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1. Allen Cahn Equation

Energy: Phase transition model.
Let Ω ⊆ RN of a “binary mixture”: Two materials coexisting (or one
material in two phases). We can take as an example of this: Water in
solid phase (+1), and water in liquid phase (−1). The configuration of
this mixture in Ω can be described as a function

u∗(x) =

{
+1 in Λ
−1 in Ω \ Λ

where Λ is some open subset of Ω. We will say that u∗ is the phase
function.

Consider the functional

1

4

∫

Ω

(1− u2)2

minimizes if u = 1 or u = −1. Function u∗ minimize this energy
functional. More generally this well happen for

∫

Ω

W (u)dx

where W (u) minimizes at 1 and −1, i.e. W (+1) = W (−1) = 0,
W (x) > 0 if x 6= 1 or x 6= −1,W ′′(+1),W ′′(−1) > 0.

1.1. The gradient theory of phase transitions. Possible configu-
rations will try to make the boundary ∂Λ as nice as possible: smooth
and with small perimeter. In this model the step phase function u∗ is
replaced by a smooth function uε, where ε > 0 is a small parameter,
and

uε(x) ≈
{

+1 inside Λ
−1 inside Ω \ Λ

and uε has a sharp transition between these values across a “wall” of
width roughly O(ε): the interface (thin wall).

1
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In grad theory of phase transitions we want minimizers, or more
generally, critical points uε of the functional

Jε(u) = ε

∫

Ω

|∇u|2
2

+
1

ε

∫

Ω

(1− u2)2

4

Let us observe that the region where (1−u2
ε) > γ > 0 has area of order

O(ε) and the size of the gradient of uε in the same region is O(ε2) in
such a way J(uε) = O(1). We will find critical points uε to functionals
of this type so that J(uε) = O(1).

Let us consider more generally the case in which the container isn’t
homogeneous so that distinct costs are paid for parts of the interface
in different locations

Jε(u) =

∫

Ω

(
ε
|∇u|2

2
+

1

ε

(1− u2)2

4

)
a(x)dx

a(x) non-constant, 0 < γ ≤ a(x) ≤ β and smooth.

1.2. Critical points of Jε. First variation of Jε at uε is equal to zero.

∂

∂t
Jε(uε + tϕ)

∣∣∣∣
t=0

= DJε(uε)[ϕ] = 0, ∀ϕ ∈ C∞
c (Ω)

We have
Jε(uε + tϕ) =

i.e. ∀ϕ ∈ C∞
c (Ω)

0 = DJε(uε)[ϕ] = ε

∫

Ω

(∇uε∇ϕ)a +
1

ε

∫

Ω

W ′(uε)φa.

If uε ∈ C2(Ω)∫

Ω

(
−ε∇ · (a∇uε) +

a

ε
W ′(uε)

)
ϕ = 0, ∀ϕ ∈ C∞

c (Ω)

This give us the weighted Allen Cahn equation in Ω

−ε∇ · (a∇u) +
a

ε
u(1− u2) = 0 in Ω.

We will assume in the next lectures Ω = RN , where N = 1 or N = 2.
If N = 1 weight Allen Cahn equation is

(1.1) ε2u′′ + ε2u′
a′

a
+ (1− u2)u = 0, in (−∞,∞).

Look for uε that connects the phases −1 and +1 from −∞ to ∞.
Multiplying (1.1) against u′ and integrating by parts we obtain

(1.2)

∫ ∞

−∞

d

dx

(
ε
u′2

2
− (1− u2)2

4

)
+

∫ ∞

−∞

a′

a
u′2 = 0
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Assume that u(−∞) = −1, u(∞) = 1, u′(−∞) = u′(∞) = 0, a > 0,
then (1.2) implies that

(1− u2)2

4
+

∫ ∞

−∞

a′

a
u′2 = 0

from which we conclude that unless a is constant, we need a′ to change
sign. So: if a is monotone and a′ 6= 0 implies the non-existence of
solutions as we look for. We need the existence (if a′ 6= 0) of local
maximum or local minimum of a. We will prove that under some
general assumptions on a(x), given a local max. or local min. x0 of
a non-degenerate (a′′(x0) 6= 0), then a solution to (1.1) exists, with
transition layer.

We consider first the problem with a ≡ 1, ε = 1:

(1.3) W ′′ + (1−W 2)W = 0, W (−∞) = −1, W (∞) = 1.

The solution of this problem is

W (t) = tanh

(
t√
2

)

This solution is called “the heteroclinic solution”, and it’s the unique
solution of the problem (1.3)up to translations.

Observation 1.1. This solution exists also for the problem

(1.4) w′′ + f(w) = 0, w(−∞) = −1, w(∞) = 1

where f(w) = −W ′(w). Solutions satisfies w′2
2
−W (w) = E, where E

is constant, and w(−∞) = −1 and w(∞) = 1 if and only if E = 0.
This implies ∫ w

0

ds√
2w(s)

= t

t(w) → ∞ if w → 1, and t(w) → −∞ if w → −1, so the previous
relation defines a solution w such that w(0) = 0, and w(−∞) = −1,
w(∞) = 1.

If we wright the Hamiltonian system associated to the problem we
have:

p′ = −f(q), q′ = p.

Trajectories lives on level curves of H(p, q) = p2

2
−W (q), where W (q) =

(1−q2)2

4
.

Let x0 ∈ R (we will make assumptions on this point). Fix a number
h ∈ R and set

v(t) = u(x0 + ε(t + h)), v′(t) = εu′(x0 + ε(t + h))
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Using (1.1), we have

ε2u′′(x0 + ε(t + h)) = −ε2a′

a
u′(x0 + ε(t + h))− (1− v2(t))v(t)

so we have the problem
(1.5)

v′′(t)+ε
a′

a
(x0+ε(t+h))v′(t)+(1−v(t)2)v(t)2 = 0, w(−∞) = −1, w(∞) = 1.

Let us observe that if ε = 0 the previous problem becomes formally in
(1.3), so is natural to look for a solution v(t) = W (t) + φ, with φ a
small error in ε.
Assumptions:

(1) There exists β, γ > 0 such that γ ≤ a(x) ≤ β, ∀x ∈ R
(2) ‖a′‖L∞(R), ‖a′′‖L∞(R) < +∞
(3) x0 is such that a′(x0) = 0, a′′(x0) 6= 0, i.e. x0 is a non-degenerate

critical point of a.

Theorem 1.1. ∀ε > 0 sufficiently small, there exists a solution v = vε

to (1.5) for some h = hε, where |hε| ≤ Cε and vε(t) = w(t)+φε(t) and

‖φε‖ ≤ Cε

Proof. We write in (1.5) v(t) = w(t) + φ(t). From now on we write
f(v) = v(1− v2). We get

w′′+φ′′+ε
a′

a
(x0+ε(t+h))φ′+ε

a′

a
(x0+ε(t+h))w′+f(w+φ)−f(w)−f ′(w)φ+f(w)+f ′(w)φ = 0

φ(−∞) = φ(∞) = 0.

It can be written in the following way

(1.6) φ′′ + f ′(w(t))φ + E + B(φ) + N(φ) = 0, φ(−∞) = φ(∞) = 0

where

B(φ) =ε
a′

a
(x0 + ε(t + h))φ′,

N(φ) =f(w + φ)− f(w)− f ′(w) = −3wφ2 − φ3,

E =ε
a′

a
(x0 + ε(t + h))w′.

We consider the problem

(1.7) φ′′ + f ′(w(t))φ + g(t) = 0, φ ∈ L∞(R),

and we want to know when (1.7) is solvable. We will assume g ∈
L∞(R). Multiplying (1.7) against w′ we get∫ ∞

−∞
(w′′′ + f ′(w)w′)φ +

∫ ∞

−∞
gw′ = 0
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the first integral is zero because (1.4). We conclude that a necessary
condition is ∫ ∞

−∞
gw′ = 0.

This condition is actually sufficient for solvability. In fact, we write
φ = w′Ψ, we have

φ′′ + f ′(w)φ = g ⇔ w′Ψ + 2w′′Ψ′ = −g

Multiplying this last expression by w′ (integration factor), we get

(w′2Ψ′)′ = gw′ ⇒ w′2Ψ′(t) = −
∫ ∞

−∞
g(s)w′(s)ds

Let us choose

Ψ(t) = −
∫ t

0

dτ

w′2(τ)

∫ τ

−∞
g(s)w′(s)ds

Then the function

φ(t) = −w′(t)
∫ t

0

dτ

w′2(τ)

∫ τ

−∞
g(s)w′(s)ds

Recall that

w′(t) ≈ 2
√

2e−
√

2|t|

Claim: if
∫∞
−∞ gw′ = 0 then we have

‖φ‖∞ ≤ C‖g‖∞.

In fact, if t > 0

|φ(t)| ≤ |w′(t)|
∫ t

0

C

e−2
√

2τ

∣∣∣∣
∫ ∞

τ

gw′ds

∣∣∣∣ dτ ≤ C‖g‖∞e−
√

2t

∫ t

0

e
√

2τdτ ≤ C‖g‖∞.

For t < 0 a similar estimate yields, so we conclude

|φ(t)| ≤ C‖g‖∞.

¤

The solution of (1.7) is not unique because if φ1 is a solution implies
that φ2 = φ1 + Cw′(t) is also a solution. The solution we found is
actually the only one with φ(0) = 0. For g ∈ L∞ arbitrary we consider
the problem

(1.8) φ′′ + f ′(w)φ + (g − cw′) = 0, in <, φ ∈ L∞(R)

where C = C(g) =

∫∞
−∞ gw′

∫∞
−∞ w′2 .
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Lemma 1.1. ∀g ∈ L∞(R) (1.8) has a solution which defines a operator
φ = T [g] with

‖T [g]‖∞ ≤ C‖g‖∞.

In fact if T̂ [ĝ] is the solution find in the previous step then φ = T̂ [g −
C(g)w′] solves (1.8) and

(1.9) ‖φ‖∞ ≤ C‖g‖∞ + |C(g)|C ≤ C‖g‖∞
Proof. Back to the original problem: We solve first the projected prob-
lem

φ′′ + f ′(w)φ + E + B(φ) + N(φ) = Cw′, φ ∈ L∞(R)

where

C =

∫
R(E + B(φ) + N(φ))w′

∫
Rw′2 .

We solve first (1.9) and then we find h = hε such that in (1.9) C=0
in such a way we find a solution to the original problem. We assume
|h| ≤ 1. It’s sufficient to solve

φ = T [E + B(φ) + N(φ)] := M [φ].

We have the following remark

|E| ≤ Cε2, ‖B(φ)‖∞ ≤ Cε‖φ′‖∞, ‖N(φ)‖ ≤ C(‖φ2‖∞ + ‖φ3‖∞)

where C is uniform on |h| ≤ 1. We have

‖M‖∞+‖ d

dt
M‖∞ ≤ C(‖E‖∞+‖B(φ)‖∞+‖N(φ)‖∞ ≤ C(ε2+ε‖φ′‖∞+‖φ2‖∞+‖φ3‖∞)

then if ‖φ‖∞ + ‖φ′‖∞ ≤ Mε2 we have

‖M‖∞ + ‖ d

dt
M‖∞ ≤ C∗ε2.

We define the space X = {φ ∈ C1(R) : ‖φ‖∞ + ‖φ′‖∞ ≤ C∗ε2}. Let us
observe that M(X) ⊂ X. In addition

‖M(φ1)−M(φ2)‖∞+‖ d

dt
(M(φ1)−M(φ2))‖∞ ≤ Cε(‖φ1−φ2‖∞+‖φ′1−φ′2‖∞).

