S > 0 (the larger constant such that $c ||u||_{L^{p+1}} \leq ||u||_{H^1}$). Strategy: Take $u_n \geq 0$ a minimizing sequence for S. We may assume $||u_n||_{L^{p+1}} = 1$. This means that $||u_n||_{H^1}^2 \to S$. This means that the sequence is bounded in H^1 . We may assume $u_n \rightharpoonup u \in H^1$. We have by lower weak s.c.i.

$$\int |\nabla u|^2 + u^2 \le \lim_n \int |\nabla u_n|^2 + u_n^2 = S$$

We could get existence of a minimizer for S if we prove that $||u||_{L^{p+1}=1}$. This is indeed the case thanks to:

Strauss Lemma: There exist a constant C such that $\forall u \in H_r^1(\mathbb{R}^N)$:

$$|u(|x|)| \le \frac{C}{|x|^{\frac{N-1}{2}}} ||u||_{H^1}$$

The proof of this fact is the following: Let $u \in C_c^{\infty}(\mathbb{R}^N)$, u = u(|x|).

$$u^{2}(r) = -2\int_{r}^{\infty} u(s)u'(s)ds \le 2\int_{r}^{\infty} |u(s)||u'(s)|\frac{s^{N-1}}{r^{N-1}}ds$$

$$(3.3) \leq \frac{2}{r^{N-1}} \left(\int_0^\infty |u|^2 s^{n-1} ds \right)^{1/2} \left(\int_0^\infty |u'|^2 s^{N-1} ds \right)^{1/2} \leq \frac{C}{r^{N-1}} \|u\|_{H^1}^2$$

By density we concludes the proof.

Let us observe that

$$|u_n||_{L^{p+1}(\mathbb{R}^N)}^{p+1} = ||u_n||_{L^{p+1}(B_R)}^{p+1} + ||u_n||_{L^{p+1}(B_R^c)}^{p+1}$$

and

$$\|u_n\|_{L^{p+1}(B_R^c)}^{p+1} \le \|u_n\|_{L^{\infty}(|x|>R)}^{p-1} \int_{\mathbb{R}^N} u_n^2 \le \varepsilon$$

if $R \ge R_0(\varepsilon)$ (here we use the lemma of Strauss). On the other hand:

 $u_n \to u$

strong in $L^{p+1}(B_R)$ since $H^1(B_R) \to L^{p+1}(B_R)$ compactly. This implies that $1 \leq \lim_{n \to \infty} \|u_n\|_{L^{p+1}(B_R)}^{p+1} + \varepsilon = \|u\|_{L^{p+1}(B_R)} + \varepsilon \leq \|u\|_{L^{p+1}(\mathbb{R}^N)} + \varepsilon$

This implies that $||u||_{L^{p+1}} \ge 1$ and we conclude $||u||_{L^{p+1}} = 1$.

u is a minimizer for $S, u \ge 0, u \ne 0$. We define $\Phi(v) = ||v||_{H^1} / (\int |v|^{p+1})^2 / p + 1$. So u is a minimizer for Φ . This means that u is a weak solution of the problem

$$-\Delta u + u = \alpha u^{p}$$

where $\alpha = \|u\|_{H^1}$. We define $u = \alpha^{\frac{-1}{p-1}} \tilde{u}$, then \tilde{u} is a solution of $-\Delta \tilde{u} + \tilde{u} = \tilde{u}^p$

And, with the aid of maximum strong principle we can conclude that \tilde{u} is in fact strictly positive everywhere. This concludes the proof \Box

Observation 3.1. There no exist a solution of class C^2 for $p \ge \frac{N+2}{N-2}$. The proof of this fact is an application of Pohozaev identity.

We claim that $w(r) \approx Cr^{-\frac{N-1}{2}}e^{-r}$. This can be proved with the change of variables $k = r^{-\frac{N-1}{2}}h$. The equation that satisfies h is like $h'' - h(1 + \frac{c}{r^2}) = 0$, and the solution of this equation is like e^{-r} .

Theorem 3.1. Kwong, 1989 The radial solution of (3.2) is unique.

3.1. Linear problem. Consequence of the proof of Kwong: We define

$$L(\phi) = \Delta \phi + pw(x)^{p-1}\phi - \phi.$$

Let us consider the problem

$$L(\phi) = 0, \quad \phi \in L^{\infty}(\mathbb{R}^N)$$

A known fact is that if ϕ is a solution of this problem, then ϕ is a linear combination of the functions $\frac{\partial w}{\partial x_j}(x)$, $j = 1, \ldots, N$. This is known as non degeneracy of w.

15

We assume as always $0 < \alpha \leq V \leq \beta$. We want to solve the problem

(3.4)
$$\begin{cases} \varepsilon^2 \Delta \tilde{u} - V(y)\tilde{u} + \tilde{u}^p = 0 & \text{in } \mathbb{R}^N \\ 0 < \tilde{u} \text{ in } \mathbb{R}^n & \tilde{u}(x) \to 0, \text{ as}|x| \to \infty \end{cases}$$

We fix a point $\xi \in \mathbb{R}^N$. Observe that $U_{\varepsilon}(y) = V(\xi)^{\frac{1}{p-1}} \left(\sqrt{V(\xi)} \frac{y-\xi}{\varepsilon} \right)$, is a solution of the problem equation

$$\varepsilon^2 \Delta u - V(\xi)u + u^p = 0.$$

We will look for a solution of (3.4) $u_{\varepsilon}(x) \approx U_{\varepsilon}(y)$. We define $w_{\lambda} = \lambda^{\frac{1}{p-1}} w(\sqrt{\lambda}x)$.

Let us observe that if \tilde{u} satisfies (3.4), then $u(x) = \tilde{u}(\varepsilon z)$ satisfies the problem

(3.5)
$$\begin{cases} \Delta u - V(\varepsilon z)u + u^p = 0 & \text{in } \mathbb{R}^N \\ 0 < u \text{ in } \mathbb{R}^n & u(x) \to 0, \text{ as}|x| \to \infty \end{cases}$$

Let $\xi' = \frac{\xi}{\varepsilon}$. We want a solution of (3.5) with the form $u(z) = w_{\lambda}(z - \xi') + \tilde{\phi}(z)$, with $\lambda = V(\xi)$ and $\tilde{\phi}$ small compared with $w_{\lambda}(z - \xi')$.

3.2. Equation in terms of ϕ . $\phi(x) = \tilde{\phi}(\xi' - x)$. Then ϕ satisfies the equation $\Delta_x[w_\lambda(x) + \phi(x)] - V(\xi + \varepsilon x)[w_\lambda(x) + \phi(x)] + [w_\lambda(x) + \phi(x)]^p = 0$. We can write this equations as

$$\Delta \phi - V(\xi)\phi + pw_{\lambda}^{p-1}(x)\phi - E + B(\phi) + N(\phi) = 0$$

where $E = (V(\xi + \varepsilon x) - V(\xi))w_{\lambda}(x), B(\phi) = (V(\xi) - V(\xi + \varepsilon x))\phi$ and $N(\phi) = (w_{\lambda} + \phi)^p - w_{\lambda}^p - pw_{\lambda}^{p-1}\phi$. We consider the linear problem for $\lambda = V(\xi)$,

(3.6)
$$\begin{cases} L(\phi) = \Delta \phi - V(\xi + \varepsilon x)\phi + pw_{\lambda}(x)\phi = g - \sum_{i=1}^{N} c_{i} \frac{\partial w}{\partial x_{i}} \\ \int_{\mathbb{R}^{N}} \phi \frac{\partial w_{\lambda}}{\partial x_{i}} = 0, \quad i = 1, \dots, N \end{cases}$$

The $c'_i s$ are defined as follows

$$\int L(\phi)(w_{\lambda})_{x_{i}} = \int L_{0}(\phi)(w_{\lambda})_{x_{i}} + \int (V(\xi) - V(\xi + \varepsilon x))\phi(w_{\lambda})_{x_{i}}$$

$$= w(|x|) \quad (w_{\lambda}) \quad (x) = w' \stackrel{x_{i}}{\longrightarrow} \text{ This implies that}$$

w = w(|x|). $(w_{\lambda})_{x_i}(x) = w'_{\lambda} \frac{x_i}{|x|}$. This implies that

$$\int (w_{\lambda})x_i(w_{\lambda})x_j = \int w_{\lambda}'(|x|)^2 x_i x_j \frac{1}{|x|^2}$$

This integral is 0 if $i \neq j$ and equals to $\int_{\mathbb{R}^N} w'_{\lambda}(|x|)^2 x_i^2 \frac{1}{|x|^2} dx = 1/N \int |\nabla w_{\lambda}|^2 = \gamma$. Then $c_i = \int g(w_{\lambda}) x_i + \int_{\mathbb{R}^N} [V(\xi + \varepsilon x) - V(\xi)] \phi(w_{\lambda}) x_i \frac{1}{\int (w_{\lambda}) x_i^2}$.

Problem: Given $g \in L^{\infty}(\mathbb{R}^N)$ we want to find $\phi \in L^{\infty}(\mathbb{R}^N)$ solution to the problem (3.6). Assumptions: We assume $V \in C^1(\mathbb{R}^N)$, $||V||_{C^1} < \infty$. We assume in addition that $|\xi| \leq M_0$ and $0 < \alpha \leq V$. **Proposition 3.2.** There exists ε_0 , $C_0 > 0$ such that $\forall 0 < \varepsilon \leq \varepsilon_0$, $\forall |\xi| \leq M_0, \forall g \in L^{\infty}(\mathbb{R}^N) \cap C(\mathbb{R}^N)$, there exist a unique solution $\phi \in L^{\infty}(\mathbb{R}^N)$ to (3.6), $\phi = T[g]$ satisfies

$$\|\phi\|_{C^1} \le C_0 \|g\|_{\infty}$$

Proof. Step 1: A priori estimates on bounded domains: There exist R_0 , ε_0 , C_0 such that $\forall \varepsilon < \varepsilon_0$, $R > R_0$, $|\xi| \le M_0$ such that $\forall \phi, g \in L^{\infty}$ solving $L(\phi) = g - \sum_i c_i(w_{\lambda})_{x_i}$ in B_R , $\int_{B_R} \phi(w_{\lambda})_{x_i} = 0$ and $\phi = 0$ on ∂B_R , we have

$$\|\phi\|_{C^1(B_R)} \le C_0 \|g\|_{\infty}$$

We prove first $\|\phi\|_{\infty} \leq C_0 \|g\|_{\infty}$. Assume the opposite, then there exist sequences $\phi_n, g_n, \varepsilon \to 0, R_n \to \infty, |\xi_n| \leq M_0$ such that

$$L(\phi_n) = g_n - c_i^n \frac{\partial w_\lambda}{\partial x_i}$$

. The first fact is that $c_i^n \to 0$ as $n \to \infty$. This fact follows just after multiplying the equation against $(w_{\lambda})_{x_i}$ and integrating by parts.

