SIGN-CHANGING SOLUTIONS FOR SUPERCRITICAL
ELLIPTIC PROBLEMS IN DOMAINS WITH SMALL
HOLES

E. N. DANCER AND JUNCHENG WEI

ABSTRACT. Let D be a bounded, smooth domain in RV, N > 3,
P € D. We consider the boundary value problem in 2 = D\ B;(P),

Au+ [ulff'lu=0 inQ,

u=0 on 9N

N+2

N—5- Given any positive integer

with p supercritical, namely p >
m, we find a sequence

pL<pr<p3<---, with lim py = +o0,
k——+o0

such that if p is given, with p # p; for all j, then for all 6 > 0
sufficiently small, this problem has a sign-changing solution which
has exactly m + 1 nodal domains.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In this paper, we consider sign-changing solutions for the following
nonlinear elliptic equation

Au+|uf'u=0 inQ, u=0 ondQ, (1.1)
where  is a domain with smooth boundary in RY (N > 3) and p > 1.

In the last twenty years there has been a great amount of activity in
the study of positive solutions of (1.1). A main characteristic of (1.1)

. o, _ N+2 . a7
is the role played by the critical exponent p = =5 in the solvability
question. When 1 < p < %, a positive solution can be found as

an extremal for the best constant in the compact embedding of H; (1)
into LPT1(Q), namely a minimizer of the variational problem

2
inf —fQ|Vu| — .
ueHg()\{0} (fg |u|p+1) P+l
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When p > %, this minimization procedure fails, so does existence in
general: Pohozaev [28] discovered that no solution exists in this case
if the domain is strictly star-shaped. In the classical paper [5], Brezis
and Nirenberg considered the critical case p = % and proved that
compactness, and hence solvability, is restored by the addition of a
suitable linear term. Coron [7] used a variational approach to prove
that (1.1) is solvable for p = f£2 if ) exhibits a small hole. Rey [32]
established existence of multiple positive solutions if €2 exhibits several
small holes. Bahri and Coron [1] established that solvability holds for
p = Y2 whenever Q has a non-trivial topology. Passaseo showed [26]
that non trivial topology of the domain is insufficient for the solvability
in the supercritical case p > % If p is supercritical but close to
critical, bubbling positive solutions are found in domains with small
holes, see [9, 10, 14, 16, 18]. In the purely supercritical case, there are
very few results. We mention a recent result of del Pino and the second
author [12] in which they considered (1.1) on Coron’s domain where
2 has a small hole. They proved that there exist resonant sequences
%J”g < p1 < p2 < ... < p; < ...such that problem (1.1) has a positive
solution as long as p 7é Dj-

In contrast to the achievements on positive solutions, very little
progress has been made concerning the existence of sign changing so-
lutions. When p < %J“g, the existence of a least-energy sign-changing
solution can be shown by using a variational method, see [2]. In the
critical exponent case, i.e., p = %, Pohozaev’s identity also gives
nonexistence in star-shaped domains. Clapp and Weth [6] showed that
least energy solutions still exist if the domain has some symmetries
and nontrivial topology. On the other hand, in the case p = M — €,
the existence of N pairs of sign changing solutions has been proved
in Bartsch-Micheletti-Pistoia [4], and the existence of a bubble-tower
sign-changing solution is considered in Pistoia-Weth [27]. When 2 has
a small hole and p = %, the existence of many sign-changing solu-
tions has been proved in Musso-Pistoia [19]. However, as far as the
authors know, there are no results on the existence of nodal solutions
in the supercritical case.

In this paper we consider Problem (1.1) for exponents p above the
critical one in a Coron’s type domain: one exhibiting a small hole.

Thus we assume in what follows that the domain €2 has the form
Q =D\ B;(Q) (1.2)

where D is a bounded domain with smooth boundary, Bs(Q) C D and
0 > 0 is to be taken small. Then we consider the problem of finding
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classical solutions of
Au+ [uf'u=0 inD\Bs(Q), u=0 ondDUAIB;Q). (1.3)

In this paper, we establish results analogous to [12] for the existence
of nodal solutions. Our main result states that there is a sequence of
resonant exponents,

N +2
N -2
such that if p is supercritical and differs from all elements of this se-
quence then Problem (1.3) is solvable whenever ¢ is sufficiently small.

<pr<pa<p3<---, with lim p, = +o0 (1.4)

li
k—-+o0

Theorem 1. Suppose that m is a positive integer. There exists a se-
quence of the form (1.4) such that if p > J£2 and p # p; for all j, then
there is a §g > 0 such that for any 6 < &y, Problem (1.3) possesses at

least one nodal solution which changes sign exactly m—times.