So if ε is small M is a contraction mapping which implies that there
exists a unique φ ∈ X such that φ = M [φ]. ¤

In summary: We found for each |h| ≤ 1

φ = Φ(h), solution of1.7

. We recall that

h → Φ(h)
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is continuous (in ‖‖C1) . Notice that from where we deduce that M is
continuous in h.

The problem is reduced to finding h such that C = 0 in (1.7) for
φΦ(h) =. Let us observe that

C = 0 ⇔ αε(h) :=

∫

R
(Eh + B[Φ(h)]) + N [Φ(h)])w′ = 0.

Let us observe that if we call ψ(x) = a′
a
(x), then

ψ(x0+ε(t+h)) = ψ(x0)+ψ′(x0)ε(t+h)+

∫ 1

0

(1−s)ψ′′(x0+sε(t+h))ε2(t+h)2ds

We add the assumption a′′′ ∈ L∞(R) in order to have ψ′′ ∈ L∞(R). We
deduce that
∫

Ehw
′ = ε2ψ′(x0)

∫
(t+h)w′(t)2+ε3

∫

R
(

∫ 1

0

(1−s)ψ′′(x0+sε(t+h))ds)(t+h)2w′(t)dt

We recall that:
∫
R tw′(t)2 and

|
∫

R
(B[φ(h)] + N [φ(h)])w′| ≤ C(ε‖Φ(h)‖C1 + ‖Φ(h)‖L∞) ≤ Cε3.

So, we conclude that

αε(h) = ψ′(x0)ε
2(h + O(ε))

and the term inside the parenthesis change sign. This implies that
∃hε : |hε| ≤ Mε such that αε(h) = 0, so C = 0.

Observe that

L(φ) = φ′′−2φ+εψ+3(1−w2)φ+
1

2
f ′′(w+sφ)φφ+O(ε2)e−

√
2|t| = 0, |t| > R

We consider t > R. Notice that 1
2
f ′′(w + sφ)φ = O(ε2). Then using

φ̂ = εe−|t| + δe|t|. Then using maximum principle and after taking
δ → 0, we obtain φ ≤ εe−|t|.

A property: We call

L(φ) = φ′′ + f ′(w)φ, φ ∈ H2(R).

We consider the bilinear form associated

B(φ, φ) = −
∫

R
L(φ)φ =

∫

R
φ′2 − f ′(w)2φ2, φ ∈ H1(R).

Claim: B(φ, φ) ≥ 0, ∀φ ∈ H1(R) and B(φ, φ) = 0 ⇔ φ = cw′(t).
In fact: J ′′(w)[φ, φ] = B(φ, φ). We give now the proof of the claim:
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Take φ ∈ C∞
c (R). Write φ = w′Ψ =⇒ Ψ ∈ C∞

c (R). Observe that
L[w′Ψ] = 1

w′ (w
′2Ψ′)′ and

B(φ, φ) = −
∫

1

w′ (w
′2Ψ′)′w′Ψ =

∫

R
w′2Ψ′2, ∀φ ∈ C∞

c (R)

Same is valid for all φ ∈ H1(R), by density. So B(φ, φ) =
∫
R |φ′|2 −

f ′(w)φ2 =
∫
Rw′2|Ψ′|2 ≥ 0 and B(φ, φ) = 0 ⇔ Ψ′ = 0 which implies

φ = cw′.

Corollary 1.1. Important for later porpuses There exists r > 0 such
that if φ ∈ H1(R) and

∫
R φw′ = 0 then

B(φ, φ) ≥ γ

∫

R
φ2

Proof. If not there exists φn

∫
H1(R) such that 0 ≤ B(φn, φn) < 1

n

∫
R φ2

n.
We may assume without loss of generality

∫
φ2

n = 1 which implies that
up to subsequence

φn ⇀ φ ∈ H1(R)

and φn → φ uniformly and in L2sense on bounded intervals. This
implies that

0 = lim
n→∞

∫

R
φnw′ =

∫

R
φw′

On the other hand∫
|φ′n|2 + 2

∫
φ2

n − 3

∫
(1− w2)φ2

n → 0

and also
∫ |φ′n|2+2

∫
φ2

n−3
∫

(1−w2)φ2
n →

∫ |φ′|2+2
∫

φ2−3
∫

(1−w2)φ2,
so B(φ, φ) = 0, and

∫
w′φ = 0 so φ = 0. But also

2 ≤ 3

∫
(1− w2)φ2

n + o(1)

which implies that 2 ≤ 3
∫

(1 − w2)φ2 and this means that φ 6= 0, so
we obtain a contradiction. ¤

Observation 1.2. If we choose δ = γ
2‖f ′‖∞ then

∫
φ′2 − (1 + δ)f ′(w)φ2 ≥ 0.

This implies in fact that

B(φ, φ) ≥ α

∫
φ′2.
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2. Nonlinear Schrödinger eqution (NLS)

εiΨt = ε2∆Ψ−W (x)Ψ + |Ψ|p−1Ψ.

A first fact is that
∫
RN |Ψ|2 = constant. We are interested into study

solutions of the form Ψ(x, t) = e−iEtu(x) (we will call this solutions
standing wave solution). Replacing this into the equation we obtain

εEu = ε2∆u−Wu− |u|p−1u

whose transforms into

ε2∆u− (W − λ)u + |u|p−1u = 0, u(x) → 0, as |x| → ∞
choosing E = λ

ε
. We define V (x) = (W (x)− λ)

2.1. The case of dimension 1.
(2.1)
ε2u′′ − V (x)u + up = 0, x ∈ R, 0 < u(x) → 0, as |x| → ∞, p > 1.

Assume: V ≥ γ > 0, V, V ′, V ′′, V ′′′ ∈ L∞, and V ∈ C3(R). Starting
point

(2.2) w′′ − w + wp = 0, w > 0, w(±∞) = 0, p > 1

There exists a homoclinic solution

w(t) =
Cp

cosh
(

p−1
2

t
) 2

p−1

, Cp =

(
p + 1

2

) 1
p−1

Let us observe that w(t) ≈ 22/(p−1)Cpe
−|t| as t → ∞ and also that

W (t + c) satisfies same equation.
Staid at x0 with V (x0) = 1 we want uε(x) ≈ w

(
x−x0

ε

)
of the problem

(2.1).

Observation 2.1. Given x0 we can assume V (x0) = 1. Indeed writing

u(x) = λ
2

p−1 v(λx0 + (1− λ)x0)

we obtain the equation

ε2v′′(y)− V̂ (y)v + vp = 0

where y = λx0 + (1 − λ)x0, and V̂ (y) = V (y−(1−λ)x0

λ
). Then choosing

λ =
√

V (x0, we obtain V̂ (x0) = 1.

Theorem 2.1. We assume V (x0) = 1, V ′(x0) = 0, V ′′(x0) 6= 0. Then
there exists a solution to (2.1) with the form

uε(x) ≈ w

(
x− x0

ε

)
.
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We define v(t) = u(x0 + ε(t + h)), with |h| ≤ 1. Then v solves the
problem

(2.3) v′′ − V (x0 + ε(t + h)v + vp = 0, v(±∞) = 0.

We define v(t) = w(t) + φ(t), so φ solves
(2.4)
φ′′−φ+pwp−1φ− (V (x0 +ε(t+h))−V (x0))φ+(w+φ)p−wp−pwp−1φ

(2.5) −(V (x0 + ε(t + h))− V (x0))w(t) = 0

So we want a solution of

(2.6) φ′′ − φ + pwp−1φ + E + N(φ) + B(φ) = 0, φ(±) = 0.

Observe that

E =
1

2
V ′′(x0 + ξε(t + h))ε2(t + h)2w(t),

so |E| ≤ Cε2(t2 + 1)e−|t| ≤ Ce−σt for 0 < σ < 1.
We won’t have a solution unless V ′ doesn’t change sign and V 6= 0.

For instance consider V ′(x) ≥ 0, and after multiplying the equation by

u′ and integrating by parts, we see that
∫
R v′ u

2

2
= 0, which by ODE

implies that u ≡ 0, because u and u′ equals 0 on some point.

2.2. Linear projected problem.

L(φ) = φ′′ − φ + pwp−1φ + g = 0, φ ∈ L∞(R)

For solvability we have the necessary condition
∫

L(φ)w′ = 0. Assume
g such that

∫
R gw′ = 0. We define φ = w′Ψ, but we have the problem

that w′(0) = 0. We conclude that (w′2Ψ′)′ + w′g = 0 for t 6= 0. We
take for t < 0

φ(t) = w′(t)
∫ −1

t

dτ

w′(τ)2

∫ τ

−∞
g(s)w′(s)ds

and for t > 0

φ(t) = w′(t)
∫ t

1

dτ

w′(τ)2

∫ ∞

τ

g(s)w′(s)ds

In order to have a solution of the problem we need φ(0−) = φ(0+).

φ(0−) = lim
t→0−

− ∫ t

−1
dτ

w′(τ)2

∫ τ

−∞ g(s)w′(s)ds
1

w′(t)
= lim

t→0−

− 1
w′(t)2

∫ t

−∞ gw′

− 1
w′(t)2 w

′′(t)
=

1

w′′(0)
∫ 0

−∞ gw′

and

φ(0+) = − 1

w′′(0)
∫∞
0

gw′
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and the condition is satisfies because of the assumption of orthogonality
condition.

We get ‖φ‖∞ ≤ C‖g‖∞. In fact we get also: ∀ 0 < σ < 1, ∃C > 0 :

‖φeσt‖L∞ + ‖φ′eσt‖L∞ ≤ C‖geσt‖
Observation: We use g = g − cw′.(Correct this part!!!!)

2.3. Method for solving. In this section we consider a smooth radial
cut-off function η ∈ C∞(R), such that η(s) = 1 for s < 1 and η(s) = 0

if s > 2. For δ > 0 small fixed, we consider ηk,ε = η
(

ε|t|
kδ

)
, k ≥ 1.

2.3.1. The gluing procedure. Write φ̃ = η2,εφ + Ψ, then φ solves (2.5)
if and only if

(2.7) η2,ε

[
φ′′ + (pwp−1 − 1)φ + B(φ) + 2φ′η′2,ε

]

(2.8) +
[
Ψ′′ + (pwp−1 − 1)Ψ + BΨ

]
+ E + N(η2,ηφ + Ψ) = 0.

(φ, Ψ) solves (2.8) if is a solution of the system

(2.9)
φ′′− (1− pwp−1)φ + η1,εE + η3,εB(φ) + η1,εpw

p−1Ψ + η1,ηN(φ + Ψ) = 0

(2.10) Ψ′′ − (V (x0 + ε(t + h))− pwp−1(1− η1,ε))Ψ

(2.11) +(1− η1,ε)E + (1− η1,ε)N(η2,εφ + Ψ) + 2φ′η′2,ε + η′′2,εφ = 0

We solve first (2.11). We look first the problem

Ψ′′ −W (x)Ψ + g = 0

where 0 < α ≤ W (x) ≤ β, W continuous and g ∈ C(R) ∩ L∞(R).
We claim that (2.3.1) has a unique solution φ ∈ L∞(R). Assume first
that g has compact support and consider the well defined functional in
H1(R)

J(Ψ) =
1

2

∫

R
|Ψ′|2 +

1

2

∫

R
wΨ2 −

∫

R
gΨ.