Observation: If $\Delta \phi = g$ in B_2 then there exist C such that

$$\|\nabla \phi\|_{L^{\infty}(B_1)} \le C[\|g\|_{L^{\infty}(B_2)} + \|\phi\|_{L^{\infty}(B_2)}]$$

Where B_1 and B_2 are concentric balls. This implies that $\|\nabla \phi_n\|_{L^{\infty}(B)} \leq C$ a given bounded set $B, \forall n \geq n_0$. This implies that passing to a subsequence $\phi_n \to \phi$ uniformly on compact sets, and $\phi \in L^{\infty}(\mathbb{R}^N)$. Observe that $\|\phi_n\|_{\infty} = 1$, and this implies that $\|\phi\|_{\infty} \leq 1$. We can assume that $\xi_n \to \xi_0$.

 ϕ satisfies the equation $\Delta \phi - V(\xi_0)\phi + pw_{\lambda_0}^{p-1}(x)\phi = 0$, where $\lambda_0 = V(\xi_0)$, and this implies that $\phi \in \text{Span}\left\{\frac{\partial w_{\lambda_0}}{x_1}, \ldots, \frac{\partial w_{\lambda_0}}{x_N}\right\}$, but also $\int_{\mathbb{R}^N} \phi(w_{\lambda_0})_{x_i} = 0$, $i = 1, \ldots, N$. Then $\phi = 0$ and this implies that $\|\phi_n\|_{L^{\infty}(B_M(0))} \to 0$, $\forall M < \infty$. Maximum principle implies that $\|\phi_n\|_{L^{\infty}(B_{R_n} \setminus B_{M_0})} \to 0$, just because $\|\phi_n\| = o(1)$ on $\partial B_{R_n} \setminus B_{M_0}$ and $\|g_n\|_{\infty} \to 0$. Therefore $\|\phi_n\|_{\infty} \to 0$, a contradiction. This implies that $\|\phi\|_{L^{\infty}(B_R)} \leq C_0 \|g\|_{L^{\infty}(B_R)}$ uniformly on large R. The C^1 estimate follows from elliptic local boundary estimates for Δ .

Step 2: Existence: $g \in L^{\infty}$. We want to solve (3.6). We claim that solving (3.6) is equivalent to finding $\phi \in X = \{\psi \in H_0^1 : \int \psi(w_\lambda)_{x_i} = 0, i = 1, \ldots, N\}$ such that

$$\int \nabla \phi \nabla \psi + \int V(\xi + \varepsilon x) \phi \psi - p w^{p-1} \phi \psi + \int g \psi = 0, \quad \forall \psi \in X.$$

Take general $\Psi \in H_0^1$, $\Psi = \psi + \sum_i \alpha_i(w_\lambda)_{x_i}$, with $\alpha_i = \frac{\int \Psi(w_\lambda)_{x_i}}{\int (w_\lambda)_{x_i}}$. We have

$$-\int \Delta(\sum_{i} \alpha_{i}(w_{\lambda})_{x_{i}}) \nabla \phi + \int V(\xi)(\sum_{i} \alpha_{i}(w_{\lambda})_{x_{i}}) \phi - pw^{p-1}(\sum_{i} \alpha_{i}(w_{\lambda})_{x_{i}}) \phi = 0$$

Which implies that

$$\int \nabla \phi \nabla \Psi + \int V(\xi) \phi \Psi - p w^{p-1} \phi \Psi$$
$$- \int (V(\xi) - V(\xi + \varepsilon x))(\Psi - \sum_{i} \alpha_{i}(w_{\lambda})_{x_{i}}) + \int g(\Psi - \sum_{i} \alpha_{i}(w_{\lambda})_{x_{i}})$$

Then

$$\int [(V(\xi + \varepsilon x) - V(\xi))\phi + g](\Psi - \sum_{i} \alpha_{i}(w_{\lambda})_{x_{i}})$$

and $\Pi_X(\Psi) = \sum_i \alpha_i(w_\lambda)_{x_i}$, then the previos integral is equal to

$$\int \Pi_X([(V(\xi + \varepsilon x) - V(\xi))\phi + g]\phi)\Psi$$

r	-	-	-	٦	
I					
I					

This implies that

$$-\Delta\phi + V(\xi)\phi - pw^{p-1}\phi + \Pi_X([(V(\xi + \varepsilon x) - V(\xi))\phi + g]\phi) = 0.$$

The problem is formulated weakly as

$$\int \nabla \phi \nabla \psi + \int (V(\xi + \varepsilon x) - pw^{p-1})\phi \psi + \int g\psi = 0, \phi \in X, \forall \psi \in X$$

This can be written as $\phi = A[\phi] + \tilde{g}$, where A is a compact operator. The a priori estimate implies that the only solution when g = 0 of this equation is $\phi = 0$. We conclude existence by Fredholm alternative.

We look for a solution which near $x_j = \xi'_j = \xi_j/\varepsilon$, j = 1, ..., k looks like $v(x) \approx W_{\lambda_j}(x - \xi'_j)$, $\lambda_j = V(\xi_j)$, where W_{λ} solves

$$\Delta W_{\lambda} - \lambda W + W^p = 0$$
, W_{λ} radial, $W_{\lambda}(|x|) \to 0$, as $|x| \to \infty$

Observe that $W_{\lambda}(y) = \lambda^{1/(p-1)} w(\sqrt{\lambda}y)$, where w solves the equation $\Delta w - w + w^p = 0$. The equation

 $\Delta v - V(\varepsilon x)v + v^p = 0$

looks like $\Delta v - V(\xi_j)v + v^p = 0$, where $\xi_1, \xi_2, \dots, \xi_k \in \mathbb{R}^N$ and we assume also $|\xi'_j - \xi'_l| \gg 1$, if $j \neq l$. We look for a solution $v(x) \approx \sum_{j=1}^k W_{\lambda_j}(x - \xi'_j)$, $\lambda_j = V(\xi_j)$. We assume $V \in C^2(\mathbb{R}^N)$ and $||V||_{C^2} < \infty$, $0 < \alpha \leq V$.

18

We use the notation $W_j = W_{\lambda_j}(x - \xi'_j)$, $\lambda_j = V(\xi_j)$ and $W = \sum_{j=1}^n W_j$. Look for a solution $v = W + \phi$, so ϕ solves the problem

$$\Delta \phi - V(\varepsilon x)\phi + pW^{p-1}\phi + E + N(\phi) = 0$$

where

$$E = \Delta W - VW + W^{p}, \quad N(\phi) = (W + \phi)^{p} - W^{p} - pW^{p-1}\phi.$$

Observe that $\Delta W = \sum_{j} \Delta W_{j} = \sum_{j} \lambda_{j} W_{j} - W_{j}^{p}$. So we can write

$$E = \sum_{j} (\lambda_j - V(\varepsilon x)) W_j + (\sum_{j} W_j)^p - \sum_{j} W_j^p$$

3.3. Linearized (projected) problem. We use the following notation $Z_j^i = \frac{\partial W_j}{\partial x_i}$. The linearized projected problem is the following

$$\Delta \phi - V(\varepsilon x)\phi + pW^{p-1}\phi + g = \sum_{i,j} c_j^i Z_j^i$$

with the orthogonality condition $\int \phi Z_j^i = 0$, $\forall i, j$. The Z_j^i 's are "nearly orthogonal" if the centers ξ'_j are far away one to each other. The c_j^i 's are, by definition, the solution of the linear system

$$\int_{\mathbb{R}^{N}} (\Delta \phi - V(\varepsilon x)\phi + pW^{p-1}\phi + g) Z_{j_{0}}^{i_{0}} = \sum_{i,j} c_{j}^{i} \int_{\mathbb{R}^{N}} Z_{j}^{i} Z_{j_{0}}^{i_{0}},$$

for $i_0 = 1, \ldots, N$, $j_0 = 1, \ldots, k$. The c_j^i 's are indeed uniquely determined provided that $|\xi'_l - \xi'_j| > \mathbb{R}_0 \gg 1$, because the matrix with coefficients $\alpha_{i,j,i_0,j_0} = \int Z_j^i Z_{j_0}^{i_0}$ is "nearly diagonal", this means

$$\alpha_{i,j,i_0,j_0} = \begin{cases} \frac{1}{N} \int |\nabla W_j|^2 & \text{if } (i,j) = (i_0,j_0), \\ o(1) & \text{if not} \end{cases}$$

Moreover:

$$|c_{j_0}^{i_0}| \le C \sum_{i,j} \int |\phi| [|\lambda_j - V| + p|W^{p-1} - W_j^{p-1}|] |Z_j^i| + \int |g| |Z_j^i| \le C(\|\phi\|_{\infty} + \|g\|_{\infty})$$

with C uniform in large R_0 . Even more, if we take $x = \xi' + y$

$$|(\lambda_j - V(\varepsilon x))Z_j^i| \le |(V(\xi_j) - V(\xi_j + \varepsilon y))||\frac{\partial W_{\lambda_j}}{\partial y_i}| \le C\varepsilon e^{-\frac{\sqrt{\alpha}}{2}|y|},$$

because $\left|\frac{\partial W_{\lambda_j}}{\partial y_i}\right| \leq C e^{-|y|\sqrt{\lambda_j}} |y|^{-(N-1)/2}$. Observe also that

$$|(W^{p-1} - W^{p-1}_j)Z^i_j| = |((1 - \sum_{l \neq j} \frac{W_l}{W_j})^{p-1} - 1)|W^{p-1}_jZ^i_j|$$

Observe that if $|x - \xi'_j| < \delta_0 \min_{j_1 \neq j_2} |\xi'_{j_1} - \xi'_{j_2}|$, then

$$\frac{W_l(x)}{W_j(x)} \approx \frac{e^{-\sqrt{\lambda_l}|x-\xi_l'|}}{e^{-\sqrt{\lambda_j}|x-\xi_j'|}} < \frac{e^{-\sqrt{\lambda_l}|x-\xi_l'|}}{e^{-\sqrt{\lambda_j}\delta_0 \min_{j_1 \neq j_2} |\xi_{j_1}' - \xi_{j_2}'|}}$$

If $\delta_0 \ll 1$ but fixed, we conclude that $e^{-\sqrt{\lambda_l}|\xi'_j - \xi'_l| + \delta_0(\sqrt{\lambda_l} - \sqrt{\lambda_j}) \min_{j_1 \neq j_2} |\xi'_{j_1} - \xi'_{j_2}|} < e^{-\rho \min_{j_1 \neq j_2} |\xi'_{j_1} - xi'_{j_2}| \ll 1}$. Conclusion: if $|x - \xi'_j| < \delta_0 \min_{j_1 \neq j_2} |\xi'_{j_1} - xi'_{j_2}|$ implies that

$$|(W^{p-1} - W_j^{p-1})Z_j^i| \le e^{-\rho \min_{j_1 \ne j_2} |\xi'_{j_1} - xi'_{j_2}|} e^{-\frac{\alpha}{2}|x - \xi'_j|}.$$

If $|x - \xi'_j| > \delta_0 \min_{j_1 \neq j_2} |\xi'_{j_1} - xi'_{j_2}|$, then

$$|(W^{p-1} - W_j^{p-1})Z_j^i| \le C|Z_j^i| \le Ce^{-\rho \min_{j_1 \ne j_2} |\xi'_{j_1} - xi'_{j_2}|} e^{-\frac{\alpha}{2}|x - \xi'_j|}$$

As a conclusion we get

$$|c_{j_0}^{i_0}| \le C(\varepsilon + e^{-\rho \min_{j_1 \ne j_2} |\xi'_{j_1} - \xi'_{j_2}|}) \|\phi\|_{\infty} + \|g\|_{\infty}$$