In the background of our result is the problem

Aw+ [wP"'w =0 in R \ B(0), (1.5)
w=0 on dB;(0), limsuplz/* Nw(r) < +oo. (1.6)
|z|—=+o00

The existence of a positive solution for (1.5)-(1.6) was given in [22].
In Section 2, we extend Ni’s positive solution to a sign-changing so-
lution. Namely, we show that given any positive integer m, prob-
lem (1.5)-(1.6) admits a radially symmetric solution w = w(r) which
changes sign exactly m times. We also show that this solution is unique
and non-degenerate. The solutions we find have a profile similar to w
suitably rescaled. More precisely, let us observe that

ws(z) = 6 Tw (6 z - Q) (1.7)

solves uniquely the same problem with B;(0) replaced with Bs(Q).

The idea is to consider ws as a first approximation for a solution
of Problem (1.1), provided that § > 0 is chosen small enough. What
we shall prove is that an actual solution of the problem, which differs
little from w; does exist. To this end, it is necessary to show that the
linearized operator around w is invertible. Here our approach departs
from [12]: for positive solutions to (1.5)-(1.6), it is easy to show that
p — w is analytic and hence the associated first eigenvalue is analytic.
Here the map p — w is not analytic since w has interior zeroes (which
change as p varies). We develop some new ideas to deal with this
difficulty.
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It is easy to see that the result of Theorem 1 remains valid, with
only minor modifications in the proof, for a problem of the form

Au+ f(z,u) =0 in D\ Bs(Q),

u=0 on dDUOIB;(Q).

where

tim 2% _ 3 < (D), lim L5

u—0 U u—0 \u|P_1u

~=C (1.8)

where A; (D) is the first eigenvalue of the Laplacian in D and C' > 0.
We can also get existence of multiple solutions in a domain of the form

D\ U B5(Q;) -

An interesting question remains considering a non-spherical hole or,
more generally, finding conditions which ensure solvability of rather
general supercritical problems. A method beyond variational argu-
ments or singular perturbations would be needed. (Note that by using
the Kelvin transform and domain variation techniques, we can obtain
some slightly weaker results for slightly non-spherical holes.)

2. THE STUDY OF (1.5)-(1.6)

In this section, we study the existence of nodal solutions for (1.5)-
(1.6). Our main result is the following theorem

Theorem 2. Let m be a positive integer. Problem (1.5)-(1.6) admits
a unique radially symmetric sign-changing solution w = w(r) (with
w(r) > 0 for r large).

We first prove ezistence: by Kelvin’s transformation w(r) = r>~Nw(1),
the equations (1.5)-(1.6) are equivalent to the following problem in a

ball By
{ Aw + r®lw|P'w =0 in By, (2.1)

w=0 on 0B

where « = p(N —2) — (N +2) > 0 and hence p < 222 The
existence of sign-changing solutions to (2.1) with exactly m zeroes has
been proved by Naito [21]. Here we present a proof for the sake of
completeness.

First we need the following radial lemma proved in [22].
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Lemma 2.1. Assume that v € Hg, = {H(B1),u = u(r)}. Then we
have
C
lu(r)| < T(NT)/Q”VU”LZ(&) (2.2)
N+2+2a
As a consequence, for p < %

map from Hy(By) to L'(By).

Let
1 2 1 (o +1
Ew)= [ 3IVul*= [ ——ruf™,
By 2 B Pt1

N={ueHLB) [ Vo = / PPty (23)
B B

Let I';, C Hy, be the set of all functions v € Hj, such that there
exists radii 0 =79 < 71 < ... < rpy < Ty1 = 1 such that u(ry) = ... =
u(ry) and - g <jgj<r;,y € N for j = 0,...,m. By the compactness
lemma 2.1, we have the following existence result which goes back to
Nehari [25] in the one-dimensional case. (Later it was generalized to
radial functions in higher space dimensions, see [30, 31, 3].)

, the map u — r*|ulP*! is a compact

Theorem 3. Let ¢,
¢ = inf E(u). (2.4)

u€ly,
Then ¢y, can be achieved. Moreover, if w € Ty, satisfies E(w) = ¢, and
(—1Yw(z) >0 forr; <|z| <rjpr, j=0,...m  or
(_1)jW(37) <0 forr; <l|z|<rjy, j=0,..,m,
then w is a radial solution of (2.1) with precisely m interior zeros.