Also, this functional is convex and coercive. This implies that J has a
minimizer, unique solution of (2.3.1) in H1(R) and it is bounded. Now
we consider the problem

Ψ′′
R −WΨR + gη

( |t|
R

)
= 0
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Let us see that ΨR has a uniform bound. Take ϕ(t) = ‖g‖∞
α

+ρ cosh
(√

α
2
|t|

)

for ρ > 0 very small. Since ΨR ∈ L∞(R) we have

ΨR ≤ ϕ(t), for |t| > tρ,R.

Let us observe that in [−tρ,R, tρ,R]

ϕ′′ −Wϕ + gη

( |t|
R

)
< 0.

From (2.3.1), we see that γ = (ΨR − ϕ) satisfies

(2.12) γ′′ −Wγ > 0.

Claim: γ ≤ 0 on R. It’s for |t| > tρ,R if γ(t̄) > 0 there is a global max-
imum positive γ ∈ [−tρ,R, tρ,R]. This implies that γ′′(t) ≤ 0 which

is a contradiction with (2.12). This implies that ΨR(t) ≤ ‖g‖∞
α

+

ρ cosh
(√

α
2

t
)
. Taking the limit ρ going to 0 we get ΨR ≤ ‖g‖∞

α
, and

similarly we can conclude that

‖ΨR‖L∞ ≤ ‖g‖∞
α

, ∀R
Passing to a subsequence we get a solution Ψ = limR→∞ ΨR, and the
convergence is uniform over compacts sets, to (2.3.1) with

‖Ψ‖∞ ≤ ‖g‖∞
α

. Also, the same argument shows that the solution is unique (in L∞

sense). Besides: We observe that if ‖eσ|t|g‖∞ < ∞, 0 < σ <
√

α then

‖eσ|t|Ψ‖∞ ≤ C‖eσ|t|g‖
The proof of this fact is similar to the previous one. Just take as the
function ϕ as follows

ϕ = M
‖eσ|t|g‖∞

α
e−σ|t| + ρ cosh

(√
α

2
|t|

)
.

Observe now that Ψ satisfies (2.11) if and only if

Ψ =

(
− d2

dt2
+ W

)−1

[F [Ψ, φ]]

where W (x) = V (x0+ε(t+h))−pwp−1(1−η1,ε) and F [φ] = (1−η1,ε)E+
(1− η1,ε)N(η2,εφ+Ψ)+2φ′η′2,ε + η′′2,εφ. The previous result tell us that

the inverse of the operator
(
− d2

dt2
+ W

)
is well define. Assume that

‖φ‖C1 := ‖φ‖∞ + ‖φ′‖∞ ≤ 1, for some σ < 1 and ‖Ψ‖∞ ≤ ρ, where ρ



LYAPUNOV SCHMIDT REDUCTION METHOD 13

is a very small positive number. Observe that ‖(1− η1,ε)E‖∞ ≤ e−cδ/ε.
Furthermore, we have

|F (Ψ, φ)| ≤ e−cδ/ε + cε‖φ‖C1 + ‖φ‖2
∞ + ‖Ψ‖2

∞

This implies that

‖M [Ψ]‖ ≤ C∗[µ + ‖Ψ‖2
∞]

where µ = e−cδ/ε + cε‖φ‖C1 + ‖φ‖2
∞. If we assume µ < 1

4C∗2
, and

choosing ρ = 2C∗µ, we have

‖M [Ψ]‖ < ρ.

If we define X = {Ψ|‖Ψ‖∞ < ρ}, then M is a contraction mapping
in X. We conclude that

‖M [Ψ1]−M [Ψ2]‖ ≤ C∗C‖Ψ1 −Ψ2‖, where C∗C < 1.

Conclusion: There exists a unique solution of (2.11) for given φ (small
in C1-norm) such that

‖Ψ(φ)‖∞ ≤ [e−cδ/ε + ε‖φ‖C1 + ‖φ‖2
∞]

Besides: If ‖φ‖ ≤ ρ, independent of ε, we have

‖Ψ(φ1)−Ψ(φ2)‖∞ ≤ o(1)‖φ1 − φ2‖.
Next step: Solver for (2.9), with ‖φ‖ very small, the problem
(2.13)
φ′′−(1−pwp−1)φ+η1,εE+η3,εB(φ)+η1,εpw

p−1Ψ+η1,ηN(φ+Ψ)−cw′ = 0

where c = 1∫
w′2

∫
R(η3,εB(φ) + η1,εpw

p−1Ψ + η1,ηN(φ + Ψ))w′. To solve

(2.13) we write it as

φ = T [η3,εBφ] + T [N(φ + Ψ(φ)) + pwp−1Ψ(φ)] + T [E] =: Q[φ]

Choosing δ sufficiently small independent of ε we conclude that Q(x) ⊆
X, and Q is a contraction in X for ‖ · ‖C1 . This implies that (2.13) has
a unique solution φ with ‖φ‖C1 < Mε2. Also the dependence φ = Φ(h)
is continuous. Now we only need to adjust h in such a way that c = 0.
After some calculations we obtain

0 = Kε2V ′′(x0)h + O(ε3) + O(δε2).

So we can find h = hε and |hε| ≤ Cε, such that c = 0.
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3. Schrodinger equation in dimension N

(3.1)

{
ε2∆u− V (y)u + up = 0 in RN

0 < u in Rn u(x) → 0, as|x| → ∞
We consider 1 < p < ∞ if N ≤ 2, and 1 < p < N+2

N−2
if N ≥ 3. The

basic problem that we consider is
{

∆w − w + wp = 0 in RN

0 < u in Rn w(x) → 0, as|x| → ∞
We look for a solution w = w(|x|), a radially symmetric solution. w(r)
satisfies the ordinary differential equation

(3.2)

{
w′′ + N−1

r
w′ − w + wp = 0 r ∈ (0,∞)

w′(0) = 0, 0 < w in (0,∞) w(|x|) → 0, as|x| → ∞
Proposition 3.1. There exist a solution to (3.2).

Proof. Let us consider the space

H1
r = {u = u(|x|) : u ∈ H1(RN)}

with the norm ‖u‖H1 =
∫∞
0

(|u′|2 + |u|2)rN−1dr. Let

S = inf
u 6=0,u∈H1

r

∫
RN |∇u|2 + u2

(
∫
RN |u|p+1)2/(p+1)

We recall that H1(RN) → Lp+1(RN) continuously, which means that
S > 0 (the larger constant such that c‖u‖Lp+1 ≤ ‖u‖H1). Strategy:
Take un ≥ 0a minimizing sequence for S. We may assume ‖un‖Lp+1 =
1. This means that ‖un‖2

H1 → S. This means that the sequence is
bounded in H11. We may assume un ⇀ u ∈ H1. We have by lower
weak s.c.i. ∫

|∇u|2 + u2 ≤ lim
n

∫
|∇un|2 + u2

n = S.

We could get existence of a minimizer for S if we prove that ‖u‖Lp+1=1.
This is indeed the case thanks to:

Strauss Lemma: There exist a constant C such that ∀u ∈ H1
r (RN):

|u(|x|)| ≤ C

|x|N−1
2

‖u‖H1

The proof of this fact is the following: Let u ∈ C∞
c (RN), u = u(|x|).

u2(r) = −2

∫ ∞

r

u(s)u′(s)ds ≤ 2

∫ ∞

r

|u(s)||u′(s)|s
N−1

rN−1
ds
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(3.3) ≤ 2

rN−1
(

∫ ∞

0

|u|2sn−1ds)1/2(

∫ ∞

0

|u′|2sN−1ds)1/2 ≤ C

rN−1
‖u‖2

H1

By density we concludes the proof.
Let us observe that

‖un‖p+1
Lp+1(RN )

= ‖un‖p+1
Lp+1(BR) + ‖un‖p+1

Lp+1(Bc
R)

and

‖un‖p+1
Lp+1(Bc

R) ≤ ‖un‖p−1
L∞(|x|>R)

∫

RN

u2
n ≤ ε

if R ≥ R0(ε) (here we use the lemma of Strauss). On the other hand:

un → u

strong in Lp+1(BR) since H1(BR) → Lp+1(BR) compactly. This implies
that 1 ≤ limn→∞ ‖un‖p+1

Lp+1(BR) + ε = ‖u‖Lp+1(BR) + ε ≤ ‖u‖Lp+1(RN ) + ε

This implies that ‖u‖Lp+1 ≥ 1 and we conclude ‖u‖Lp+1 = 1.
u is a minimizer for S, u ≥ 0, u 6= 0. We define Φ(v) = ‖v‖H1/(

∫ |v|p+1)2/p+
1. So u is a minimizer for Φ. This means that u is a weak solution of
the problem

−∆u + u = αup

where α = ‖u‖H1 . We define u = α
−1
p−1 ũ, then ũ is a solution of

−∆ũ + ũ = ũp

And, with the aid of maximum strong principle we can conclude that
ũ is in fact strictly positive everywhere. This concludes the proof ¤
Observation 3.1. There no exist a solution of class C2 for p ≥ N+2

N−2
.

The proof of this fact is an application of Pohozaev identity.

We claim that w(r) ≈ Cr−
N−1

2 e−r. This can be proved with the

change of variables k = r−
N−1

2 h. The equation that satisfies h is like
h′′ − h(1 + c

r2 ) = 0, and the solution of this equation is like e−r.

Theorem 3.1. Kwong, 1989 The radial solution of (3.2) is unique.

3.1. Linear problem. Consequence of the proof of Kwong: We define

L(φ) = ∆φ + pw(x)p−1φ− φ.

Let us consider the problem

L(φ) = 0, φ ∈ L∞(RN)

A known fact is that if φ is a solution of this problem, then φ is a linear
combination of the functions ∂w

∂xj
(x), j = 1, . . . , N . This is known as

non degeneracy of w.
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We assume as always 0 < α ≤ V ≤ β. We want to solve the problem

(3.4)

{
ε2∆ũ− V (y)ũ + ũp = 0 in RN

0 < ũ in Rn ũ(x) → 0, as|x| → ∞
We fix a point ξ ∈ RN . Observe that Uε(y) = V (ξ)

1
p−1

(√
V (ξ)y−ξ

ε

)
,

is a solution of the problem equation

ε2∆u− V (ξ)u + up = 0.

We will look for a solution of (3.4) uε(x) ≈ Uε(y). We define wλ =

λ
1

p−1 w(
√

λx).
Let us observe that if ũ satisfies (3.4), then u(x) = ũ(εz) satisfies

the problem

(3.5)

{
∆u− V (εz)u + up = 0 in RN

0 < u in Rn u(x) → 0, as|x| → ∞
Let ξ′ = ξ

ε
. We want a solution of (3.5) with the form u(z) = wλ(z −

ξ′) + φ̃(z), with λ = V (ξ) and φ̃ small compared with wλ(z − ξ′).