Lemma 3.1. Given $k \ge 1$, there exist R_0, C_0, ε_0 such that for all points ξ'_j with $|\xi'_{j_1} - \xi'_{j_2}| > R_0$, $j = 1, \ldots, k$ and all $\varepsilon < \varepsilon_0$ then exist a unique solution ϕ to the linearized projected problem with

$$\|\phi\|_{\infty} \le C_0 \|g\|_{\infty}$$

Proof. We first prove the a priori estimate $\|\phi\|_{\infty} \leq C_0 \|g\|_{\infty}$. If not there exist $\varepsilon_n \to 0$, $\|\phi_n\|_{\infty} = 1$, $\|g_n\| \to 0$, $\xi_j^{\prime n}$ with $\min_{j_1 \neq j_2} |\xi_{j_1}^{\prime n} - \xi_{j_2}^{\prime n}| \to \infty$. We denote $W_n = \sum_j W_{j_n}$, and we have

$$\Delta \phi_n - V(\varepsilon_n x)\phi_n + pW_n^{p-1}\phi_n + g_n = \sum_{i,j} (c_j^i)_n (z_j^i)_n$$

First observation: $(c_j^i)_n \to 0$ (follows from estimate for $c_{j_0}^{i_0}$). Second: $\forall R > 0 \|\phi_n\|_{L^{\infty}(B(\xi_{j_0}^{\prime n},R))} \to 0, j = 1, \ldots, k$. If not, there exist j_0 $\|\phi_n\|_{L^{\infty}(B(\xi_{j_0}^{\prime n},R))} \ge \gamma > 0$. We denote $\tilde{\phi_n}(y) := \phi_n(\xi_{j_0}^{\prime n} + y)$. We have $\|\tilde{\phi_n}\|_{L^{\infty}(B(0,R))} \ge \gamma > 0$. Since $|\Delta \tilde{\phi_n}| \le C$, $\|\tilde{\phi_n}\|_{\infty} \le 1$. This implies that $\|\nabla \tilde{\phi_n}\| \le C$. Passing to a subsequence we may assume $\tilde{\phi_n} \to \tilde{\phi}$ uniformly on compacts sets. Observe that also $V(\varepsilon_n(\xi_{j_0}^{\prime n} + y)) =$ $V(\varepsilon_n \xi_{j_0}^{\prime n}) + O(\varepsilon_n |y|) \to \lambda_{j_0}$ over compact sets and $W_n(\xi_{j_0}^{\prime n} + y) \to W_{\lambda_{j_0}}(y)$ uniformly on compact sets. This implies that $\tilde{\phi}$ is a solution of the problem

$$\Delta \tilde{\phi} - \lambda_{j_0} \tilde{\phi} + p w_{\lambda_0}^{p-1} p - 1 = 0, \quad \int \tilde{\phi} \frac{\partial W_{\lambda_{j_0}}}{\partial y_i} dy = 0, i = 1, \dots, N$$

Non degeneracy of $w_{\lambda_{j_0}}$ implies that $\tilde{\phi} = \sum_i \alpha_i \frac{\partial w_{\lambda_{j_0}}}{\partial y_i}$. The orthogonality condition implies that $\alpha_i = 0, \forall i = 1, \dots, N$. This implies that

 $\tilde{\phi} = 0$ but $\|\tilde{\phi}\|_{L^{\infty}(B(0,R))} \geq \gamma > 0$, a contradiction. Now we prove: $\|\phi_n\|_{L^{\infty}}(\mathbb{R}^N \setminus \bigcup_n B(\xi'^n_j, R)) \to 0$, provided that $R \gg 1$ and fixed so that $\phi_n \to 0$ in the sense of $\|\phi_n\|_{\infty}$ (again a contradiction). We will denote $\Omega_n = \mathbb{R}^N \setminus \bigcup_n B(\xi'^n_j, R)$. For $R \gg 1$ the equation for ϕ_n has the form

$$\Delta\phi_n - Q_n\phi_n + g_n = 0$$

where $Q_n = V(\varepsilon x) - pW_n^{p-1} \ge \frac{\alpha}{2} > 0$ for some R sufficiently large (but fixed). Let's take for $\sigma^2 < \alpha/2$

$$\bar{\phi} = \delta \sum_{j} e^{\sigma |x - \xi_j'^n|} + \mu_n.$$

We denote $\varphi(y) = e^{\sigma|y|}$, r = |y|. Observe that $\Delta \varphi - \alpha/2\varphi = e^{\sigma|y|}(\sigma^2 + \frac{N-1}{|y|} - \alpha/2) < 0$ if $|y| > R \gg 1$. Then

$$-\Delta\bar{\phi} + Q_n\bar{\phi} - g_n > -\Delta\bar{\phi} + \frac{\alpha}{2}\bar{\phi} - \|g_n\|_{\infty} > \frac{\alpha}{2}\mu_n - \|g_n\|_{\infty} > 0$$

if we choose $\mu_n \geq \|g_n\|_{\infty} \frac{2}{\alpha}$. In addition we take $\mu_n = \sum_j \|\phi_n\|_{L^{\infty}(B(\xi_j^n, R))} + \|g_n\|_{\infty} \frac{2}{\alpha}$. Maximum principle implies that $\phi_n(x) \leq \bar{\phi}$ for all $x \in \Omega_n$. Taking $\delta \to 0$ this implies that $\phi_n(x) \leq \mu_n$, for all $x \in \Omega_n$. Also true that $|\phi_n(x)| \leq \mu_n$ for all $x \in \Omega_n^c$, and this implies that $\|\phi_n\|_{L^{\infty}(\mathbb{R}^N)} \to 0$.

Observation 3.2. If in addition we have $\theta_n = \|g_n\left(\sum_j e^{-\rho|x-\xi'_j|}\right)^{-1}\|_{\infty} \to 0$ with $\rho < \alpha/2$. Then we can use as a barrier

$$\bar{\phi} = \delta \sum_{j} e^{\sigma |x - \xi_j'^n|} + \mu_n \sum_{j} e^{-\rho |x - \xi_j'^n|}$$

with $\mu_n = e^{\rho R} \sum_j \|\phi_n\|_{L^{\infty}(B(\xi_j^{\prime n}, R))} + \theta_n$, then $\bar{\phi}$ is a super solution of the equation and we have $|\phi_n| \leq \bar{\phi}$, and letting $\delta \to 0$ we get $|\phi_n(x)| \leq \mu_n \sum_j e^{-\rho|x-\xi_j^{\prime n}|}$. As a conclusion we also get the a priori estimate

$$\|\phi\left(\sum_{j=1}^{k} e^{-\rho|x-\xi_{j}'|}\right)^{-1}\|_{\infty} \le C \|g\left(\sum_{j=1}^{k} e^{-\rho|x-\xi_{j}'|}\right)^{-1}\|_{\infty}$$

provided that $0 \leq \rho < \alpha/2$, $|\xi'_{j_1} - \xi'_{j_2}| > R_0 \gg 1$, $\varepsilon < \varepsilon_0$.

We now give the proof of existence

Proof. Take g compactly supported. The weak formulation for

(3.7)
$$\Delta \phi - V(\varepsilon x)\phi + pW^{p-1}\phi + g = \sum_{i,j} c_j^i Z_j^i, \quad \int \phi Z_j^i, \forall i, j$$

is find $\phi \in X = \{\phi \in H^1(\mathbb{R}^N) : \int \phi Z_j^i = 0, \forall i, j\}$ such that

(3.8)
$$\int_{\mathbb{R}^N} \nabla \phi \nabla \psi + V \phi \psi - p w^{p-1} \phi \psi - g \psi = 0, \quad \forall \psi \in X.$$

Assume ϕ solves (3.7). For $g \in L^2$, write $g = \tilde{g} + \Pi[g]$ where $\int \tilde{g}Z_j^i = 0$, for all i, j. Π is the orthogonal projection of g onto the space spanned by the Z_j^i 's. Take $\psi \in H^1(\mathbb{R}^N)$ arbitrary and use $\psi - \Pi[\psi]$ as a test function in (3.8). Then if $\varphi \in C_c^{\infty}(\mathbb{R}^N)$, then

$$\int_{\mathbb{R}^N} \nabla \varphi \nabla (\Pi[\psi]) = - \int_{\mathbb{R}^N} \Delta \varphi \Pi[\psi] = - \int_{\mathbb{R}^N} \Pi[\Delta \varphi] \psi.$$

But $\Pi[\Delta \varphi] = \sum_{i,j} \alpha_{i,j} Z_j^i$, where

$$\sum \alpha_{i,j} \int Z_{i,j} Z_{i_0,j_0} = \int \Delta \varphi Z_{i_0}^{j_0} = \int \varphi \Delta Z_{i_0}^{j_0}$$

Then $\|\Pi[\Delta \varphi]\|_{L^2} \leq C \|\varphi\|_{H^1}$. By density is true also for $\varphi \in H^1$ where $\Delta \varphi \in H^{-1}$. Therefore

$$\int \nabla \phi \nabla \psi + \int (V\phi - pW^{p-1}\phi - g)\psi = \int \Pi (V\phi - pW^{p-1}\phi + g)\psi$$

then ϕ solves in weak sense

$$-\Delta\phi + V\phi - pW^{p-1}\phi - g = \Pi[-\Delta\phi + V\phi - pW^{p-1}\phi - g]$$

and $\Pi[-\Delta \phi + V \phi - pW^{p-1}\phi - g] = \sum_{i,j} c_i^j Z_i j$. Therefore by definition ϕ solves (3.8) implies that ϕ solves (3.8). Classical regularity gives that this weak solution is solution of (3.7) in strong sense, in particular $\phi \in L^{\infty}$ so that

$$\|\phi\|_{\infty} \le C \|g\|_{\infty}$$

. Now we give the proof of existence for (3.7). We take g compactly supported. The equation (3.8) can be written in the following way (using Riesz theorem):

$$\langle \phi, \psi \rangle_{H^1} + \langle B[\phi], \psi \rangle_{H^1} = \langle \tilde{g}, \psi \rangle_{H^1}$$

or $\phi + B[\phi] = \tilde{g}, \phi \in X$. We claim that B is a compact operator. Indeed if $\phi_n \rightarrow 0$ in X, then $\phi_n \rightarrow 0$ in L^2 over compacts.

$$|\langle B[\phi_n],\psi\rangle| \le |\int pW^{p-1}\phi_n\psi| \le (\int pw^{p-1}\phi_n^2)^{1/2} (\int pW^{p-1}\psi^2)^{1/2}$$

then

$$|\langle B[\phi_n],\psi\rangle| \le c(\int pW^{p-1}\phi_n^2)^{1/2} \|\psi\|_{H^1}$$

Take $\psi = B[\phi_n]$, which implies

$$||B[\phi_n]||_{H^1} \le c (\int p W^{p-1} \phi_n^2)^{1/2} \to 0.$$

This implies that B is a compact operator. Now we prove existence with the aid of fredholm alternative. Problem is solvable if for $\tilde{g} = 0$ implies that $\phi = 0$. But $\phi + B[\phi] = 0$ implies solve (3.7)(strongly) with g = 0. This implies $\phi \in L^{\infty}$, and the a priori estimate implies $\phi = 0$. Considering $g \Xi_{B_R(0)}$ we conclude that

$$\|\phi_R\|_{\infty} \le \|g\|_{\infty}$$

Taking $R \to \infty$ then along a subsequence $\phi_R \to \phi$ uniform over compacts.