Proof: We first use the radial lemma 2.1 to show that if u € I',, and
fBl r®u/Pt! < Oy, then r; > C. The rest of the proof will be standard
and thus omitted.

Since u - 1,<,, € N, we deduce that

/B\Vu|2:/ | ulP (2.5)

1 B 1
Rescaling by r = rit, we obtain

r 2 |Vu\2=/ £ u|PtH
B B

and hence by Lemma 2.1, we obtain

adel /B )55 (2.6)
1
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which implies

—2_ N p—1 _
r a+( +Ot)p+1 S C(/ Ta‘u‘p—e—l)zfi S C (27)
By,
Since p < %, we obtain that r; > C. O

Next we prove the uniqueness: Suppose that w; and wy are two radial
solutions to (2.1) such that wy(0) > 0,w2(0) > 0 and wy, we have exactly
m interior zeroes. Without loss of generality, we may assume that
wi(0) > wy(0). Then by rescaling and uniqueness of ODE boundary

value problems, we have wy(r) = ’y%wl (yr), where v = (:?—ggg)% < 1.
Since wo(1) = 0, we have w;(y) = 0. Note that v < 1 and hence w; has
at most m — 1 zeroes in (0, 1). This implies that wy has at most m — 1
zeroes in (0, 1), a contradiction to our assumption. Thus w;(0) = wy(0)

and W) = Wo. O

3. THE OPERATOR A + pw? ! oN RV \ B;(0)

The purpose of this section is to establish an invertibility theory for
the linearized operator associated to w. We consider the problem

Ap+plwlPtep=h inRY\ By(0), (3.1)
¢» =0 on 0B;(0), | |1i111 é(z) =0, (3.2)

We want to investigate under what conditions the homogeneous
problem with A~ = 0 in (3.1)-(3.2) admits only the trivial solution.
To this end, let us consider the eigenvalues of the problem

N -1
P Ty P e =00 =u0) (33)
P(1) =0, t¢(+o00)=0. (3.4)
The [—th eigenvalue of (3.3)-(3.4) can be characterized variationally as
v(p) =
o 112 N—ld o < p—1 2 N—ld
max  inf W 7;0 pf]\ll i d : (3.5)
dim(v)<i yev+ [ A N=3dr

where V' runs through subspaces of £ and V= is the set of ¥ € &
satisfying [ 7" 3¢v = 0 for all v € V, and

£ = {p(1) =0, /OO W () 2P ldr < 400},

1
v1(p) < va(p) < ... are well defined thanks to Hardy’s inequality,

N —2 2 00 00
%/ wZT‘N_3d7' S / |wl‘2TN_1d7'.
1 1
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Using Hardy’s embedding and a simple compactness argument involv-
ing the fast decay of w?~! = o(r=*), yields the existence of an extremal
for v;(p) which represents a solution to problem (3.3)-(3.4) for v = y;(p).

Let us consider now Problem (3.1)-(3.2) for A = 0, and assume that
we have a solution ¢. The symmetry of the domain RY \ B;(0) allows
us to expand ¢ into spherical harmonics. We write ¢ as

d(x) = o(r)Ox(0), r>0,0€ 5"
k=0

where O, k > 0 are the eigenfunctions of the Laplace-Beltrami oper-
ator —Agv-1 on the sphere S¥~!, normalized so that they constitute
an orthonormal system in L2(SV"!). We take ©y to be a positive
constant, associated to the eigenvalue 0 and ©;, 1 < ¢ < N is an ap-
propriate multiple of % which has eigenvalue \;, = N —1,1 <7< N.
In general, Ay denotes the eigenvalue associated to Oy, we repeat eigen-
values according to their multiplicity and we arrange them in an non-
decreasing sequence. We recall that the set of eigenvalues is given by
{i(N=2+3)[j > 0}.

The components ¢, then satisfy the differential equations

N-—-1 A
R CL e P A (RS Y
¢x(1) =0, ¢x(+o00) =0.

Let us consider first the radial mode & = 0, namely A\, = 0. We observe

that the function 5
7 = ruw' —_
1(r) = rw (7")+p_1w

satisfies
] N -1 ! -1
Zl + TZl +p|U]|p Z1 = 0, fOI' all r > ]_,

but Z;(1) # 0. Multiplying (3.6) by Z; and integrating by parts, we
then obtain ¢, (1) = 0, which implies that ¢; = 0 for the mode k = 0.
(Note that this implies that w is non-degenerate in the space of radial
functions.)