3.2. Equation in terms of φ. φ(x) = φ̃(ξ′ − x). Then φ satisfies the
equation ∆x[wλ(x)+φ(x)]−V (ξ+εx)[wλ(x)+φ(x)]+[wλ(x)+φ(x)]p = 0.
We can write this equations as

∆φ− V (ξ)φ + pwp−1
λ (x)φ− E + B(φ) + N(φ) = 0

where E = (V (ξ + εx)− V (ξ))wλ(x), B(φ) = (V (ξ)− V (ξ + εx))φ and
N(φ) = (wλ + φ)p − wp

λ − pwp−1
λ φ. We consider the linear problem for

λ = V (ξ),

(3.6)

{
L(φ) = ∆φ− V (ξ + εx)φ + pwλ(x)φ = g −∑N

i=1 ci
∂w
∂xi∫

RN φ∂wλ

∂xi
= 0, i = 1, . . . , N

The c′is are defined as follows∫
L(φ)(wλ)xi

=

∫
L0(φ)(wλ)xi

+

∫
(V (ξ)− V (ξ + εx))φ(wλ)xi

w = w(|x|). (wλ)xi
(x) = w′

λ
xi

|x| . This implies that
∫

(wλ)xi(wλ)xj =

∫
w′

λ(|x|)2xixj
1

|x|2
This integral is 0 if i 6= j and equals to

∫
RN w′

λ(|x|)2x2
i

1
|x|2 dx = 1/N

∫ |∇wλ|2 =

γ. Then ci =
∫

g(wλ)xi +
∫
RN [V (ξ + εx)− V (ξ)]φ(wλ)xi

1∫
(wλ)xi

2 .

Problem: Given g ∈ L∞(RN) we want to find φ ∈ L∞(RN) solution
to the problem (3.6). Assumptions: We assume V ∈ C1(RN), ‖V ‖C1 <
∞. We assume in addition that |ξ| ≤ M0 and 0 < α ≤ V .
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Proposition 3.2. There exists ε0, C0 > 0 such that ∀0 < ε ≤ ε0,
∀|ξ| ≤ M0, ∀g ∈ L∞(RN) ∩ C(RN), there exist a unique solution φ ∈
L∞(RN) to (3.6), φ = T [g] satisfies

‖φ‖C1 ≤ C0‖g‖∞
Proof. Step 1: A priori estimates on bounded domains: There exist
R0, ε0, C0 such that ∀ε < ε0, R > R0, |ξ| ≤ M0 such that ∀φ, g ∈ L∞

solving L(φ) = g −∑
i ci(wλ)xi

in BR,
∫

BR
φ(wλ)xi

= 0 and φ = 0 on
∂BR, we have

‖φ‖C1(BR) ≤ C0‖g‖∞
We prove first ‖φ‖∞ ≤ C0‖g‖∞. Assume the opposite, then there exist
sequences φn, gn, ε → 0, Rn →∞, |ξn| ≤ M0 such that

L(φn) = gn − cn
i

∂wλ

∂xi

. The first fact is that cn
i → 0 as n → ∞. This fact follows just after

multiplying the equation against (wλ)xi
and integrating by parts.

Observation: If ∆φ = g in B2 then there exist C such that

‖∇φ‖L∞(B1) ≤ C[‖g‖L∞(B2) + ‖φ‖L∞(B2)]

Where B1 and B2 are concentric balls. This implies that ‖∇φn‖L∞(B) ≤
C a given bounded set B, ∀n ≥ n0. This implies that passing to a
subsequence φn → φ uniformly on compact sets, and φ ∈ L∞(RN).
Observe that ‖φn‖∞ = 1, and this implies that ‖φ‖∞ ≤ 1. We can
assume that ξn → ξ0.

φ satisfies the equation ∆φ − V (ξ0)φ + pwp−1
λ0

(x)φ = 0, where λ0 =

V (ξ0), and this implies that φ ∈ Span
{

∂wλ0

x1
, . . . ,

∂wλ0

xN

}
, but also

∫
RN φ(wλ0)xi

=

0, i = 1, . . . , N . Then φ = 0 and this implies that ‖φn‖L∞(BM (0)) →
0,∀M < ∞. Maximum principle implies that ‖φn‖L∞(BRn\BM0

→ 0,
just because |φn| = o(1) on ∂BRn \ BM0 and ‖gn‖∞ → 0. There-
fore ‖φn‖∞ → 0, a contradiction. This implies that ‖φ‖L∞(BR) ≤
C0‖g‖L∞(BR) uniformly on large R. The C1 estimate follows from el-
liptic local boundary estimates for ∆.

Step 2: Existence: g ∈ L∞. We want to solve (3.6). We claim that
solving (3.6) is equivalent to finding φ ∈ X = {ψ ∈ H1

0 :
∫

ψ(wλ)xi
=

0, i = 1, . . . , N} such that
∫
∇φ∇ψ +

∫
V (ξ + εx)φψ − pwp−1φψ +

∫
gψ = 0, ∀ψ ∈ X.
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Take general Ψ ∈ H1
0 , Ψ = ψ +

∑
i αi(wλ)xi

, with αi =
∫

Ψ(wλ)xi∫
(wλ)xi

. We

have

−
∫

∆(
∑

i

αi(wλ)xi
)∇φ+

∫
V (ξ)(

∑
i

αi(wλ)xi
)φ−pwp−1(

∑
i

αi(wλ)xi
)φ = 0

Which implies that∫
∇φ∇Ψ +

∫
V (ξ)φΨ− pwp−1φΨ

−
∫

(V (ξ)− V (ξ + εx))(Ψ−
∑

i

αi(wλ)xi
) +

∫
g(Ψ−

∑
i

αi(wλ)xi
)

Then ∫
[(V (ξ + εx)− V (ξ))φ + g](Ψ−

∑
i

αi(wλ)xi
)

and ΠX(Ψ) =
∑

i αi(wλ)xi
, then the previos integral is equal to

∫
ΠX([(V (ξ + εx)− V (ξ))φ + g]φ)Ψ

¤

This implies that

−∆φ + V (ξ)φ− pwp−1φ + ΠX([(V (ξ + εx)− V (ξ))φ + g]φ) = 0.

The problem is formulated weakly as∫
∇φ∇ψ +

∫
(V (ξ + εx)− pwp−1)φψ +

∫
gψ = 0, φ ∈ X, ∀ψ ∈ X

This can be written as φ = A[φ] + g̃, where A is a compact operator.
The a priori estimate implies that the only solution when g = 0 of this
equation is φ = 0. We conclude existence by Fredholm alternative.

We look for a solution which near xj = ξ′j = ξj/ε, j = 1, . . . , k looks
like v(x) ≈ Wλj

(x− ξ′j), λj = V (ξj), where Wλ solves

∆Wλ − λW + W p = 0, Wλ radial, Wλ(|x|) → 0, as |x| → ∞
Observe that Wλ(y) = λ1/(p−1)w(

√
λy), where w solves the equation

∆w − w + wp = 0. The equation

∆v − V (εx)v + vp = 0

looks like ∆v−V (ξj)v+vp = 0, where ξ1, ξ2, . . . ξk ∈ RN and we assume

also |ξ′j−ξ′l| À 1, if j 6= l. We look for a solution v(x) ≈ ∑k
j=1 Wλj

(x−
ξ′j), λj = V (ξj). We assume V ∈ C2(RN) and ‖V ‖C2 < ∞, 0 < α ≤ V .
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We use the notation Wj = Wλj
(x− ξ′j), λj = V (ξj) and W =

∑n
j=1 Wj.

Look for a solution v = W + φ, so φ solves the problem

∆φ− V (εx)φ + pW p−1φ + E + N(φ) = 0

where

E = ∆W − V W + W p, N(φ) = (W + φ)p −W p − pW p−1φ.

Observe that ∆W =
∑

j ∆Wj =
∑

j λjWj −W p
j . So we can write

E =
∑

j

(λj − V (εx))Wj + (
∑

j

Wj)
p −

∑
j

W p
j .

3.3. Linearized (projected) problem. We use the following nota-

tion Zi
j =

∂Wj

∂xi
. The linearized projected problem is the following

∆φ− V (εx)φ + pW p−1φ + g =
∑
i,j

ci
jZ

i
j,

with the orthogonality condition
∫

φZ i
j = 0, ∀i, j. The Zi

j’s are “nearly

orthogonal” if the centers ξ′j are far away one to each other. The ci
j’s

are, by definition, the solution of the linear system∫

RN

(∆φ− V (εx)φ + pW p−1φ + g)Zi0
j0

=
∑
i,j

ci
j

∫

RN

Zi
jZ

i0
j0

,

for i0 = 1, . . . , N , j0 = 1, . . . , k. The ci
j’s are indeed uniquely deter-

mined provided that |ξ′l − ξ′j| > R0 À 1, because the matrix with

coefficients αi,j,i0,j0 =
∫

Zi
jZ

i0
j0

is “nearly diagonal”, this means

αi,j,i0,j0 =

{
1
N

∫ |∇Wj|2 if (i, j) = (i0, j0),
o(1) if not

Moreover:

|ci0
j0
| ≤ C

∑
i,j

∫
|φ|[|λj−V |+p|W p−1−W p−1

j |]|Zi
j|+

∫
|g||Zi

j| ≤ C(‖φ‖∞+‖g‖∞)

with C uniform in large R0. Even more, if we take x = ξ′ + y

|(λj − V (εx))Zi
j| ≤ |(V (ξj)− V (ξj + εy))||∂Wλj

∂yi

| ≤ Cεe−
√

α
2
|y|,

because |∂Wλj

∂yi
| ≤ Ce−|y|

√
λj |y|−(N−1)/2. Observe also that

|(W p−1 −W p−1
j )Zi

j| = |((1−
∑

l 6=j

Wl

Wj

)p−1 − 1)|W p−1
j Zi

j.
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Observe that if |x− ξ′j| < δ0 minj1 6=j2 |ξ′j1 − ξ′j2|, then

Wl(x)

Wj(x)
≈ e−

√
λl|x−ξ′l|

e−
√

λj |x−ξ′j |
<

e−
√

λl|x−ξ′l|

e−
√

λjδ0 minj1 6=j2
|ξ′j1−ξ′j2 |

If δ0 ¿ 1 but fixed, we conclude that e−
√

λl|ξ′j−ξ′l|+δ0(
√

λl−
√

λj)minj1 6=j2
|ξ′j1−ξ′j2 | <

e−ρ minj1 6=j2
|ξ′j1−xi′j2 |¿1. Conclusion: if |x − ξ′j| < δ0 minj1 6=j2 |ξ′j1 − xi′j2|

implies that

|(W p−1 −W p−1
j )Zi

j| ≤ e−ρ minj1 6=j2
|ξ′j1−xi′j2 |e−

α
2
|x−ξ′j |.

If |x− ξ′j| > δ0 minj1 6=j2 |ξ′j1 − xi′j2|, then

|(W p−1 −W p−1
j )Zi

j| ≤ C|Zi
j| ≤ Ce−ρ minj1 6=j2

|ξ′j1−xi′j2 |e−
α
2
|x−ξ′j |

As a conclusion we get

|ci0
j0
| ≤ C(ε + e−ρ minj1 6=j2

|ξ′j1−ξ′j2 |)‖φ‖∞ + ‖g‖∞
Lemma 3.1. Given k ≥ 1, there exist R0, C0, ε0 such that for all points
ξ′j with |ξ′j1 − ξ′j2| > R0, j = 1, . . . , k and all ε < ε0 then exist a unique
solution φ to the linearized projected problem with

‖φ‖∞ ≤ C0‖g‖∞.