We take $g \in L^{\infty}$. We have $\phi = T_{\xi'}[g]$, where $\xi' = (\xi'_1, \ldots, \xi'_k)$. We want to analyze derivatives $\partial_{\xi'_{ji}} T_{\xi'}[g]$. We know that $||T_{\xi'}[g]|| \leq C_0 ||g||_{\infty}$. First we will make a formal differentiation. We denote $\Phi = \frac{\partial \phi}{\partial \xi'_{i_0 j_0}}$.

We have $\Delta \phi - V \phi + pW^{p-1}\phi + g = \sum_{i,j} c_j^i Z_j^i$ and $\int \phi Z_j^i = 0$, for all i, j. Formal differentiation yields

$$\Delta \Phi - V \Phi + p W^{p-1} \Phi + \partial_{\xi_{i_0 j_0}} (W^{p-1}) \phi - \sum_{i,j} c_j^i \partial_{\xi_{i_0 j_0}} Z_i^j = \sum_{i,j} \tilde{c}_j^i Z_j^i$$

where formally $\tilde{c}_i^j = \partial_{\xi_{i_0 j_0}} c_i^j$. The orthogonality conditions traduces into

$$\int_{\mathbb{R}^N} \Phi Z_j^i = \begin{cases} 0 & \text{if } j \neq j_0 \\ -\int \phi \partial_{\xi_{i_0 j_0} Z_{j_0}^i} & \text{if } j = j_0 \end{cases}$$

Let us define $\tilde{\Phi} = \Phi - \sum_{i,j} \alpha_{i,j} Z_j^i$. We want $\int \tilde{\Phi} Z_j^i = 0$, for all i, j. We need

$$\sum_{i,j} \alpha_{i,j} \int Z_j^i Z_{\bar{j}}^{\bar{i}} = \begin{cases} 0 & \text{if } j \neq j_0 \\ -\int \phi \partial_{\xi_{i_0 j_0} Z_{j_0}^i} & \text{if } \bar{j} = j_0 \end{cases}$$

The system has a unique solution and $|\alpha_{i,j}| \leq C \|\phi\|_{\infty}$ (since the system is almost diagonal). So we have the condition $\int \tilde{\Phi} Z_j^i = 0$, for all i, j. We add to the equation the term $\sum_{i,j} \alpha_{i,j} (\Delta - V + pW^{p-1}) Z_j^i$, so $\tilde{\Phi}$ satisfies the equation $\Delta \phi - V \phi + pW^{p-1} \phi + g = \sum_{i,j} c_j^i Z_j^i$

$$\Delta \tilde{\Phi} - V \tilde{\Phi} + p W^{p-1} \tilde{\Phi} + \partial_{\xi_{i_0 j_0}} (W^{p-1}) \phi - \sum_{i,j} c_j^i \partial_{\xi_{i_0 j_0}} Z_i^j = \sum_{i,j} \tilde{c}_j^i Z_j^i - \sum_{i,j} \alpha_{i,j} (\Delta - V + p W^{p-1}) Z_j^i Z_j^j - \sum_{i,j} \tilde{c}_j^i Z_j^j - \sum_{i,j} \alpha_{i,j} (\Delta - V + p W^{p-1}) Z_j^j Z_j^j - \sum_{i,j} \tilde{c}_j^i Z_j^j - \sum_{i,j} \alpha_{i,j} (\Delta - V + p W^{p-1}) Z_j^j Z_j^j Z_j^j - \sum_{i,j} \tilde{c}_j^i Z_j^j Z_j^j - \sum_{i,j} \alpha_{i,j} (\Delta - V + p W^{p-1}) Z_j^j Z_j^j$$

This implies $\|\Phi\| \leq C(\|h\| + \|g\|) \leq C\|g\|_{\infty}$. This implies $\|\Phi\| \leq C\|g\|_{\infty}$. We do this in a discrete way, and passing to the limit all these calculations are still valid. Conclusion: The map $\xi \to \partial_{\xi} \phi$ is well

defined and continuous (into L^{∞}). Besides $\|\partial_{\xi}\phi\|_{\infty} \leq C\|g\|_{\infty}$, and this implies

$$\|\partial_{\xi} T_{\xi}[\phi]\| \le C \|g\|$$

3.4. Nonlinear projected problem. Consider now the nonlinear projected problem

$$\Delta \phi - V\phi + pw^{p-1}\phi + E + N(\phi) = \sum_{i,j} c_i^j Z_j^i, \quad \int \phi Z_i^j = 0, \, \forall i, j$$

We solve this by fixed point. We have $\phi = T(E + N(\phi)) =: M(\phi)$. We define $\Lambda = \{\phi \in C(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N) : \|\phi\|_{\infty} \leq M\|E\|_{\infty}\}$. Remember that $E = \sum_i (\lambda_j - V(\varepsilon x))W_j + (\sum_j W_j)^p - \sum_j W_j^p$. Observe that

$$|E| \le \varepsilon \sum_{i} e^{-\sigma |x - \xi'_j|} + c e^{-\delta_0 \min_{j_1 \neq j_2} |\xi'_{j_1} - \xi'_{j_2}|} \sum_{j} e^{-\sigma |x - \xi'_j|}$$

so, for existence we have $||E|| \leq C[\varepsilon + e^{-\delta_0 \min_{j_1 \neq j_2} |\xi'_{j_1} - \xi'_{j_2}|}] =: \rho$ (see that ρ is small). Contraction mapping implies unique existence of $\phi = \Phi(\xi)$ and $||\Phi(\xi)|| \leq M\rho$.

3.5. Differentiability in ξ' of $\Phi(\xi')$. We have

$$\Phi - T'_{\xi}(E'_{\xi} + N'_{\xi}(\phi)) = A(\Phi, \xi') = 0$$

If $(D_{\Phi}A)(\Phi(\xi'),\xi')$ is invertible in L^{∞} , then $\Phi(\xi')$ turns out to be of class C^1 . This is a consequence of the fixed point characterization, i.e., $D_{\Phi}A(\Phi(\xi'),\xi') = I + o(1)$ (the order o(1) is a direct consequence of fixed point characterization). Then is invertible. Theorem and the C^1 derivative of $A(\Phi,\xi')$ in (ϕ,ξ') . This implies $\Phi(\xi')$ is C^1 . $\|D'_{\xi}\Phi(\xi')\| \leq C\rho$ (just using the derivate given by the implicit function theorem).

3.6. Variational reduction. We want to find ξ' such that the $c_j^i = 0$, for all i, j, to get a solution to the original problem. We use a procedure that we call Variational Reduction in which the problem of finding ξ' with $c_j^i = 0$, for all i, j, is equivalent to finding a critical point of a functional of ξ' . Recall:

$$J(v) := \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 + V(\varepsilon x) v^2 - \frac{1}{p+1} \int_{\mathbb{R}^{N+1}} v_+^{p+1} v_+^{p+1}$$

is defined in $H^1(\mathbb{R}^N)$, since 1 . <math>v is a solution of $\Delta v - Vv + v^p = 0, v \to 0$ if and only if $v \in H^1(\mathbb{R}^N)$ and J'(v) = 0. Observe that $\langle J'(v), \varphi \rangle = \int \nabla v \nabla \varphi + Vv \varphi - v^p_+ \varphi$.

The following fact happens: $v = W_{\xi'_*} + \phi(\xi')$ is a solution of the original problem (for $\rho \ll 1$) if and only if

$$\partial_{\xi'} J(W_{\xi'} + \phi(\xi'))|_{\xi' = \xi'_*} = 0.$$

24

$$\partial_{\xi'_{j_0i_0}} J(v(\xi')) = \langle J'(v(\xi')), \partial_{\xi'_{j_0i_0}} v(\xi') \rangle = -\sum_{j,i} c_j^i \int Z_j^i \partial_{\xi'_{j_0i_0}} v = -\sum_{i,j} c_j^i \int Z_i^j (\partial_{\xi'_{j_0i_0}} W_{\xi'} + \partial_{\xi'_{j_0i_0}} V_{\xi'}) \rangle$$

Remember that $W_{\xi'} = \sum_{j=1}^{k} w_{\lambda_j} (x - \xi'_j),$

$$\begin{aligned} \partial_{\xi'_{j_0i_0}} W'_{\xi} &= \partial_{\xi'_{j_0i_0}} w_{\lambda_{j_0(\xi')}}(x-\xi'_j) = (\partial_{\lambda} w_{\lambda}(x-\xi'_{j_0}))|_{\lambda=\lambda_{j_0}} - \partial_{x_{i_0}} w_{\lambda_{j_0}}(x-\xi'_{j_0}) = O(e^{-\delta|x-\xi'_0|})o(\varepsilon) - Z_{j_0} \\ \text{This because } \partial_{\lambda} w_{\lambda} &= O(e^{-\delta|x-\xi'_0|}). \quad \text{On the other hand } |\partial_{\xi'_{j_0i_0}} \phi| \leq C\rho e^{-\delta|x-\xi'_{j_0}|}. \text{ Finally, observe that} \end{aligned}$$

$$-\int Z_j^i(\partial_{\xi'_{j_0i_0}}W'_{\xi} + \partial_{\xi'_{j_0i_0}}\phi) = \int Z_j^i Z_{j_0}^{i_0} + O(\rho)$$

The matrix of these numbers is invertible provided $\rho \ll 1$.

A consequence (D, Felmer 1996): Assume j = 1 and that there exist an open, bounded set $\Lambda \subset \mathbb{R}^N$ such that

$$\inf_{\partial \Lambda} V > \inf_{\Lambda} V,$$

then there exist a solution to the original problem, v_{ε} with $v_{\varepsilon}(x) = W_{V(\xi_{\varepsilon})}((x - \xi_{\varepsilon})/\varepsilon) + o(1)$ and $V(\xi_{\varepsilon}) \to \min_{\Lambda} V, \ \xi = \xi_{\varepsilon}$.