Let us consider now mode 1, namely £ = 1,..., N — 1, for which
A = (IV—1). In this case we also have an explicit solution which does
not vanish at » = 1 but it does at 7 = +oo. Simply Z;(r) = w'(r). But
the same argument as above gives us ¢, (1) = 0 and hence ¢, = 0, as
desired.

Let us consider now modes 2 or higher. Here unfortunately life is
harder. Not only we do not have an explicit solution to the ODE to
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rely on, but it could be the case that a non-trivial solution exists. Let
us assume this is the case for an arbitrary mode k > N. Since w'(r) has
exactly m + 1 zeroes in (1,+00) and A, > A1, by the standard Sturm-
Liouville comparison theorem (Theorem 19 [29]), ¢, changes sign at
most m times in (1,00). On the other hand, by Sturm-Liouville the-
ory, it is well-known that the eigenfunctions corresponding to v; must
change sign in (1, +00) at least [ — 1 times.Thus the only possibility for
equation (3.6) to have a nontrivial solution for a given k > N is that
A = —y(p) for some I =1,....,m+ 1.
In summary, we have proved the following result

Lemma 3.1. Assume that p is such that
vp)#—j(N—=2+35) forall=1,...m+1,7=2,3,... (3.7)

where vy(p) is the [—th eigenvalue defined by (3.5). Then Problem (3.3)-
(3.4) with h = 0 admits only the solution ¢ = 0.

We will prove later that this non-resonance condition produces a
good solvability theory for equation (3.1)-(3.2). Before doing so we
will describe the set of exponents p for which condition (3.7) fails. We
will prove

Proposition 3.1. For eachl < m+1 and j > 2 the set of numbers p
for which vi(p) = —j(N —2+4j) is non-empty and finite. In particular,
there exists a sequence of the form
N+2
N =2
such that condition (3.7) holds if and only if p # p; for allj=1,2,....

<p1<pa<ps<---; Dpj—>+00 asj—+oo, (3.8)

For the proof we need the following result, which contains elements
of independent interest.

Lemma 3.2. (a) As p | £22, we have that —v(p) = A\ = N — 1 for
l=1,...m+1.

(b) As p — +o0, it holds that
—y(p) = 00,0 =1,...,m+ 1. (3.9)

(c) The set {v(p) = —j(N —2+j)} consists of only isolated points.

Proposition 3.1 is a direct consequence of Lemma 3.2. In fact, com-
bining parts (a) and (b) we see that for each | < m+1,j > 2 the set of
numbers p for which v;(p) = —j(IN — 2 + j) is non-empty. Proposition
3.1 follows from this fact and (c) of Lemma 3.2.
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Proof of Lemma 3.2 part (a). Let us set p, = Z22. An alternative
way of writing equation (1.5)-(1.6) and the eigenvalue problem (3.3)-

(3.4) is by means of the so-called Emden-Fowler transformation,

w(s) = rp%lw(r) . Y(s) = TP%U[}(’I“), where r = e°. (3.10)
Then equation (1.5)-(1.6) is converted into

W'+ — B+ 0P =0, @(0) = w(cc) =0, s€[0,00) (3.11)

where

4 2 2
a=N-2—-—— f=—(N-2——).
p—1 p—1 p—1

The eigenvalue problem (3.3)-(3.4) becomes

V' o = Y +plaf Y+ v =0, 9(0) =1)(c0) =0, s €[0,00).
(3.12)
A further rescaling w = e**w reduces (3.11) to

@ — (B4 m+e PV gPlp =0, @(0) = d(oc) =0, s € [0, 00).
(3.13)
In the appendix, we shall prove that a« — 0,5 — M as p — P,
and
m+1
w=Y (=17 we(s — Ra;) + lower order terms, (3.14)
1

+

[
Il

where wy is the unique homoclinic solution of the limiting equation,

. (N —2)

Wy — wotwh” =0, wp(0) = maxwy(t), wp(occ)=0 (3.15)

4 teR

and Ro,1 ~ log (5 = 400, |Ra; = Ra,js1| ~ log 5 — +00 as a — 0.