Proof. We first prove the a priori estimate ‖φ‖∞ ≤ C0‖g‖∞. If not
there exist εn → 0, ‖φn‖∞ = 1, ‖gn‖ → 0, ξ′nj with minj1 6=j2 |ξ′nj1−ξ′nj2 | →
∞. We denote Wn =

∑
j Wjn , and we have

∆φn − V (εnx)φn + pW p−1
n φn + gn =

∑
i,j

(ci
j)n(zi

j)n

First observation: (ci
j)n → 0 (follows from estimate for ci0

j0
). Second:

∀R > 0 ‖φn‖L∞(B(ξ′nj ,R)) → 0, j = 1, . . . , k. If not, there exist j0

‖φn‖L∞(B(ξ′nj0 ,R)) ≥ γ > 0. We denote φ̃n(y) := φn(ξ′nj0 + y). We have

‖φ̃n‖L∞(B(0,R)) ≥ γ > 0. Since |∆φ̃n| ≤ C, ‖φ̃n‖∞ ≤ 1. This implies

that ‖∇φ̃n‖ ≤ C. Passing to a subsequence we may assume φ̃n →
φ̃ uniformly on compacts sets. Observe that also V (εn(ξ′nj0 + y)) =
V (εnξ

′n
j0

)+O(εn|y|) → λj0 over compact sets and Wn(ξ′nj0 +y) → Wλj0
(y)

uniformly on compact sets. This implies that φ̃ is a solution of the
problem

∆φ̃− λj0φ̃ + pwp−1
λ0

˜p− 1 = 0,

∫
φ̃

∂Wλj0

∂yi

dy = 0, i = 1, . . . , N

Non degeneracy of wλj0
implies that φ̃ =

∑
i αi

∂wλj0

∂yi
. The orthogonal-

ity condition implies that αi = 0, ∀i = 1, . . . , N . This implies that
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φ̃ = 0 but ‖φ̃‖L∞(B(0,R)) ≥ γ > 0, a contradiction. Now we prove:
‖φn‖L∞(RN \∪nB(ξ′nj , R)) → 0, provided that R À 1 and fixed so that
φn → 0 in the sense of ‖φn‖∞ (again a contradiction). We will denote
Ωn = RN \ ∪nB(ξ′nj , R). For R À 1 the equation for φn has the form

∆φn −Qnφn + gn = 0

where Qn = V (εx)− pW p−1
n ≥ α

2
> 0 for some R sufficiently large (but

fixed). Let’s take for σ2 < α/2

φ̄ = δ
∑

j

eσ|x−ξ′nj | + µn.

We denote ϕ(y) = eσ|y|, r = |y|. Observe that ∆ϕ− α/2ϕ = eσ|y|(σ2 +
N−1
|y| − α/2) < 0 if |y| > R À 1. Then

−∆φ̄ + Qnφ̄− gn > −∆φ̄ +
α

2
φ̄− ‖gn‖∞ >

α

2
µn − ‖gn‖∞ > 0

if we choose µn ≥ ‖gn‖∞ 2
α
. In addition we take µn =

∑
j ‖φn‖L∞(B(ξn

j ,R))+

‖gn‖∞ 2
α
. Maximum principle implies that φn(x) ≤ φ̄ for all x ∈ Ωn.

Taking δ → 0 this implies that φn(x) ≤ µn, for all x ∈ Ωn. Also true
that |φn(x)| ≤ µn for all x ∈ Ωc

n, and this implies that ‖φn‖L∞(RN ) →
0. ¤

Observation 3.2. If in addition we have θn = ‖gn

(∑
j e−ρ|x−ξ′nj |

)−1

‖∞ →
0 with ρ < α/2. Then we can use as a barrier

φ̄ = δ
∑

j

eσ|x−ξ′nj | + µn

∑
j

e−ρ|x−ξ′nj |

with µn = eρR
∑

j ‖φn‖L∞(B(ξ′nj ,R)) + θn, then φ̄ is a super solution of

the equation and we have |φn| ≤ φ̄, and letting δ → 0 we get |φn(x)| ≤
µn

∑
j e−ρ|x−ξ′nj |. As a conclusion we also get the a priori estimate

‖φ
(

k∑
j=1

e−ρ|x−ξ′j |
)−1

‖∞ ≤ C‖g
(

k∑
j=1

e−ρ|x−ξ′j |
)−1

‖∞

provided that 0 ≤ ρ < α/2, |ξ′j1 − ξ′j2| > R0 À 1, ε < ε0.

We now give the proof of existence

Proof. Take g compactly supported. The weak formulation for

(3.7) ∆φ− V (εx)φ + pW p−1φ + g =
∑
i,j

ci
jZ

i
j,

∫
φZ i

j,∀i, j



22 MANUEL DEL PINO AND JUNCHENG WEI

is find φ ∈ X = {φ ∈ H1(RN) :
∫

φZi
j = 0,∀i, j} such that

(3.8)

∫

RN

∇φ∇ψ + V φψ − pwp−1φψ − gψ = 0, ∀ψ ∈ X.

Assume φ solves (3.7). For g ∈ L2, write g = g̃+Π[g] where
∫

g̃Z i
j = 0,

for all i, j. Π is the orthogonal projection of g onto the space spanned
by the Zi

j’s. Take ψ ∈ H1(RN) arbitrary and use ψ − Π[ψ] as a test

function in (3.8). Then if ϕ ∈ C∞
c (RN), then

∫

RN

∇ϕ∇(Π[ψ]) = −
∫

RN

∆ϕΠ[ψ] = −
∫

RN

Π[∆ϕ]ψ.

But Π[∆ϕ] =
∑

i,j αi,jZ
i
j, where

∑
αi,j

∫
Zi,jZi0,j0 =

∫
∆ϕZj0

i0
=

∫
ϕ∆Zj0

i0

Then ‖Π[∆ϕ]‖L2 ≤ C‖ϕ‖H1 . By density is true also for ϕ ∈ H1 where
∆ϕ ∈ H−1. Therefore

∫
∇φ∇ψ +

∫
(V φ− pW p−1φ− g)ψ =

∫
Π(V φ− pW p−1φ + g)ψ

then φ solves in weak sense

−∆φ + V φ− pW p−1φ− g = Π[−∆φ + V φ− pW p−1φ− g]

and Π[−∆φ + V φ− pW p−1φ− g] =
∑

i,j cj
iZij. Therefore by definition

φ solves (3.8) implies that φ solves (3.8). Classical regularity gives
that this weak solution is solution of (3.7) in strong sense, in particular
φ ∈ L∞ so that

‖φ‖∞ ≤ C‖g‖∞
. Now we give the proof of existence for (3.7). We take g compactly
supported. The equation (3.8) can be written in the following way
(using Riesz theorem):

〈φ, ψ〉H1 + 〈B[φ], ψ〉H1 = 〈g̃, ψ〉H1

or φ + B[φ] = g̃, φ ∈ X. We claim that B is a compact operator.
Indeed if φn ⇀ 0 in X, then φn → 0 in L2 over compacts.

|〈B[φn], ψ〉| ≤ |
∫

pW p−1φnψ| ≤ (

∫
pwp−1φ2

n)1/2(

∫
pW p−1ψ2)1/2

then

|〈B[φn], ψ〉| ≤ c(

∫
pW p−1φ2

n)1/2‖ψ‖H1
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Take ψ = B[φn], which implies

‖B[φn]‖H1 ≤ c(

∫
pW p−1φ2

n)1/2 → 0.

This implies that B is a compact operator. Now we prove existence
with the aid of fredholm alternative. Problem is solvable if for g̃ = 0
implies that φ = 0. But φ+B[φ] = 0 implies solve (3.7)(strongly) with
g = 0. This implies φ ∈ L∞, and the a priori estimate implies φ = 0.
Considering gΞBR(0) we conclude that

‖φR‖∞ ≤ ‖g‖∞
Taking R → ∞ then along a subsequence φR → φ uniform over com-
pacts. ¤

We take g ∈ L∞. We have φ = Tξ′ [g], where ξ′ = (ξ′1, . . . , ξ
′
k).

We want to analyze derivatives ∂ξ′ji
Tξ′ [g]. We know that ‖Tξ′ [g]‖ ≤

C0‖g‖∞. First we will make a formal differentiation. We denote Φ =
∂φ

∂ξ′i0j0

.

We have ∆φ− V φ + pW p−1φ + g =
∑

i,j ci
jZ

i
j and

∫
φZ i

j = 0, for all
i, j. Formal differentiation yields

∆Φ− V Φ + pW p−1Φ + +∂ξi0j0
(W p−1)φ−

∑
i,j

ci
j∂ξi0j0

Zj
i =

∑
i,j

c̃i
jZ

i
j

where formally c̃j
i = ∂ξi0j0

cj
i . The orthogonality conditions traduces

into ∫

RN

ΦZi
j =

{
0 if j 6= j0

− ∫
φ∂ξi0j0

Zi
j0

if j = j0

Let us define Φ̃ = Φ−∑
i,j αi,jZ

i
j. We want

∫
Φ̃Zi

j = 0, for all i, j. We
need ∑

i,j

αi,j

∫
Zi

jZ
ī
j̄ =

{
0 if j̄ 6= j0

− ∫
φ∂ξi0j0

Zi
j0

if j̄ = j0

The system has a unique solution and |αi,j| ≤ C‖φ‖∞ (since the system

is almost diagonal). So we have the condition
∫

Φ̃Zi
j = 0, for all i, j.

We add to the equation the term
∑

i,j αi,j(∆ − V + pW p−1)Zi
j, so Φ̃

satisfies the equation∆φ− V φ + pW p−1φ + g =
∑

i,j ci
jZ

i
j

∆Φ̃−V Φ̃+pW p−1Φ̃+∂ξi0j0
(W p−1)φ−

∑
i,j

ci
j∂ξi0j0

Zj
i =

∑
i,j

c̃i
jZ

i
j−

∑
i,j

αi,j(∆−V +pW p−1)Zi
j

This implies ‖Φ̃‖ ≤ C(‖h‖ + ‖g‖) ≤ C‖g‖∞. This implies ‖Φ‖ ≤
C‖g‖∞. We do this in a discrete way, and passing to the limit all
these calculations are still valid. Conclusion: The map ξ → ∂ξφ is well
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defined and continuous (into L∞). Besides ‖∂ξφ‖∞ ≤ C‖g‖∞, and this
implies

‖∂ξTξ[φ]‖ ≤ C‖g‖
3.4. Nonlinear projected problem. Consider now the nonlinear pro-
jected problem

∆φ− V φ + pwp−1φ + E + N(φ) =
∑
i,j

cj
iZ

i
j,

∫
φZj

i = 0, ∀i, j

We solve this by fixed point. We have φ = T (E + N(φ)) =: M(φ). We
define Λ = {φ ∈ C(RN) ∩ L∞(RN) : ‖φ‖∞ ≤ M‖E‖∞}. Remember
that E =

∑
i(λj − V (εx))Wj + (

∑
j Wj)

p −∑
j W p

j . Observe that

|E| ≤ ε
∑

i

e−σ|x−ξ′j | + ce−δ0 minj1 6=j2
|ξ′j1−ξ′j2 |

∑
j

e−σ|x−ξ′j |

so, for existence we have ‖E‖ ≤ C[ε+e−δ0 minj1 6=j2
|ξ′j1−ξ′j2 |] =: ρ (see that

ρ is small). Contraction mapping implies unique existence of φ = Φ(ξ)
and ‖Φ(ξ)‖ ≤ Mρ.

3.5. Differentiability in ξ′ of Φ(ξ′). We have

Φ− T ′
ξ(E

′
ξ + N ′

ξ(φ)) = A(Φ, ξ′) = 0

If (DΦA)(Φ(ξ′), ξ′) is invertible in L∞, then Φ(ξ′) turns out to be of
class C1. This is a consequence of the fixed point characterization, i.e.,
DΦA(Φ(ξ′), ξ′) = I + o(1) (the order o(1) is a direct consequence of
fixed point characterization). Then is invertible. Theorem and the C1

derivative of A(Φ, ξ′) in (φ, ξ′). This implies Φ(ξ′) is C1. ‖D′
ξΦ(ξ′)‖ ≤

Cρ (just using the derivate given by the implicit function theorem).