Another consequence (D, Felmer 1998): $\Lambda_1, \ldots, \Lambda_k$ disjoint bounded with $\inf_{\Lambda_j} V < \inf_{\partial \Lambda_j} V$, for all j. For the problem $\varepsilon^2 \Delta u - V(x)u + u^p = 0, \ 0 < u \to 0$ at ∞ , there exist a solution u_{ε} with $u_{\varepsilon}(x) \approx \sum_{j=1}^k W_{V(\xi_j^{\varepsilon})}(x - \xi_j^{\varepsilon}/\varepsilon), \ \xi_j^{\varepsilon} \in \Lambda_j$ and $V(\xi_j^{\varepsilon}) \to \inf_{\Lambda_j} V$ (in the case of non-degeneracy minimal or more generally non-degenerate critical points the result is due to Oh (1990))

Proof. First result: j = 1. $v(\xi') = W_{\xi'} + \phi(\xi')$. Then

$$J(W_{\xi}')) = J(W_{\xi'} + \phi(\xi')) + \langle J'(W'_{\xi} + \phi), -\phi \rangle + \frac{1}{2}J''(W'_{\xi} + (1-t)\phi)[\phi]^2$$

(Taylor expansion of the function $\alpha(t) = J(W'_{\xi} + (1-t)\phi)$). Observe that $\langle J'(W'_{\xi} + \phi), -\phi \rangle = \sum_{i,j} c_j^i \int Z_i^j \phi = 0$. Also observe that

$$J''(W'_{\xi} + (1-t)\phi)[\phi]^2 = \int |\nabla\phi|^2 + V(\varepsilon x)\phi^2 - p(W'_{\xi} + (1-t)\phi)\phi^2 = O(\varepsilon^2)$$

uniformly on ξ' because $\nabla \phi, \phi = O(\varepsilon e^{-\delta |x-\xi'|})$. We call $\Phi(\xi) := J(v(\xi')) = J(W'_{\xi}) + O(\varepsilon^2)$, and

$$J(W'_{\xi}) = \frac{1}{2} \int |\nabla W'_{\xi}|^2 + V(\xi) W'^2_{\xi} - \frac{1}{p+1} \int W'^{p+1}_{\xi} + \int (V(\varepsilon x) - V(\xi')) W'^2_{\xi}$$

Taking $\lambda = V(\xi)$, we have that

$$\int |\nabla w_{\lambda}(x)|^2 = \lambda^{-N/2} \int |\nabla w(\lambda^1/2x)|^2 \lambda^{1+2/(p-1)} \lambda^{N/2} dx = \lambda^{-N/2+p+1/p-1} |\nabla w(y)|^2 dy$$
and

and

$$\lambda \int w_{\lambda}^{2}(x) = \lambda^{-N/2p+1/p-1} \int w(y)^{p+1} dy$$

This implies that

$$\frac{1}{2}\int |\nabla W'_{\xi}|^2 + V(\xi)W'^2_{\xi} - \frac{1}{p+1}\int W'^{p+1}_{\xi} = V(\xi)^{p+1/p-1-N/2}c_{p,N}$$

also

$$\int (V(\varepsilon x) - V(\xi')) w_{\lambda}(x - \xi')^2 = O(\varepsilon)$$

uniformly on ξ . In summary $\Phi(\xi) = J(v(\xi')) = V(\xi)^{p+1/p-1-N/2}c_{p,N} + O(\varepsilon)$ and $\frac{p+1}{p-1} - \frac{N}{2} > 0$. Then $\forall \varepsilon \ll 1$ we have

$$\inf_{\xi \in \Lambda} \Phi(\xi) < \inf_{\xi \in \partial \Lambda} \Phi(\xi)$$

therefore Φ has a local minimum $\xi_{\varepsilon} \in \Lambda$ and $V(\xi_{\varepsilon}) \to \min_{\Lambda} V$. Same thing works at a maximum.

For several spikes separated: $|\xi_{j_1} - \xi_{j_2}| > \delta$, for all $j_1 \neq j_2$. $\rho = e^{-\delta_0 \min_{j_1 \neq j_2} |\xi'_{j_1} - \xi'_{j_2}|} + \varepsilon \leq e^{-\delta_0 \delta/\varepsilon} + \varepsilon < 2\varepsilon$, so we have

$$|\nabla_x \phi(\xi')| + |\phi(\xi')| \le C\varepsilon \sum_j e^{-\delta_0 |x - \xi'_j|}$$

Now we get

$$J(v(\xi')) = \sum_{j} V(\varepsilon_j)^{p+1/p-1-N/2} c_{p,N} + O(\varepsilon)$$

 $\xi' = 1/\varepsilon(\xi_1, \dots, \xi_k)$ implies for several minimal on the Λ_j we have the result desired.

Result at one non-degenerate critical point: if ξ_0 is a non-degenerate critical point of V ($V'(\xi_0) = 0$ and $V''(\xi_0)$ invertible), then there exist a solution $u_{\varepsilon}(x)$ such that

$$u_{\varepsilon}(x) \approx W_{V(\xi_{\varepsilon})}(x-\xi_{\varepsilon})/\varepsilon, \quad \xi_{\varepsilon} \to \xi_0.$$

For small δ we have that J(v) has degree different from 0 in a ball centered at x_0 and of radius δ .

4. Back to Allen Cahn in \mathbb{R}^2

We consider the functional

$$J(u) = \int_{\mathbb{R}^2} \left(\varepsilon^2 \frac{|\nabla u|^2}{2} + \frac{(1-u^2)^2}{4} \right) a(x) dx.$$

Critical points of J are solutions of

$$\varepsilon^2 \operatorname{div}(a(x)\nabla u) + a(x)(1-u^2)u = 0$$

where we suppose $0 < \alpha \leq a(x) \leq \beta$. This equation is equal to

(4.1)
$$\varepsilon^2 \Delta u + \varepsilon^2 \frac{\nabla a}{a} (x) \nabla u + (1 - u^2) u = 0.$$

Using the change of variables $v(x) = u(\varepsilon x)$, we find the equation

(4.2)
$$\Delta v + \varepsilon \frac{\nabla a}{a}(x)\nabla v + (1 - v^2)v = 0.$$

We will study the problem: Given a curve Γ in \mathbb{R}^2 we want to find a solution $u_{\varepsilon}(x)$ to (4.1) such that $u_{\varepsilon}(x) \approx w(\frac{z}{\varepsilon})$, for points $x = y + z\nu(y)$, $y \in \Gamma$, $|z| < \delta$, where $\nu(y)$ is a vector perpendicular to the curve and $w(t) = \tanh(\frac{t}{\sqrt{2}})$, which solves the problem

$$w'' + (1 - w^2)w = 0, \quad w(\pm \infty) = \pm 1.$$

First issue: Laplacian near Γ , which we will consider as smooth as we need.

Assume: Γ is parametrized by arc-length

$$\gamma: [0, l] \to \mathbb{R}^2, \ s \to \gamma(s), \ |\dot{\gamma}(s)| = 1, l = |\Gamma|.$$

Convention: $\nu(s)$ inner unit normal at $\gamma(s)$. We have that $|\nu(s)|^2 = 1$, which implies that $2\nu\dot{\nu} = 0$, so we take $\dot{\nu}(s) = -k(s)\dot{\gamma}(s)$, where k(s) is the curvature.

Coordinates: $x(s,t) = \gamma(s) + z\nu(s), s \in (0,l)$ and $|z| < \delta$. If we take a compact supported function $\psi(x)$ near Γ , and we call $\tilde{\psi}(s,z) = \psi(\gamma(s) + z\nu(s))$, then $\frac{\partial \tilde{\psi}}{\partial s} = \nabla \psi \cdot [\dot{\gamma} + z\dot{\nu}] = (1 - kz)\nabla \psi \cdot \dot{\gamma}$ and $\frac{\partial \tilde{\psi}}{\partial t} = \nabla \psi \cdot \nu$. Observe that $\nabla \psi = (\nabla \psi \cdot \dot{\gamma})\dot{\gamma}(\nabla \cdot \nu)\nu$. This means that $\nabla \psi = \frac{1}{1-kz}\frac{\partial \tilde{\psi}}{\partial s}\dot{\gamma} + \frac{\partial \tilde{\psi}}{\partial z}\nu$, and $|\nabla \psi|^2 = \frac{1}{(1-kz)^2}|\tilde{\psi}_s|^2 + |\tilde{\psi}_z|^2$. Then

$$\int_{\mathbb{R}^2} |\nabla \psi(x)|^2 dx = \iint \left(\frac{1}{(1-kz)^2} |\tilde{\psi}_s|^2 + |\tilde{\psi}_z|^2 \right) (1-kz) ds dz$$

 $\psi \to \psi + t\varphi$ and differentiating at t = 0 we get

$$\int \nabla \psi \nabla \varphi dx = \iint \frac{1}{(1-kz)} \tilde{\psi}_s \tilde{\varphi}_s + \tilde{\psi}_z \tilde{\varphi}_z (1-kz) ds dz$$

So

$$-\int \Delta \psi \varphi dx = -\iint \frac{1}{(1-kz)} \left(\left(\frac{1}{(1-kz)} \tilde{\psi}_s \right)_s + (\tilde{\psi}_z (1-lz))_z \right) \tilde{\varphi} (1-kz) ds dz$$
 then

$$\Delta \tilde{\psi} = \frac{1}{(1-kz)} \frac{\partial}{\partial s} (\frac{1}{1-kz} \tilde{\psi}_s) + \tilde{\psi}_{zz} - \frac{k}{1-kz} \tilde{\psi}_z$$

We just say

$$\Delta \tilde{\psi} = \frac{1}{1 - kz} \left(\frac{1}{1 - kz} \psi_s\right)_s + \psi_{zz} - \frac{k}{1 - kz} \psi_z$$

Near Γ $(x = \gamma(s) + z\nu(s))$, we have the new equation for $u \to \tilde{u}(s, z)$

$$S[u] = \varepsilon^2 \frac{1}{1-kz} (\frac{1}{1-kz} u_s)_s + \varepsilon^2 u_{zz} + (1-u^2)u - \frac{\varepsilon^2 k}{1-kz} u_z + \frac{\varepsilon^2}{1-kz} \frac{a_s}{a} u_s + \frac{\varepsilon^2}{1-kz} \frac{a_z}{a} u_z = 0$$
 we want a solution $u(s, z) \approx w(\frac{z}{\varepsilon})$.

$$S[w(\frac{z}{\varepsilon})] = \varepsilon [\frac{a_z}{a} - \frac{k(s)}{1 - k(s)z}]w'(\frac{z}{\varepsilon})$$

The condition we ask (geodesic condition) is $\frac{a_z}{a}(s,0) = k(s)$. In v language we want

$$\Delta v + \varepsilon \frac{\nabla a}{a} (\varepsilon x) \cdot \nabla v + f(v) = 0$$

transition on $\Gamma_{\varepsilon} = \frac{1}{\varepsilon} \Gamma$. we use coordinates relative to Γ_{ε} rather than Γ

$$X_{\varepsilon}(s,z) = \frac{1}{\varepsilon}\gamma(\varepsilon s) + z\nu(\varepsilon s), \quad |z| < \delta/\varepsilon$$

Laplacian for coordinates relative to Γ_{ε} are

$$\Delta \psi = \frac{1}{(1 - \varepsilon k(\varepsilon s)z)} \left(\frac{1}{(1 - \varepsilon k(\varepsilon s)z)} v_s \right)_s + \psi_{zz} - \frac{\varepsilon k(\varepsilon s)}{(1 - \varepsilon k(\varepsilon s)z)} + \varepsilon \frac{a_s}{a} \frac{1}{(1 - \varepsilon k(\varepsilon s)z)^2} v_s + \varepsilon \frac{a_z}{a} v_z$$

where we use the computation $\frac{\partial \gamma(\varepsilon s)}{\partial s} = -k(\varepsilon)\dot{\gamma_{\varepsilon}}(s)$, where $k_{\varepsilon} = \varepsilon k(\varepsilon s)$

Hereafter we use \tilde{s} instead of s and \tilde{z} instead of \tilde{z} . Observation: The operator is closed to the Laplacian on (\tilde{s}, \tilde{z}) variables, at least on the curve Γ , if we assume the validity of the relation

$$a_{\tilde{z}}(\tilde{s},0) = k(\tilde{s})a(\tilde{s},0), \quad \forall \tilde{s} \in (0,l).$$