Next, we claim that for | < m + 1, y(p) - —(N —-1) as p —
ps«. Note that by the rescaling (3.10), the eigenvalue has a variational
characterization

v(p) =
max ing 0O (WP Y —pe Oy s
dim(v)<ivev+ fooo e*sh?ds

where V' runs through the subspaces of £ and V1 is the set of 1) € £
satisfying [° e**ypv = Oforallv € V,and & = {(0) = 0, [ e** (|9 [*+
¥?)ds < +oo}. Note that the term involving the weight is relatively
compact and it follows from a previous argument that the eigenvalues
exist.
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We observe that the limiting eigenvalue problem
v (N —2)2
4

admits eigenvalues

(8 b+ pawh Y = i, P(do0) =0 (3.17)

/1,1:N—1,/.1,2:0,,U,3<0 (318)

where the corresponding eigenfunction for the principal eigenvalue g

is positive and denoted by ¥;. (In fact, it is known that problem (3.17)

has eigenvalues such that p; > 0, uo = 0, ug < 0. A simple computation
N

shows that we can take ¥, = wé"j with g = N—1and ¥, = wg, Mo =
0. See [13].) Now we take ¢; = ¥1(s — Ry j),j =1,....,m+1. Let V
be a given m—dimensional subspace and v € V. Then there exists
€1, e Cma1 (not all equal to 0) such that [;° e”v(Z}njll cjvj) = 0. We
then compute that

+

/ ea3(|¢'|2+w2_p€7(p71)as|u—]|p71¢ Z ,U'1+0 )/ 6asw]2_
0 i1 0

(3.19)

and hence by the variational characterization of v, .1 we deduce that

v(p) < Vpmp1(p) < —(N—=1)+0(1),l=1,...,m+1. (3.20)

On the other hand, according to (3.18), v(p) — ,uk —(N —1) for

some k. Thus by (3. 20) we have y(p) - —(N — 1) as p — p,, for

I <m+1. O

Proof of Lemma 3.2 part (b).

We prove that v, 1(p) = —o0 as p — 400 (which then implies that
v(p) > —ocasp — +ooforl =1,...,m+1). In fact, by the variational
characterization of v,,1(p), we obtain that

J‘Bf(|v¢|2 - p‘w|p—1¢2)

Ums1(p) =  max inf (3.21)
'm+ dim(v)=m JBe S5 ¢v=0, V veV fo T%¢2
Now let V' be given. Let w; = wl,_ <r<r;,J = 1,..,m + 1 where

o = 0, 7,41 = 00. Then there exists cy, ..., ¢;, 41 such that

Z c]/ =0, YweV. (3.22)
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Let ¢ = Z;’L;ll cjwj. We then compute
m+1

[ (op=plupiat) = 3 [ (Vuf = pluP wis2s)
1 j=1 1

m—+1

= a-n>.d [ VP
j=1 Bf

and
1 m+1 1 m+1
/ = 2:20?/ ﬁwJQ-SCZc?/ (Vw, | (3.24)
B j=1 1 j=1 By

where the second inequality follows from Hardy’s inequality.
From (3.24) and (3.24), we obtain that

fo(‘V(mQ - p|w|p—1¢2)

<Cl-p
oo e
Thus from (3.21), we derive that
v(p) < Vmp(p) <C(1-p),VI<m+1 (3.25)

where C' is independent of p. This shows that —vy,.1(p) — +o0 and
hence —y(p) — +oo forl <m+1, as p — +o0.
O

Proof of Lemma 3.2 part (c).
Let us sketch the main ideas first. Recall that in the positive solu-
tions case [12], this is proved by first showing that the map

p— (pflwp (3.26)

is analytic, where w, is the unique positive solution to (2.1) and ¢, is
the first eigenfunction of —A in B;. Then the map p — v;(p) is also
analytic in p. Here this method is no longer applicable, since certainly
the map p — ¢} 'w, is not analytic. Furthermore, the location of zeroes
of w, changes as p varies. Our basic idea is to freeze the zeroes of w,
at p = pp and consider the analytical dependence of zeroes of w, for p
near py. Then we show that the eigenvalues v;(p) is also analytic in p
for p near pg.

Let w, be the solution of (3.11) with m interior zeros. Let v;(p)
be the [—th eigenvalue of (3.12) associated with w,. We prove that if
vi(po) = —j(N — 2 + j), then either v(p) # —j(IN — 2+ j) for p # po
and close to py or v;(p) = —j(IN — 2+ ) for all p close to py. Note that
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the latter case can not happen as it would imply v;(p) = —j(N —2+)
for all p € (822, o), which is impossible by (a) and (b) of Lemma 3.2.