3.6. Variational reduction. We want to find ξ′ such that the ci
j = 0,

for all i, j, to get a solution to the original problem. We use a procedure
that we call Variational Reduction in which the problem of finding ξ′

with ci
j = 0, for all i, j, is equivalent to finding a critical point of a

functional of ξ′. Recall:

J(v) :=
1

2

∫

RN

|∇v|2 + V (εx)v2 − 1

p + 1

∫

RN+1

vp+1
+

is defined in H1(RN), since 1 < p < N+2
N−2

. v is a solution of ∆v− V v +

vp = 0, v → 0 if and only if v ∈ H1(RN) and J ′(v) = 0. Observe that
〈J ′(v), ϕ〉 =

∫ ∇v∇ϕ + V vϕ− vp
+ϕ.

The following fact happens: v = Wξ′∗ + φ(ξ′) is a solution of the
original problem (for ρ ¿ 1) if and only if

∂ξ′J(Wξ′ + φ(ξ′))|ξ′=ξ′∗ = 0.
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Indeed, observe that v(ξ′) := Wξ′ + φ(ξ′) solves the problem ∆v(ξ′)−
V (εx)v(ξ′) + v(ξ′)p =

∑
i,j ci

jZ
i
j and also that

∂ξ′j0i0
J(v(ξ′)) = 〈J ′(v(ξ′)), ∂ξ′j0i0

v(ξ′)〉 = −
∑
j,i

ci
j

∫
Zi

j∂ξ′j0i0
v = −

∑
i,j

ci
j

∫
Zj

i (∂ξ′j0i0
Wξ′+∂ξ′j0i0

φ(ξ′)).

Remember that Wξ′ =
∑k

j=1 wλj
(x− ξ′j),

∂ξ′j0i0
W ′

ξ = ∂ξ′j0i0
wλj0(ξ′)(x−ξ′j) = (∂λwλ(x−ξ′j0))|λ=λj0

−∂xi0
wλj0

(x−ξ′j0) = O(e−δ|x−ξ′0|)o(ε)−Zj0i0 (x)

This because ∂λwλ = O(e−δ|x−ξ′0|). On the other hand |∂ξ′j0i0
φ| ≤

Cρe−δ|x−ξ′j0 |. Finally, observe that

−
∫

Zi
j(∂ξ′j0i0

W ′
ξ + ∂ξ′j0i0

φ) =

∫
Zi

jZ
i0
j0

+ O(ρ)

The matrix of these numbers is invertible provided ρ ¿ 1.
A consequence (D, Felmer 1996): Assume j = 1 and that there exist

an open, bounded set Λ ⊂ RN such that

inf
∂Λ

V > inf
Λ

V,

then there exist a solution to the original problem, vε with vε(x) =
WV (ξε)((x− ξε)/ε) + o(1) and V (ξε) → minΛ V , ξ = ξε.

Another consequence (D, Felmer 1998): Λ1, . . . , Λk disjoint bounded
with infΛj

V < inf∂Λj
V , for all j. For the problem ε2∆u − V (x)u +

up = 0, 0 < u → 0 at ∞, there exist a solution uε with uε(x) ≈∑k
j=1 WV (ξε

j )(x − ξε
j/ε), ξε

j ∈ Λj and V (ξε
j ) → infΛj

V (in the case

of non-degeneracy minimal or more generally non-degenerate critical
points the result is due to Oh (1990))

Proof. First result: j = 1. v(ξ′) = Wξ′ + φ(ξ′). Then

J(W(ξ
′)) = J(Wξ′ +φ(ξ′))+ 〈J ′(W ′

ξ +φ),−φ〉+ 1

2
J ′′(W ′

ξ +(1− t)φ)[φ]2

(Taylor expansion of the function α(t) = J(W ′
ξ + (1 − t)φ)). Observe

that 〈J ′(W ′
ξ + φ),−φ〉 =

∑
i,j ci

j

∫
Zj

i φ = 0. Also observe that

J ′′(W ′
ξ+(1−t)φ)[φ]2 =

∫
|∇φ|2+V (εx)φ2−p(W ′

ξ+(1−t)φ)φ2 = O(ε2)

uniformly on ξ′ because∇φ, φ = O(εe−δ|x−ξ′|). We call Φ(ξ) := J(v(ξ′)) =
J(W ′

ξ) + O(ε2), and

J(W ′
ξ) =

1

2

∫
|∇W ′

ξ|2+V (ξ)W ′2
ξ −

1

p + 1

∫
W ′p+1

ξ +

∫
(V (εx)−V (ξ′))W 2

ξ
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Taking λ = V (ξ), we have that
∫
|∇wλ(x)|2 = λ−N/2

∫
|∇w(λ1/2x)|2λ1+2/(p−1)λN/2dx = λ−N/2+p+1/p−1|∇w(y)|2dy

and

λ

∫
w2

λ(x) = λ−N/2p+1/p−1

∫
w(y)p+1dy

This implies that

1

2

∫
|∇W ′

ξ|2 + V (ξ)W ′2
ξ − 1

p + 1

∫
W ′p+1

ξ = V (ξ)p+1/p−1−N/2cp,N .

also ∫
(V (εx)− V (ξ′))wλ(x− ξ′)2 = O(ε)

uniformly on ξ. In summary Φ(ξ) = J(v(ξ′)) = V (ξ)p+1/p−1−N/2cp,N +
O(ε) and p+1

p−1
− N

2
> 0. Then ∀ε ¿ 1 we have

inf
ξ∈Λ

Φ(ξ) < inf
ξ∈∂Λ

Φ(ξ)

therefore Φ has a local minimum ξε ∈ Λ and V (ξε) → minΛ V . Same
thing works at a maximum.

For several spikes separated: |ξj1 − ξj2| > δ, for all j1 6= j2. ρ =

e−δ0 minj1 6=j2
|ξ′j1−ξ′j2 | + ε ≤ e−δ0δ/ε + ε < 2ε, so we have

|∇xφ(ξ′)|+ |φ(ξ′)| ≤ Cε
∑

j

e−δ0|x−ξ′j |

Now we get

J(v(ξ′)) =
∑

j

V (εj)
p+1/p−1−N/2cp,N + O(ε)

ξ′ = 1/ε(ξ1, . . . , ξk) implies for several minimal on the Λj we have the
result desired. ¤

Result at one non-degenerate critical point: if ξ0 is a non-degenerate
critical point of V (V ′(ξ0) = 0 and V ′′(ξ0) invertible), then there exist
a solution uε(x) such that

uε(x) ≈ WV (ξε)(x− ξε)/ε, ξε → ξ0.

For small δ we have that J(v) has degree different from 0 in a ball
centered at x0 and of radius δ.
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4. Back to Allen Cahn in R2

We consider the functional

J(u) =

∫

R2

(
ε2 |∇u|2

2
+

(1− u2)2

4

)
a(x)dx.

Critical points of J are solutions of

ε2div(a(x)∇u) + a(x)(1− u2)u = 0,

where we suppose 0 < α ≤ a(x) ≤ β. This equation is equal to

(4.1) ε2∆u + ε2∇a

a
(x)∇u + (1− u2)u = 0.

Using the change of variables v(x) = u(εx), we find the equation

(4.2) ∆v + ε
∇a

a
(x)∇v + (1− v2)v = 0.

We will study the problem: Given a curve Γ in R2 we want to find a
solution uε(x) to (4.1) such that uε(x) ≈ w( z

ε
), for points x = y+zν(y),

y ∈ Γ, |z| < δ, where ν(y) is a vector perpendicular to the curve and
w(t) = tanh( t√

2
), which solves the problem

w′′ + (1− w2)w = 0, w(±∞) = ±1.

First issue: Laplacian near Γ, which we will consider as smooth as we
need.

Assume: Γ is parametrized by arc-length

γ : [0, l] → R2, s → γ(s), |γ̇(s)| = 1, l = |Γ|.
Convention: ν(s) inner unit normal at γ(s). We have that |ν(s)|2 = 1,
which implies that 2νν̇ = 0, so we take ν̇(s) = −k(s)γ̇(s), where k(s)
is the curvature.

Coordinates: x(s, t) = γ(s) + zν(s), s ∈ (0, l) and |z| < δ. If we

take a compact supported function ψ(x) near Γ, and we call ψ̃(s, z) =

ψ(γ(s) + zν(s)), then ∂ψ̃
∂s

= ∇ψ · [γ̇ + zν̇] = (1 − kz)∇ψ · γ̇ and ∂ψ̃
∂t

=
∇ψ · ν. Observe that ∇ψ = (∇ψ · γ̇)γ̇(∇ · ν)ν. This means that

∇ψ = 1
1−kz

∂ψ̃
∂s

γ̇ + ∂ψ̃
∂z

ν, and |∇ψ|2 = 1
(1−kz)2

|ψ̃s|2 + |ψ̃z|2. Then
∫

R2

|∇ψ(x)|2dx =

∫∫ (
1

(1− kz)2
|ψ̃s|2 + |ψ̃z|2

)
(1− kz)dsdz

ψ → ψ + tϕ and differentiating at t = 0 we get∫
∇ψ∇ϕdx =

∫∫
1

(1− kz)
ψ̃sϕ̃s + ψ̃zϕ̃z(1− kz)dsdz
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So

−
∫

∆ψϕdx = −
∫∫

1

(1− kz)

((
1

(1− kz)
ψ̃s

)

s

+ (ψ̃z(1− lz))z

)
ϕ̃(1−kz)dsdz

then

∆ψ̃ =
1

(1− kz)

∂

∂s
(

1

1− kz
ψ̃s) + ψ̃zz − k

1− kz
ψ̃z

We just say

∆ψ̃ =
1

1− kz
(

1

1− kz
ψs)s + ψzz − k

1− kz
ψz

Near Γ (x = γ(s) + zν(s)), we have the new equation for u → ũ(s, z)

S[u] = ε2 1

1− kz
(

1

1− kz
us)s+ε2uzz+(1−u2)u− ε2k

1− kz
uz+

ε2

1− kz

as

a
us+

ε2

1− kz

az

a
uz = 0

we want a solution u(s, z) ≈ w( z
ε
).

S[w(
z

ε
)] = ε[

az

a
− k(s)

1− k(s)z
]w′(

z

ε
)

The condition we ask (geodesic condition) is az

a
(s, 0) = k(s). In v

language we want

∆v + ε
∇a

a
(εx) · ∇v + f(v) = 0

transition on Γε = 1
ε
Γ. we use coordinates relative to Γε rather than Γ

Xε(s, z) =
1

ε
γ(εs) + zν(εs), |z| < δ/ε

Laplacian for coordinates relative to Γε are

∆ψ =
1

(1− εk(εs)z)

(
1

(1− εk(εs)z)
vs

)

s

+ψzz− εk(εs)

(1− εk(εs)z)
+ε

as

a

1

(1− εk(εs)z)2
vs+ε

az

a
vz+f(v) = 0

where we use the computation ∂γ(εs)
∂s

= −k(ε)γ̇ε(s), where kε = εk(εs)
Hereafter we use s̃ instead of s and z̃ instead of z̃. Observation: The

operator is closed to the Laplacian on (s̃, z̃) variables, at least on the
curve Γ, if we assume the validity of the relation

az̃(s̃, 0) = k(s̃)a(s̃, 0), ∀s̃ ∈ (0, l).