We can write this relation also like $\partial_{\nu}a = ka$ on Γ (Geodesic condition). This relation means that Γ is a critical point of curve length weighted by a. Let $L_a[\Gamma] = \int_{\Gamma} a dl$. Consider a normal perturbation of Γ , say $\Gamma_h := \{\gamma(\tilde{s}) + h(\tilde{s})\nu(\tilde{s}) | \tilde{s} \in (0, l)\}, \|h\|_{C^2(\Gamma)} \ll 1.$ We want: first variation along this type of perturbation be equal to zero. This is

$$DL_a[\Gamma_h]|_{h=0} = 0$$

28

This means

$$\frac{\partial}{\partial\lambda} L[\Gamma_{\lambda h}]|_{h=0} = 0$$

or just $\langle DL(\Gamma), h \rangle = 0$ for all h. Observe that

$$L(\Gamma_{\lambda h}) = \int_0^l a(\gamma(\tilde{s}) + h(\tilde{s})\nu(\tilde{s})) \cdot |\dot{\gamma}(\tilde{s})_{\lambda h}| d\tilde{s}$$

and also $\dot{\gamma}_{\lambda h}(\tilde{s}) = \dot{\gamma}(\tilde{s}) + \lambda \dot{h}\nu + \lambda h\dot{\nu}$, and $\dot{\nu} = -k\dot{\gamma}$. With the taylor expansion

$$(1 - 2k\lambda h + \lambda^2 k^2 h^2 + \lambda^2 \dot{h}^2)^{1/2} = 1 + \frac{1}{2}(-2k\lambda h + \lambda^2 k^2 h^2 + \lambda^2 \dot{h}^2) - \frac{1}{8}4k^2\lambda^2 h^2 + O(\lambda^2 h^3)$$

and

$$a(\gamma(\tilde{s})) + \lambda h(\tilde{s}\nu(\tilde{s})) = a(\tilde{s},\lambda h(\tilde{s})) = a(\tilde{s},0) + \lambda a_{\tilde{z}}(\tilde{s},0)h(\tilde{s}) + \frac{1}{2}\lambda^2 a_{\tilde{z}\tilde{z}}(\tilde{s},0)h(\tilde{s})^2 + O(\lambda^3 h^3).$$

we conclude

$$L_{h}[\Gamma_{\lambda h}] = L_{a}(\Gamma) = \lambda \int_{0}^{l} (-ka + a_{\tilde{z}})(\tilde{s}, 0)h(\tilde{s})d\tilde{s} + \lambda^{2} \int_{0}^{l} (a\frac{\dot{h}^{2}}{2} + a_{\tilde{z}}k^{2}h^{2} + \frac{1}{2}a_{\tilde{z}\tilde{z}}h^{2}) + O(\lambda^{3}h^{3})$$

This tells us:

$$\frac{\partial}{\partial\lambda}L_h[\Gamma_{\lambda h}]|_{\lambda=0} = 0 \Leftrightarrow k(\tilde{s})a(\tilde{s},0) = a_{\tilde{z}}(\tilde{s},0),$$

the geodesic condition. Also we conclude that

$$\frac{\partial^2}{\partial \lambda^2} L(\Gamma_{\lambda h})|_{\lambda=0} = \int_0^l (a\dot{h}^2 - 2k^2 a + a_{\tilde{z}\tilde{z}}h^2)d\tilde{s} = -\int_0^l (a(\tilde{s},0)\dot{h}\tilde{s})'h + (2a(\tilde{s},0)k^2 - a_{\tilde{z}\tilde{z}}(\tilde{s},0)h)h$$

This can be expressed as $D^2L(\Gamma) = J_a$, which means $D^2L(\Gamma)[h]^2 = -\int_0^l J_a[h]h$. $J_a[h]$ is called the Jacobi operator of the geodesic Γ . Assumption: J_a is invertible.

We assume that if $h(\tilde{s})$, $\tilde{s} \in (0, l)$ is such that h(0) = h(l), $\dot{h}(0) = \dot{h}(l)$ and $J_a[h] = 0$ then $h \equiv 0$. $Ker(J_a) = \{0\}$, in the space of *l*-periodic C^2 functions. This implies (exercise) that the problem

$$J_a[h] = g, g \in C(0, l), g(0) = g(l), h(0) = h(l), \dot{h}(0) = \dot{h}(l)$$

has a unique solution ϕ . Moreover $\|\phi\|_{C^{2,\alpha}(0,l)} \leq C \|g\|_{C^{\alpha}(0,l)}$.

Remember that the equation in coordinates (s, z) is

$$E(v) = \frac{1}{(1 - \varepsilon k(\varepsilon s)z)} \left(\frac{1}{(1 - \varepsilon k(\varepsilon s)z)}v_s\right)_s + v_{zz} - \frac{\varepsilon k(\varepsilon s)}{(1 - \varepsilon k(\varepsilon s)z)}v_z + \varepsilon \frac{a_{\tilde{s}}}{a} \frac{1}{(1 - \varepsilon k(\varepsilon s)z)^2}v_s + \varepsilon \frac{a_{\tilde{z}}}{a}v_z + f(v) = 0$$

Change of variables: Fix a function $h\in C^{2,\alpha}(0,l)$ with $\|h\|\leq 1$ and do the change of variables $z - h(\varepsilon s) = t$ and take as first approximation $v_0 \equiv w(t)$. Let us see that $v_0(s, z) = w(z - h(\varepsilon s))$ so

$$E(v_0) = \frac{1}{1 - \varepsilon kz} \left(\frac{1}{1 - \varepsilon kz} w'(-\dot{h}(\varepsilon s, \varepsilon z))_s + w'' + f(w)\right)$$
$$+ \varepsilon \left(\frac{a_{\tilde{z}}}{a}(\varepsilon s, \varepsilon z) - \frac{k(\varepsilon s)}{1 - k(\varepsilon s)\varepsilon z}\right) w' - \varepsilon \dot{h} \frac{\varepsilon}{(1 - \varepsilon kz)^2} \frac{a_{\tilde{s}}}{a} w'$$

Error in terms of coordinates $(s, t) z = t + h(\varepsilon s)$:

$$\begin{split} E(v_0)(s,t) &= \varepsilon w'(t) \left[\frac{a_{\tilde{z}}}{a} (\varepsilon s, \varepsilon(t+h)) - \frac{k(\varepsilon s)}{1-k(\varepsilon s)(t+h)\varepsilon} \right] - \frac{\varepsilon^2 w'}{(1-k\varepsilon(t+h))^2} h'' \\ &+ \frac{1}{(1-k\varepsilon(t+h))^2} w'' \dot{h}^2 \varepsilon^2 - \frac{1}{(1-\varepsilon k(t+h))^3} \varepsilon^2 \dot{k}(t+h) \dot{h} w'(t) - \varepsilon \dot{h} \frac{\varepsilon}{(1-\varepsilon kz)^2} \frac{a_{\tilde{s}}}{a} w' \\ \text{In fact} \end{split}$$

$$|E(v_0)(t,s)| \le C\varepsilon^2 e^{-\sigma|t|}$$

 $\sigma < 1$, and

$$\|e^{\sigma|t|}E(v_0)\|_{C^{0,\alpha}(|t|<\frac{\delta}{\varepsilon})} \le C\varepsilon^2$$

Formal computation: We would like $\int_{-\delta/\varepsilon}^{\delta/\varepsilon} E(v_0)(s,y)w'(t)dt \approx 0$. Observe that

$$-\varepsilon^2 h''(\varepsilon s) \int_{|t|<\delta/\varepsilon} \frac{w'^2}{(1-k\varepsilon(t+h))} = -\varepsilon^2 h'' \int_{\mathbb{R}} w'^2 dt + O(\varepsilon^3)$$

Also

$$\dot{h}^2 \varepsilon^2 \int \frac{1}{1 - \varepsilon k(t+h)} w'' w' dt = 0 + O(\varepsilon^3).$$
$$\varepsilon^2 \dot{h} \int \frac{a_s}{a} (\varepsilon s, \varepsilon(t+h)) w'^2 / (1 + k\varepsilon(t+h))^2 = \varepsilon^2 \dot{h} \frac{a_{\tilde{s}}}{a} (\varepsilon s, 0) \int w'^2 + O(\varepsilon^3)$$

and finally

$$\varepsilon \int_{|t|<\delta/\varepsilon} w'^2 (\frac{a_{\tilde{z}}}{a}(\varepsilon s,\varepsilon(t+h)) - \frac{k(\varepsilon s)}{1-k(\varepsilon s)(t+h)\varepsilon}) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) ((\frac{a_{\tilde{z}}}{a})(\varepsilon s,0) - k^2)h(\varepsilon s) + O(\varepsilon s)$$

Then

$$\frac{-\int Ew'dt}{\varepsilon^2 \int w'^2} = h'' + h'\frac{a_{\tilde{s}}}{a} - \left(\left(\frac{a_{\tilde{z}}}{a}\right)_{\tilde{z}}(\varepsilon s, 0) - k^2\right)h + O(\varepsilon)$$

we call $\tilde{s} = \varepsilon s$, and we conclude that the right hand side of the above equality is equal to

$$\frac{1}{a(\tilde{s},0)}((a(\tilde{s},0))h'(\tilde{s})' + (2k^2a(\tilde{s},0) - a_{\tilde{z}\tilde{z}}(\tilde{s},0))h) + O(\varepsilon)$$

and this is equal to

$$\frac{1}{n(\tilde{s},0)}(J_a[h] + O(\varepsilon))$$

We need the equation for $v(s, z) = \tilde{v}(s, z - h(\varepsilon s))$. We have

$$\frac{\partial v}{\partial s} = \frac{\partial \tilde{v}}{\partial s} - \frac{\partial \tilde{v}}{\partial t} \dot{h}\varepsilon$$

We write z = t + h, so we have

$$S(\tilde{v}) = \frac{1}{(1 - \varepsilon kz)} \left(\frac{\partial}{\partial s} - \varepsilon \dot{h} \frac{\partial}{\partial t}\right) \left[\frac{1}{1 - \varepsilon k(t + h)} \left(\frac{\partial}{\partial s} - \varepsilon \dot{h} \frac{\partial}{\partial t}\right)\right] \tilde{v} + \tilde{v}_{tt}$$
$$\varepsilon \left[-\frac{k}{1 - \varepsilon kz} + \frac{a_z}{a}\right] \tilde{v}_t + \varepsilon \frac{a_{\tilde{s}}}{a} \frac{1}{1 - k\varepsilon z} \left[\tilde{v}_s - \varepsilon \dot{h} \tilde{v}_t\right] + f(\tilde{v}) = 0$$

The first term of this equation is equal to

$$\frac{1}{1-\varepsilon kz} \{ \frac{\varepsilon(\varepsilon k(t+h)+\varepsilon kh)}{(1-\varepsilon k(t+h))^2} (\tilde{v}_s - \varepsilon \dot{h} v_t) + \frac{1}{1-k\varepsilon(t+h)} (-\varepsilon^2 h'' v_t - 2\varepsilon \dot{h} \tilde{v}_t s) + \frac{1}{1+\varepsilon k(t+h)} \tilde{v}_s s \} -\varepsilon \dot{h} \{ \frac{\varepsilon k}{(1-\varepsilon k(t+h))^2} (\tilde{v}_s - \varepsilon \dot{h} \tilde{v}_t) + \frac{1}{1-\varepsilon k(t+h)} (-\varepsilon \dot{h} \tilde{v}_{tt}) \} + f(\tilde{v}) = 0$$
Let us observe that for $|t| < \delta/\varepsilon$, $\delta \ll 1$

Let us observe that for $|t| < \delta/\varepsilon$, $\delta \ll 1$ $S[\tilde{v}](s,t) = \tilde{v}_{ss} + \tilde{v}_{tt} + O(\varepsilon)\partial_{ts}\tilde{v} + O(\varepsilon)\partial_{tt}\tilde{v} + O(\varepsilon k(|t|+1))\partial_{ss}\tilde{v} + O(\varepsilon)\partial_{t}\tilde{v} + O(\varepsilon)\partial_{s}\tilde{v} + f(v) = 0$ We will call the operator that appears in the equation $B[\tilde{v}]$. We look for a solution of the form $\tilde{v}(s,t) = w(t) + \phi(s,t)$. The equation for ϕ is

$$\phi_{ss} + \phi_{tt} + f'(w(t))\phi + E + B(\phi) + N(\phi) = 0, \quad |t| < \delta/\varepsilon$$

where $E = S(w(t)) = O(\varepsilon^2 e^{-\sigma t})$, $N(\phi) = f(w + \phi) - f(w) - f'(w)\phi$, $s \in (0, l/\varepsilon)$. We use the notation $L(\phi) = \phi_{ss} + \phi_{tt} + f'(w(t))\phi$. We also need the boundary condition $\phi(0, t) = \phi(l/\varepsilon, t)$ and $\phi_s(0, t) = \phi_s(l/\varepsilon, t)$.

It is natural to study the linear operator in \mathbb{R}^2 and the linear projected problem

$$\phi_{ss} + \phi_{tt} + f'(w(t))\phi + g(t,s) = c(s)w'(t)$$

where $c(s) = \frac{\int_{\mathbb{R}} g(t,s)w'(t)dt}{\int_{\mathbb{R}} w'(t)^2 dt}$ and under the orthogonally condition

$$\int_{-\infty}^{\infty} \phi(s,t) w'(t) dt = 0, \quad \forall s \in \mathbb{R}$$

Basic ingredient: (Even more general) Consider the problem in $\mathbb{R}^m \times \mathbb{R}$, with variables (y, t):

$$\Delta_y \phi + \phi_{tt} + f'(w(t))\phi = 0, \quad \phi \in L^{\infty}(\mathbb{R}^m \times \mathbb{R})$$

If ϕ is a solution of the above problem, then $\phi(y,t) = \alpha w'(t)$ some $\alpha \in \mathbb{R}$. Ingredient: $\exists \gamma > 0$: $\int_{\mathbb{R}} p'(t)^2 - f'(w(t))p(t)^2 \ge \gamma \int_{\mathbb{R}} p^2(t)dt$

for all $p \in H^1$ with $\int_{\mathbb{R}} pw' = 0$. $\psi(y) = \int_{\mathbb{R}} \phi^2(y,t) dt$. This is well defined (as we will see) Indeed: It turns out that $|\phi(y,t)| \leq Ce^{-\sigma t}$, $\sigma < \sqrt{2}$, thanks to the fact that $\phi \in L^{\infty}$. We use x = (y,t) and we obtain

$$\Delta_x \phi - (2 - 3(1 - w(t)^2))\phi = 0$$

Observe that $1 - w(t)^2$ is small if $|t| \gg 1$. Fix $0 < \sigma < \sqrt{2}$, for $|t| > R_0$ we have $2 - 3(1 - w^2(t)) > \sigma^2$. Let

$$\bar{\phi}_{\rho}(y,t) = \rho \sum_{i=1}^{n} \cosh(\sigma y_i) + \rho \cosh(\sigma t) + \|\phi\|_{\infty} e^{\sigma R_0} e^{-\sigma|t|}.$$

We have that

$$\phi(y,t) \le \bar{\phi}_{\rho}(y,t), \quad \text{for } |t| = R_0$$

also true that for $|t| + |y| > R_{\rho} \gg 1$, $\phi(y, t) \leq \overline{\phi}_{\rho}$.

$$-\Delta_x \phi + (2 - 3(1 - w(t)^2))\bar{\phi} = (2 - \sigma^2 - 3(1 - w(t)^2)\bar{\phi}_\rho) > 0$$

for $|t| > R_0$. So is a supersolution of the operator

$$-\Delta_x \phi + (2 - 3(1 - w(t)^2))\phi$$

in D_{ρ} , which implies that $\phi \leq \bar{\phi}_{\rho}$ for $|t| > R_0$. This implies that $|\phi(x)| \leq C\bar{\phi}_{\rho}$ for all x, and we conclude the assertion taking $\rho \to 0$. If ϕ solves $-\Delta\phi + (1-3w^2)\phi = 0$, then $\|\phi\|_{C^{2,\alpha}}(B_1(x_0)) \leq C \|\phi\|_{L^{\infty}(B_2(x_0))}$. This implies that also

$$\begin{aligned} |\phi_y| + |\phi_{yy}| &\leq Ce^{-\sigma t}. \end{aligned}$$

Let $\phi(\tilde{y}, t) = \phi(y, t) - \frac{\int \phi(y, \tau)w'(\tau)d\tau}{\int w'^2} w'.$ We call $\beta(y) = \frac{\int \phi(y, \tau)w'(\tau)d\tau}{\int w'^2} \Delta \tilde{\phi} + f'(w)\tilde{\phi} = \Delta \phi + f'(w)\phi + (\Delta_y\beta)w' + \beta(\Delta w' + f'(w))w' = 0$

because $\Delta_y \beta = 0$ by integration by parts. Let $\psi(y) = \int_{\mathbb{R}} \phi^2 dt$.

$$\Delta_y \psi = \int_{\mathbb{R}} \nabla_y (2\tilde{\phi} \nabla_y \tilde{\phi}) dt = 2 \int |\nabla_y \tilde{\phi}|^2 dt + 2 \int \tilde{\phi} \Delta_y \tilde{\phi} = 2 \int |\nabla_y \tilde{\phi}|^2 - 2 \int \tilde{\phi} [\tilde{\phi}_{tt} + f'(w)\tilde{\phi}] dt$$

Using $2\int |\nabla_y \phi|^2 dt + 2\int (\phi_t^2 - f'(w)\phi^2)$ This implies that $\Delta \psi \ge 2\gamma \psi$ which implies $-\Delta \psi + 2\gamma \psi \le 0, \ 0 \le \psi \le c$.

We obtain that $\psi \equiv 0$ and this implies $\phi = 0$. This implies that $\phi(t) = (\int \phi w')w' = \beta(y)w'$ and $\Delta\beta = 0$, $\beta \in L^{\infty}$. Liouville implies that $\beta = constant$ so $\phi = constantw'$.

Lemma: L^{∞} a priori estimates for the linear projected problem: $\exists C : \|\phi\|_{\infty} \leq C \|g\|_{\infty}.$

Proof: If not exists $||g_n||_{\infty} \to 0$ and $||\phi_n||_{\infty} = 1$.

$$L[\phi_n] = -g_n + c_n(t)w'(t) = h_n(t)$$

and $h_n \to 0$ in L^{∞} . $\|\phi_n\| = 1$ which implies that $\exists (y_n, t_n) \colon |\phi(y_n, t_n)| \ge \gamma > 0$. Assume that $|t_n| \le C$ and define $\tilde{\phi}(y, t) = \phi_n(y_n + y, t)$. Then $\Delta \tilde{\phi}_n + f'(w(t))\tilde{\phi}_n = \tilde{h}_n$

but $f'(w(t))\tilde{\phi}_n$ is uniformly bounded and the right hand side goes to 0. This implies that $\|\phi\|_{C^1(\mathbb{R}^{m+1})} \leq C$ This implies that $\tilde{\phi}_n \to \tilde{\phi}$ passing to subsequence, and the convergence is uniformly on compacts, where $\Delta \tilde{\phi} + f'(w)\tilde{\phi} = 0$, $\tilde{\phi} \in L^{\infty}$. We conclude after a classic argument that $\tilde{\phi} = 0$. We have also that $\|e^{\sigma|t|}\phi\|_{\infty} \leq C \|e^{\sigma|t|}g\|_{\infty}$, $0 < \sigma < \sqrt{2}$. Elliptic regularity implies that $\|e^{\sigma|t|}\phi\|_{C^{2,\sigma}} \leq \|e^{\sigma|t|}g\|_{C^{0,\sigma}}$.

Existence: Assume g has compact support and take the weak formulation: Find $\phi \in H$ such that $\int_{\mathbb{R}^{m+1}} \nabla \phi \nabla \psi - f'(w) \phi \psi = \int gy$, for all $\psi \in H$, where $H = \{f \in H^1(\mathbb{R}^{m+1}) | \int_{\mathbb{R}} \psi w' dt = 0, \forall y \in \mathbb{R}^m\}$. Let us see that $a(\psi, \psi) = \int |\nabla \psi|^2 - f'(w)\psi^2 \ge \gamma \int \psi^2 + \psi^2$. So $a(\psi, \psi) \ge C \|\psi\|_{H^1(\mathbb{R}^{m+1})}^2$ This implies the unique existence solution. Observe that

$$\int (\Delta \phi + f'(w)\phi + g)\psi = 0$$

for all $\psi \in H$. Let $\psi \in H^1$ and $\psi = \tilde{\psi} - \frac{\int \tilde{\psi}w'dt}{\int w'^2}w' = \Pi(\tilde{\psi})$. We have that

$$\int dy \int g\Pi(\tilde{\psi})dt = \int \Pi(g)\psi$$

which implies that $\Pi(\Delta \phi + f'(w)\phi + g) = 0$ if and only if $\Delta \phi + f'(w) + \phi + g = \frac{\int (\Delta \phi + f'(w) + g)}{\int w'^2} w'$ Regularity implies that $\phi \in L^{\infty}$ and $\|\phi\|_{\infty} \leq C \|g\|_{\infty}$. Approximating $g \in L^{\infty}$ by $g_R \in C_c^{\infty}(\mathbb{R}^N)$ locally over compacts. This implies existence result.