We can write this relation also like ∂νa = ka on Γ (Geodesic condition).
This relation means that Γ is a critical point of curve length weighted
by a. Let La[Γ] =

∫
Γ
adl. Consider a normal perturbation of Γ, say

Γh := {γ(s̃) + h(s̃)ν(s̃)|s̃ ∈ (0, l)}, ‖h‖C2(Γ) ¿ 1. We want: first
variation along this type of perturbation be equal to zero. This is

DLa[Γh]|h=0 = 0
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This means
∂

∂λ
L[Γλh]|h=0 = 0

or just 〈DL(Γ), h〉 = 0 for all h. Observe that

L(Γλh) =

∫ l

0

a(γ(s̃) + h(s̃)ν(s̃)) · |γ̇(s̃)λh|ds̃

and also γ̇λh(s̃) = γ̇(s̃) + λḣν + λhν̇, and ν̇ = −kγ̇. With the taylor
expansion

(1−2kλh+λ2k2h2+λ2ḣ2)1/2 = 1+
1

2
(−2kλh+λ2k2h2+λ2ḣ2)−1

8
4k2λ2h2+O(λ2h3)

and

a(γ( ˜(s))+λh(s̃ν(s̃)) = a(s̃, λh(s̃)) = a(s̃, 0)+λaz̃(s̃, 0)h(s̃)+
1

2
λ2az̃z̃(s̃, 0)h(s̃)2+O(λ3h3).

we conclude

Lh[Γλh] = La(Γ) = λ

∫ l

0

(−ka+az̃)(s̃, 0)h(s̃)ds̃+λ2

∫ l

0

(a
ḣ2

2
+az̃k

2h2+
1

2
az̃z̃h

2)+O(λ3h3)

This tells us:

∂

∂λ
Lh[Γλh]|λ=0 = 0 ⇔ k(s̃)a(s̃, 0) = az̃(s̃, 0),

the geodesic condition. Also we conclude that

∂2

∂λ2
L(Γλh)|λ=0 =

∫ l

0

(aḣ2−2k2a+az̃z̃h
2)ds̃ = −

∫ l

0

(a(s̃, 0)ḣs̃)′h+(2a(s̃, 0)k2−az̃z̃(s̃, 0)h)h

This can be expressed as D2L(Γ) = Ja, which means D2L(Γ)[h]2 =

− ∫ l

0
Ja[h]h. Ja[h] is called the Jacobi operator of the geodesic Γ. As-

sumption: Ja is invertible.
We assume that if h(s̃), s̃ ∈ (0, l) is such that h(0) = h(l), ḣ(0) = ḣ(l)

and Ja[h] = 0 then h ≡ 0. Ker(Ja) = {0}, in the space of l−periodic
C2 functions. This implies (exercise) that the problem

Ja[h] = g, g ∈ C(0, l), g(0) = g(l), h(0) = h(l), ḣ(0) = ḣ(l)

has a unique solution φ. Moreover ‖φ‖C2,α(0,l) ≤ C‖g‖Cα(0,l).
Remember that the equation in coordinates (s, z) is

E(v) =
1

(1− εk(εs)z)

(
1

(1− εk(εs)z)
vs

)

s

+ vzz − εk(εs)

(1− εk(εs)z)
vz+

ε
as̃

a

1

(1− εk(εs)z)2
vs + ε

az̃

a
vz + f(v) = 0
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Change of variables: Fix a function h ∈ C2,α(0, l) with ‖h‖ ≤ 1 and do
the change of variables z − h(εs) = t and take as first approximation
v0 ≡ w(t). Let us see that v0(s, z) = w(z − h(εs)) so

E(v0) =
1

1− εkz
(

1

1− εkz
w′(−ḣ(εs, εz))s + w′′ + f(w)

+ε(
az̃

a
(εs, εz)− k(εs)

1− k(εs)εz
)w′ − εḣ

ε

(1− εkz)2

as̃

a
w′

Error in terms of coordinates (s, t) z = t + h(εs):

E(v0)(s, t) = εw′(t)
[
az̃

a
(εs, ε(t + h))− k(εs)

1− k(εs)(t + h)ε

]
− ε2w′

(1− kε(t + h))2
h′′

+
1

(1− kε(t + h))2
w′′ḣ2ε2− 1

(1− εk(t + h))3
ε2k̇(t+h)ḣw′(t)−εḣ

ε

(1− εkz)2

as̃

a
w′

In fact

|E(v0)(t, s)| ≤ Cε2e−σ|t|

σ < 1, and

‖eσ|t|E(v0)‖C0,α(|t|< δ
ε
) ≤ Cε2

Formal computation: We would like
∫ δ/ε

−δ/ε
E(v0)(s, y)w′(t)dt ≈ 0. Ob-

serve that

−ε2h′′(εs)
∫

|t|<δ/ε

w′2

(1− kε(t + h))
= −ε2h′′

∫

R
w′2dt + O(ε3)

Also

ḣ2ε2

∫
1

1− εk(t + h)
w′′w′dt = 0 + O(ε3).

ε2ḣ

∫
as

a
(εs, ε(t+h))w′2/(1+ kε(t+h))2 = ε2ḣ

as̃

a
(εs, 0)

∫
w′2 +O(ε3)

and finally

ε

∫

|t|<δ/ε

w′2(
az̃

a
(εs, ε(t+h))− k(εs)

1− k(εs)(t + h)ε
) = ε2

∫

R
w′(t)2(ε2)((

az̃

a
)(εs, 0)−k2)h(εs)+O(ε3).

Then

− ∫
Ew′dt

ε2
∫

w′2 = h′′ + h′
as̃

a
− (

(az̃

a

)
z̃
(εs, 0)− k2)h + O(ε)

we call s̃ = εs, and we conclude that the right hand side of the above
equality is equal to

1

a(s̃, 0)
((a(s̃, 0))h′(s̃)′ + (2k2a(s̃, 0)− az̃z̃(s̃, 0))h) + O(ε)
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and this is equal to
1

a(s̃, 0)
(Ja[h] + O(ε))

We need the equation for v(s, z) = ṽ(s, z − h(εs)). We have

∂v

∂s
=

∂ṽ

∂s
− ∂ṽ

∂t
ḣε

We write z = t + h, so we have

S(ṽ) =
1

(1− εkz)
(

∂

∂s
− εḣ

∂

∂t
)[

1

1− εk(t + h)
(

∂

∂s
− εḣ

∂

∂t
)]ṽ + ṽtt

ε[− k

1− εkz
+

az̃

a
]ṽt + ε

as̃

a

1

1− kεz

2

[ṽs − εḣṽt] + f(ṽ) = 0

The first term of this equation is equal to

1

1− εkz
{ε(εk̇(t + h) + εkḣ)

(1− εk(t + h))2
(ṽs−εḣvt)+

1

1− kε(t + h)
(−ε2h′′vt−2εḣṽts)+

1

1 + εk(t + h)
ṽss}

−εḣ{ εk

(1− εk(t + h))2
(ṽs − εḣṽt) +

1

1− εk(t + h)
(−εḣṽtt)}+ f(ṽ) = 0

Let us observe that for |t| < δ/ε, δ ¿ 1

S[ṽ](s, t) = ṽss+ṽtt+O(ε)∂tsṽ+O(ε̃)∂ttṽ+O(εk(|t|+1))∂ssṽ+O(ε)∂tṽ+O(ε)∂sṽ+f(v) = 0

We will call the operator that appears in the equation B[ṽ]. We look
for a solution of the form ṽ(s, t) = w(t) + φ(s, t). The equation for φ is

φss + φtt + f ′(w(t))φ + E + B(φ) + N(φ) = 0, |t| < δ/ε

where E = S(w(t)) = O(ε2e−σt), N(φ) = f(w + φ) − f(w) − f ′(w)φ,
s ∈ (0, l/ε). We use the notation L(φ) = φss +φtt + f ′(w(t))φ. We also
need the boundary condition φ(0, t) = φ(l/ε, t) and φs(0, t) = φs(l/ε, t).

It is natural to study the linear operator in R2 and the linear pro-
jected problem

φss + φtt + f ′(w(t))φ + g(t, s) = c(s)w′(t)

where c(s) =
∫
R g(t,s)w′(t)dt∫
R w′(t)2dt

and under the orthogonally condition
∫ ∞

−∞
φ(s, t)w′(t)dt = 0, ∀s ∈ R

Basic ingredient: (Even more general) Consider the problem in Rm×
R, with variables (y, t):

∆yφ + φtt + f ′(w(t))φ = 0, φ ∈ L∞(Rm × R)

If φ is a solution of the above problem, then φ(y, t) = αw′(t) some
α ∈ R. Ingredient: ∃γ > 0 :

∫
R p′(t)2 − f ′(w(t))p(t)2 ≥ γ

∫
R p2(t)dt
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for all p ∈ H1 with
∫
R pw′ = 0. ψ(y) =

∫
R φ2(y, t)dt. This is well

defined (as we will see) Indeed: It turns out that |φ(y, t)| ≤ Ce−σt,
σ <

√
2, thanks to the fact that φ ∈ L∞. We use x = (y, t) and we

obtain

∆xφ− (2− 3(1− w(t)2))φ = 0

Observe that 1−w(t)2 is small if |t| À 1. Fix 0 < σ <
√

2, for |t| > R0

we have 2− 3(1− w2(t)) > σ2. Let

φ̄ρ(y, t) = ρ

n∑
i=1

cosh(σyi) + ρ cosh(σt) + ‖φ‖∞eσR0e−σ|t|.

We have that

φ(y, t) ≤ φ̄ρ(y, t), for |t| = R0

also true that for |t|+ |y| > Rρ À 1, φ(y, t) ≤ φ̄ρ.

−∆xφ + (2− 3(1− w(t)2))φ̄ = (2− σ2 − 3(1− w(t)2)φ̄ρ) > 0

for |t| > R0. So is a supersolution of the operator

−∆xφ + (2− 3(1− w(t)2))φ

in Dρ, which implies that φ ≤ φ̄ρ for |t| > R0. This implies that
|φ(x)| ≤ Cφ̄ρ for all x, and we conclude the assertion taking ρ → 0. If
φ solves −∆φ+(1−3w2)φ = 0, then ‖φ‖C2,α(B1(x0)) ≤ C‖φ‖L∞(B2(x0)).
This implies that also

|φy|+ |φyy| ≤ Ce−σt.

Let ˜φ(y, t) = φ(y, t)−
∫

φ(y,τ)w′(τ)dτ∫
w′2 w′. We call β(y) =

∫
φ(y,τ)w′(τ)dτ∫

w′2

∆φ̃ + f ′(w)φ̃ = ∆φ + f ′(w)φ + (∆yβ)w′ + β(∆w′ + f ′(w))w′ = 0

because ∆yβ = 0 by integration by parts. Let ψ(y) =
∫
R φ̃2dt.

∆yψ =

∫

R
∇y(2φ̃∇yφ̃)dt = 2

∫
|∇yφ̃|2dt+2

∫
φ̃∆yφ̃ = 2

∫
|∇yφ̃|2−2

∫
φ̃[φ̃tt+f ′(w)φ̃]dt

Using 2
∫ |∇yφ̃|2dt + 2

∫
(φ̃2

t − f ′(w)φ̃2) This implies that ∆ψ ≥ 2γψ
which implies −∆ψ + 2γψ ≤ 0, 0 ≤ ψ ≤ c.