We can bound ϕ in other norms. For example if $0 < \sigma < \sqrt{2}$, then

$$\|e^{\sigma|t|}\phi\|_{\infty} \le C \|e^{\sigma|t|}g\|_{\infty}.$$

Indeed, $f'(w) < -\sigma^2 - \eta$ if |t| > R, with $\eta = (2 - \sigma^2)/2$. We set $\bar{\phi} = Me^{-\sigma|t|} + \rho \sum_{i=1}^n \cosh(\sigma y_i) + \rho \cosh(\sigma t).$

Therefore

$$-\Delta\bar{\phi} + (-f'(w))\bar{\phi} \geq -\delta\bar{\phi} + (\sigma^2 + \eta)\bar{\phi} = \eta\bar{\phi} > \tilde{g} = -g + c(y)w'(t)$$

if $M \geq \frac{A}{\eta} \|e^{\sigma|t|}g\|_{\infty}$. In addition we have $\bar{\phi} \geq \phi$ on $|t| = R$ if $M \geq \|\phi\|_{\infty}e^{\sigma R}$. By an standard argument based on maximum principle, we
conclude that $\phi \leq \bar{\phi}$. This means, letting $\rho \to 0$, $\phi \leq Me^{-\sigma|t|}$, where
 $M \geq C \max\{\|\phi\|_{\infty}, \|ge^{\sigma|t|}\|_{\infty}\}$. Since $\|\phi\|_{\infty} \leq C\|g\|_{\infty} \leq C\|ge^{\sigma|t|}\|_{\infty}$,
we can take $M = C\|ge^{\sigma|t|}\|_{\infty}$. Finally, we conclude $\|\phi e^{\sigma|t|}\|_{\infty} \leq \|ge^{\sigma|t|}\|_{\infty}$

Reminder: If $\Delta \phi = p$ implies that

 $\|\nabla \phi\|_{L^{\infty}(B_{1}(0))} \leq C[\|\phi\|_{L^{\infty}B_{2}(0)} + \|p\|_{L^{\infty}(B_{1}(0))}].$

Remember that

$$||p||_{C^{0,\alpha}(A)} = ||p||_{\infty} + [\phi]_{0,\alpha,A}$$

where $[\phi]_{0,\alpha,A} = \sup_{x_1,x_2 \in A, x_1 \neq x_2} \frac{|p(x_1) - p(x_2)|}{|x_1 - x_2|^{\alpha}}$. Also we have the following interior Schauder estimate: for $0 < \alpha < 1$

$$\|\phi\|_{C^{2,\sigma}(B_1)} \le C[\|\phi\|_{L^{\infty}(B_2(0))} + \|p\|_{C^{0,\alpha}(B_2(0))}].$$

Conclusion: If ϕ solves the equation in \mathbb{R}^{n+1} then

$$\|\phi\|_{C^{2,\alpha}(\mathbb{R}^{n+1})} \le C \|g\|_{C^{0,\alpha}(\mathbb{R}^{n+1})}$$

Sketch of the proof of this fact: Fix $x_0 \in \mathbb{R}^{n+1}$, then

$$C[\phi]_{0,\alpha,B_1(x_0)} \le \|\nabla\phi\|_{L^{\infty}(B_1(x_0))} \le C[\|\phi\|_{\infty} + \|g\|_{\infty}] \le C\|g\|_{\infty}$$

This implies that $\|\phi\|_{C^{0,\alpha}(B_1(x_0))} \leq C \|g\|_{\infty}$, which implies $\|\phi\|_{C^{0,\alpha}(\mathbb{R}^n)} \leq C \|g\|_{\infty}$. Clearly $\|p\|_{C^{0,\alpha}(B_2(x_0))} \leq C \|g\|_{\infty}$, so $\|\phi\|_{C^{0,\alpha}(B_1(x_0))} \leq C \|g\|_{C^{0,\alpha}(\mathbb{R}^{n+1})}$, from where we deduce the estimate.

We also get

$$\|e^{\sigma|t|}\phi\|_{C^{2,\alpha}(\mathbb{R}^{n+1})} \le C \|e^{\sigma|t|}g\|_{C^{0,\alpha}(\mathbb{R}^{n+1})}.$$

The proof of this fact is very similar to the previous one (use that $g \leq e^{-\sigma |t_0| ||ge^{\sigma |t|}||}$, for $|t_0| \gg 1$).

Another result is the following

$$\|(1+|y|^2)^{\mu/2}\phi\|_{\infty} \le C\|(1+|y|^2)^{\mu/2}g\|_{\infty}$$

In order to prove this result we define $\rho(y) = (1 + |y|^{\mu})$ and we consider $\tilde{\phi} = \rho(\delta y)\phi$. Observe that

$$\Delta \phi = \rho^{-1} \Delta \tilde{\phi} - 2\delta \nabla \tilde{\phi} \nabla (\rho^{-1}(\delta y)) + \tilde{\phi} \delta^2 \Delta (\rho^{-1})(\delta y) = f'(w)\phi + g - cw'$$

We get $L[\tilde{\phi}] + O(\delta^2)\tilde{\phi} + O(\delta)\nabla \tilde{\phi} = \rho(g - cw')$. We get

$$\|\nabla \tilde{\phi}\|_{\infty} + \|\tilde{\phi}\|_{\infty} \le C[\delta^2 \|\tilde{\phi}\|_{\infty} + \delta \|\nabla \tilde{\phi}\|_{\infty} + \|\rho g\|_{\infty}].$$

If δ is small we conclude that

$$\|\hat{\phi}\|_{\infty} + \|\nabla\hat{\phi}\|_{\infty} \le C \|\rho g\|_{\infty}$$

and we obtain

$$\|\rho\phi\|C \le \|\rho g\|.$$

Our setting:

(4.3)
$$\varepsilon^2 [\delta u + \frac{\nabla a}{a} \cdot \nabla u] + f(u) = 0$$

We want a solution to (4.3) $u_{\varepsilon}(x) \approx W(z/\varepsilon)$. Writing $x = y + z\gamma(y)$, $|z| < \delta$, we have

$$\Delta v + \nabla a(\varepsilon x)/a \cdot \nabla v + f(v) = 0,$$

in $\Gamma_{\varepsilon} = \frac{1}{\varepsilon}\Gamma$: $x = y + z\nu(\varepsilon y)$, which means $x = \frac{1}{\varepsilon}\gamma(\varepsilon s) + z\nu(\varepsilon s)$. Remember that $|\dot{\gamma}(\tilde{s})| = 1$ which implies $\dot{\nu}(\tilde{s}) = -k(\tilde{s})\dot{\gamma}(\tilde{s})$. We also set $z = h(\varepsilon s) + t$. $x = \frac{1}{\varepsilon}\gamma(\varepsilon s) + (t + h(\varepsilon s))\nu(\varepsilon s)$. We assume $||h||_{\alpha,(0,l)} \leq 1$, for $0 < \alpha < 1$. We wrote Δ_x in terms of this coordinates (t, s) and the equations S(v) = 0 is rewritten taking as first approximation w(t). We evaluated S(w(t)) and got that S(w(t)) = 0.

From the expression of Δ_x we get $(x = \frac{1}{\varepsilon}\gamma(\varepsilon s) + (t + h(\varepsilon s))\nu(\varepsilon s))$

$$\Delta_x v = \partial_{ss} + \partial_{tt} + \varepsilon [b_1^{\varepsilon}(t,s)\partial_{ss} + b_2^{\varepsilon}\partial_{tt} + b_3^{\varepsilon}\partial_{st} + b_4^{\varepsilon}\partial_t + b_5^{\varepsilon}\partial_s]$$

 $|\varepsilon b_i| \leq C\delta$ in the region $|t| < \delta/\varepsilon$. The coefficients are periodic (same values at s = 0 and $s = l/\varepsilon$). Our equation reads

$$\partial_{ss}v + \partial_{tt}v + B_{\varepsilon}[v] + f(v) = 0, \quad \text{for } s \in (0, l/\varepsilon), |t| < \delta/\varepsilon.$$

This expression does not make sense globally. We consider $\delta \ll 1$. We define

$$H(x) = \begin{cases} -1 & \text{in } \Omega_{-}^{\varepsilon} \\ +1 & \text{in } \Omega_{+}^{\varepsilon} \end{cases}$$

where Ω^{ε}_{+} is a bounded component of $\mathbb{R}^2 \setminus \Gamma$, and Ω^{ε}_{-} the other. For the equation

$$\Delta v + \varepsilon \frac{\nabla a}{a} \cdot \nabla v + f(v) = 0$$

we take as first (global) approximation

$$v_0(x) = w(t)\eta_3 + (1 - \eta_4)H(x)$$

where

$$\eta_l(x) = \begin{cases} \eta\left(\frac{\varepsilon|t|}{l\delta}\right) & \text{if } |t| < 2\delta l/\varepsilon \\ 0 & \text{otherwise} \end{cases}$$

Look for a solution of the form $v = v_0 + \tilde{\phi}$, so

$$\Delta_x \tilde{\phi} + \varepsilon \frac{\nabla a}{a} \cdot \nabla \tilde{\phi} + f'(v_o) \tilde{\phi} + E + N(\tilde{\phi}) = 0$$

where $E = S(v_0)$ and $N(\tilde{\phi}) = f(v_0 + \tilde{\phi}) - f(v_0) - f'(v_0)\tilde{\phi}$.

We write $\tilde{\phi} = \eta_3 \phi + \psi$. We require that ϕ and ψ solve the system

$$\Delta_x \psi - 2\psi + (2 + f'(v_0))(1 - \eta_1)\psi + \varepsilon \frac{\nabla a}{a} \nabla \psi + (1 - \eta_1)E + (1 - \eta_1)N(\eta_3 \phi + \psi) + \nabla \eta_3 \nabla \phi + \nabla \eta_3 \nabla \phi + \varepsilon - \eta_3 \left[\Delta_x \phi + f'(w(t))\phi + \eta_1(2 + f'(w(t)))\psi + \eta_1 E + \eta_1 N(\phi + \psi) + \varepsilon \frac{\nabla a}{a} \cdot \nabla \phi \right] = 0.$$

We need that the ϕ above satisfies the equation just for $|t| < 6\delta/\varepsilon$. We assume that $\phi(s, t)$ is defined for all s and t (and it is l/ε - periodic in s). We require that ϕ satisfies globally

 $\phi_{tt} + \phi_{ss} + \eta_6 B_{\varepsilon}[\phi] + f'(w(t))\phi + \eta_1 E + \eta_1 N(\phi + \psi) + \eta_1 (2 + f'(w))\psi = 0$ and $\phi \in L^{\infty}(\mathbb{R}n + 1)$ and periodic in s. Notice that $\phi_{tt} + \phi_{ss} + \eta_6 B_{\varepsilon}[\phi] = \Delta_x \phi$ inside the support of η_3 . Rather than solving this problem directly we solve the projected problem (4.4)

$$\phi_{tt} + \phi_{ss} + \eta_6 B_{\varepsilon}[\phi] + f'(w(t))\phi + \eta_1 E + \eta_1 N(\phi + \psi) + \eta_1 (2 + f'(w))\psi = c(s)w'(t)$$

and $\int_{\mathbb{R}} \phi w'(t)dt = 0$. We solve (4)-(4.4) first, then we find h such that $c(s) \equiv 0$. We consider ϕ with $\|\phi\|_{\infty} + \|\nabla\phi\|_{\infty} \leq \varepsilon$. The operator $-\Delta\psi + 2\psi$ is invertible $L^{\infty}(\mathbb{R}^3) \to C^1(\mathbb{R}^2)$. We conclude that if $g \in L^{\infty}$ the exist a unique solution $\psi = T[g] \in C^1(\mathbb{R}^2)$ with $\|\phi\|_{C^1} \leq C \|g\|_{\infty}$ of equation $-\Delta\psi + 2\psi = g$ in \mathbb{R}^2 . Observe that (4) is equivalent to

$$\psi = T[(2+f'(v_0))(1-\eta_1)\psi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + \nabla\eta_3\nabla\phi +$$

Using contraction mapping in C^1 on $\|\psi\|_{C^1} \leq C\varepsilon$, we conclude that there exist a unique solution of the this problem $\psi = \psi(\phi, h)$ such that

$$\|\psi\| \le C[\varepsilon^2 + \varepsilon \|\phi\|_{C^1}].$$

Even more, $\|\psi(\phi_1, h) - \psi(\phi_2, h)\|_{C^1} \le C\varepsilon \|\phi_1 - \phi_2\|_{C^1}$.