We obtain that ψ ≡ 0 and this implies φ̃ = 0. This implies that
φ(t) = (

∫
φw′)w′ = β(y)w′ and ∆β = 0, β ∈ L∞. Liouville implies

that β = constant so φ = constantw′.
Lemma: L∞ a priori estimates for the linear projected problem:

∃C : ‖φ‖∞ ≤ C‖g‖∞.
Proof: If not exists ‖gn‖∞ → 0 and ‖φn‖∞ = 1.

L[φn] = −gn + cn(t)w′(t) = hn(t)
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and hn → 0 in L∞. ‖φn‖ = 1 which implies that ∃(yn, tn): |φ(yn, tn)| ≥
γ > 0. Assume that |tn| ≤ C and define φ̃(y, t) = φn(yn + y, t). Then

∆φ̃n + f ′(w(t))φ̃n = h̃n

but f ′(w(t))φ̃n is uniformly bounded and the right hand side goes to 0.

This implies that ‖φ‖C1(Rm+|) ≤ C This implies that φ̃n → φ̃ passing
to subsequence, and the convergence is uniformly on compacts, where
∆φ̃ + f ′(w)φ̃ = 0, φ̃ ∈ L∞. We conclude after a classic argument that

φ̃ = 0. We have also that ‖eσ|t|φ‖∞ ≤ C‖eσ|t|g‖∞, 0 < σ <
√

2. Elliptic
regularity implies that ‖eσ|t|φ‖C2,σ ≤ ‖eσ|t|g‖C0,σ .

Existence: Assume g has compact support and take the weak for-
mulation: Find φ ∈ H such that

∫
Rm+1 ∇φ∇ψ − f ′(w)φψ =

∫
gy, for

all ψ ∈ H, where H = {f ∈ H1(Rm+1)| ∫R ψw′dt = 0, ∀y ∈ Rm}.
Let us see that a(ψ, ψ) =

∫ |∇ψ|2 − f ′(w)ψ2 ≥ γ
∫

ψ2 + ψ2. So
a(ψ, ψ) ≥ C‖ψ‖2

H1(Rm+1) This implies the unique existence solution.

Observe that ∫
(∆φ + f ′(w)φ + g)ψ = 0

for all ψ ∈ H. Let ψ ∈ H1 and ψ = ψ̃ −
∫

ψ̃w′dt∫
w′2 w′ = Π(ψ̃). We have

that ∫
dy

∫
gΠ(ψ̃)dt =

∫
Π(g)ψ

which implies that Π(∆φ + f ′(w)φ + g) = 0 if and only if ∆φ +

f ′(w) + φ + g =
∫
(∆φ+f ′(w)+g)∫

w′2 w′ Regularity implies that φ ∈ L∞ and

‖φ‖∞ ≤ C‖g‖∞. Approximating g ∈ L∞ by gR ∈ C∞
c (RN) locally over

compacts. This implies existence result.
We can bound φ in other norms. For example if 0 < σ <

√
2, then

‖eσ|t|φ‖∞ ≤ C‖eσ|t|g‖∞.

Indeed, f ′(w) < −σ2 − η if |t| > R, with η = (2− σ2)/2. We set

φ̄ = Me−σ|t| + ρ

n∑
i=1

cosh(σyi) + ρ cosh(σt).

Therefore

−∆φ̄ + (−f ′(w))φ̄ ≥ −δφ̄ + (σ2 + η)φ̄ = ηφ̄ > g̃ = −g + c(y)w′(t)

if M ≥ A
η
‖eσ|t|g‖∞. In addition we have φ̄ ≥ φ on |t| = R if M ≥

‖φ‖∞eσR. By an standard argument based on maximum principle, we
conclude that φ ≤ φ̄. This means, letting ρ → 0, φ ≤ Me−σ|t|, where
M ≥ C max{‖φ‖∞, ‖geσ|t|‖∞}. Since ‖φ‖∞ ≤ C‖g‖∞ ≤ C‖geσ|t|‖∞,
we can take M = C‖geσ|t|‖∞. Finally, we conclude ‖φeσ|t|‖∞ ≤ ‖geσ|t|‖∞.
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Reminder: If ∆φ = p implies that

‖∇φ‖L∞(B1(0)) ≤ C[‖φ‖L∞B2(0) + ‖p‖L∞(B1(0))].

Remember that
‖p‖C0,α(A) = ‖p‖∞ + [φ]0,α,A

where [φ]0,α,A = supx1,x2∈A,x1 6=x2

|p(x1)−p(x2)|
|x1−x2|α . Also we have the following

interior Schauder estimate: for 0 < α < 1

‖φ‖C2,σ(B1) ≤ C[‖φ‖L∞(B2(0)) + ‖p‖C0,α(B2(0))].

Conclusion: If φ solves the equation in Rn+1 then

‖φ‖C2,α(Rn+1) ≤ C‖g‖C0,α(Rn+1).

Sketch of the proof of this fact: Fix x0 ∈ Rn+1, then

C[φ]0,α,B1(x0) ≤ ‖∇φ‖L∞(B1(x0)) ≤ C[‖φ‖∞ + ‖g‖∞] ≤ C‖g‖∞
This implies that ‖φ‖C0,α(B1(x0)) ≤ C‖g‖∞, which implies ‖φ‖C0,α(Rn) ≤
C‖g‖∞. Clearly ‖p‖C0,α(B2(x0)) ≤ C‖g‖∞, so ‖φ‖C0,α(B1(x0)) ≤ C‖g‖C0,α(Rn+1),
from where we deduce the estimate.

We also get

‖eσ|t|φ‖C2,α(Rn+1) ≤ C‖eσ|t|g‖C0,α(Rn+1).

The proof of this fact is very similar to the previous one (use that

g ≤ e−σ|t0|‖geσ|t|‖, for |t0| À 1).
Another result is the following

‖(1 + |y|2)µ/2φ‖∞ ≤ C‖(1 + |y|2)µ/2g‖∞
In order to prove this result we define ρ(y) = (1+ |y|µ) and we consider

φ̃ = ρ(δy)φ. Observe that

∆φ = ρ−1∆φ̃− 2δ∇φ̃∇(ρ−1(δy)) + φ̃δ2∆(ρ−1)(δy) = f ′(w)φ + g − cw′

We get L[φ̃] + O(δ2)φ̃ + O(δ)∇φ̃ = ρ(g − cw′). We get

‖∇φ̃‖∞ + ‖φ̃‖∞ ≤ C[δ2‖φ̃‖∞ + δ‖∇φ̃‖∞ + ‖ρg‖∞].

If δ is small we conclude that

‖φ̃‖∞ + ‖∇φ̃‖∞ ≤ C‖ρg‖∞
and we obtain

‖ρφ‖C ≤ ‖ρg‖.
Our setting:

(4.3) ε2[δu +
∇a

a
· ∇u] + f(u) = 0
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We want a solution to (4.3) uε(x) ≈ W (z/ε). Writing x = y + zγ(y),
|z| < δ, we have

∆v +∇a(εx)/a · ∇v + f(v) = 0,

in Γε = 1
ε
Γ: x = y + zν(εy), which means x = 1

ε
γ(εs) + zν(εs).

Remember that |γ̇(s̃)| = 1 which implies ν̇(s̃) = −k(s̃)γ̇(s̃). We also set
z = h(εs)+ t. x = 1

ε
γ(εs)+ (t+h(εs))ν(εs). We assume ‖h‖α,(0,l) ≤ 1,

for 0 < α < 1. We wrote ∆x in terms of this coordinates (t, s) and the
equations S(v) = 0 is rewritten taking as first approximation w(t). We
evaluated S(w(t)) and got that S(w(t)) = 0.

From the expression of ∆x we get (x = 1
ε
γ(εs) + (t + h(εs))ν(εs))

∆xv = ∂ss + ∂tt + ε[bε
1(t, s)∂ss + bε

2∂tt + bε
3∂st + bε

4∂t + bε
5∂s]

|εbi| ≤ Cδ in the region |t| < δ/ε. The coefficients are periodic (same
values at s = 0 and s = l/ε). Our equation reads

∂ssv + ∂ttv + Bε[v] + f(v) = 0, for s ∈ (0, l/ε), |t| < δ/ε.

This expression does not make sense globally. We consider δ ¿ 1. We
define

H(x) =

{ −1 in Ωε
−

+1 in Ωε
+

where Ωε
+ is a bounded component of R2 \ Γ, and Ωε

− the other. For
the equation

∆v + ε
∇a

a
· ∇v + f(v) = 0

we take as first (global) approximation

v0(x) = w(t)η3 + (1− η4)H(x)

where

ηl(x) =

{
η

(
ε|t|
lδ

)
if |t| < 2δl/ε

0 otherwise

Look for a solution of the form v = v0 + φ̃, so

∆xφ̃ + ε
∇a

a
· ∇φ̃ + f ′(vo)φ̃ + E + N(φ̃) = 0

where E = S(v0) and N(φ̃) = f(v0 + φ̃)− f(v0)− f ′(v0)φ̃.

We write φ̃ = η3φ + ψ. We require that φ and ψ solve the system

∆xψ−2ψ+(2+f ′(v0))(1−η1)ψ+ε
∇a

a
∇ψ+(1−η1)E+(1−η1)N(η3φ+ψ)+∇η3∇φ+∇η3∇φ+ε

∇a

a
∇η3φ = 0

η3

[
∆xφ + f ′(w(t))φ + η1(2 + f ′(w(t)))ψ + η1E + η1N(φ + ψ) + ε

∇a

a
· ∇φ

]
= 0.
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We need that the φ above satisfies the equation just for |t| < 6δ/ε. We
assume that φ(s, t) is defined for all s and t (and it is l/ε- periodic in
s). We require that φ satisfies globally

φtt +φss +η6Bε[φ]+f ′(w(t))φ+η1E +η1N(φ+ψ)+η1(2+f ′(w))ψ = 0

and φ ∈ L∞(Rn + 1) and periodic in s. Notice that φtt+φss+η6Bε[φ] =
∆xφ inside the support of η3. Rather than solving this problem directly
we solve the projected problem
(4.4)
φtt+φss+η6Bε[φ]+f ′(w(t))φ+η1E+η1N(φ+ψ)+η1(2+f ′(w))ψ = c(s)w′(t)

and
∫
R φw′(t)dt = 0. We solve (4)-(4.4) first, then we find h such

that c(s) ≡ 0. We consider φ with ‖φ‖∞ + ‖∇φ‖∞ ≤ ε. The operator
−∆ψ+2ψ is invertible L∞(R3) → C1(R2). We conclude that if g ∈ L∞

the exist a unique solution ψ = T [g] ∈ C1(R2) with ‖φ‖C1 ≤ C‖g‖∞ of
equation −∆ψ + 2ψ = g in R2. Observe that (4) is equivalent to

ψ = T [(2+f ′(v0))(1−η1)ψ+ε
∇a

a
∇ψ+(1−η1)E+(1−η1)N(η3φ+ψ)+∇η3∇φ+∇η3∇φ+ε

∇a

a
∇η3φ]

Using contraction mapping in C1 on ‖ψ‖C1 ≤ Cε, we conclude that
there exist a unique solution of the this problem ψ = ψ(φ, h) such that

‖ψ‖ ≤ C[ε2 + ε‖φ‖C1 ].

Even more, ‖ψ(φ1, h)− ψ(φ2, h)‖C1 ≤ Cε‖φ1 − φ2‖C1 .