Suppose that for p = pg, the solution w,, has zeroes at 0 < s; <
oo < Sy < 400 where sg = 0, 5,41 = 00. For ¢ = 0, ..., m, we consider

the rescaled Emden-Fowler equation on [s;, s;11]:

w' +ozw — 2w+ 2w w = 0, (3.27)

where « = N —2— ﬁ,ﬂ = p%l(N—Q— I%) and z is a real parameter
and close to 1. Note that u(t) is a solution of (3.11) on the interval
[271si, 27 ;1] if and only if u(2's) is a solution of (3.27) on [s;, s;41]-

Given z and p, we consider the following Dirichlet problem

w' 4oz — B2Rw+ 2w w = 0,8 < s < sip1, w(s;) = w(sip) = 0.

(3.28)
By (3.10), equation (3.28) is equivalent to the following nonlinear prob-
lem on an anulus:

{ Au+u? =0 in B,,,,(0)\B;,(0), (3.29)
v =u(r) > 0and u=0 on d(B,,,,(0)\B,,(0)) '
where 7; = € %, ;.1 = €# s+, Thus by standard PDE technique,
there exists a positive (or negative) solution to (3.28), which is unique
and non-degenerate by the theory of Ni and Nussbaum [24]. This im-
plies that it also depends continuously on z and p. By the implicit
function theorem and the real analyticity properties of Dancer [8], this
positive (or negative) solution, viewed as an element of C![s;, s;,1], de-
pends analytically on z and p. (Note that s; is fixed and doesn’t depend
on z and p.) We denote this solution by w? ,. (In the interval [s,,, +00),
the solution w(?, is nothing but +w,(s — s,,), where w, is the unique
positive solution of (3.11). By [8], w{?, is analytic in p when considered
as an element of a weighted Sobolev space ||e™ul|w2.4((s,,,+00), Where
7> 0.)

Next, we want to choose z = in) (close to 1 and analytic in p) so that

wy(t) = wl ,(2t), t€ [z ss 2 siq1)- (3.30)

For the interval [sp,+00), we may set z = 1. We now find 2, near
1 and real analytic in p so that the solution in the original variables
is C' across s;;1 (and hence C? across s;11). We do this successively
starting from the infinite interval [s,,, +00) (where it is trivial). At
Si+1, We have

2y, (senr) = 27 (i) (5000). (331)
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If we can prove that the map z — z(wi’po)'(siﬂ) has non-zero deriv-
ative at z = 1, we can use the implicit function theorem to prove that
zI’; is analytic in p near p = py. (Note that the right hand side of (3.31)
is analytic in p and 2}, = 1.)

Now v(t) = w’  (zt) satisfies

%, Po
v +ow — fu4 0P =0 (3.32)
and v(z 's;) = v(z 's;11) = 0. Thus z(w!, ) (zt) is a solution of the
linearized equation of (3.32) at w}, (zt). By a translation, we can
assume without loss of generality that s;;1 = 0. Thus v(0) = 0. Note

that w! , (2t) = 0 for t = 2z~ 's;. Let us consider how the solution @, of
(3.32) satistying @.,(0) = 0, 11'7(0) = 7 varies with v when 7 is close to
i (w'; )'(0) =Y. It will be of the form wi , (t)+ (y—Y)h(t)+o(y—

Po 2 Do

Y) and the corresponding result for the time derivative. Here h(t) is
the solution of the linearized equation satisfying h(0) = 0,4’ (0) = —1.
By the non-degeneracy, h(s;) # 0. It follows that @, crosses zero at a
point near s; of the form s; +a(y —Y) + o(y — Y) where

h(si)

(W py) (1)

We used here the fact that (wi, ) (s;) # 0 by the uniqueness of the
initial value problem (3.28). Hence the map v — the largest negative
zero of 4 is a local diffeomorphism. Now the largest negative zero
of @, is z7's; which has non-zero derivative in z at z = 1. Thus v
has non-zero derivative in z at z = 1, which gives the claim (since
7= 2(ut ) (0)).

We now consider the linearized problem (3.12) for a possible eigen-
value v;(py). We once again work on fixed intervals [s;, s;+1] by our
rescaling. Once again, we work from the right. Since «, # and |wi’p p-l
are real analytic and zf, are real analytic in p, our linearized equation

on [s;, Sit1]

8+ asd — B0+ p(h) (w016 + () m(p)s = 0, (3.33)

has coefficients real analytic in p and hence by a Liapunov-Schmidt
reduction argument applied to the maximal operator of the linearized
equation (3.33) on [s;, s;y1], there is a basis {¢}, ¢5} for the kernel
depending real analytically on p. Note that the maximal operator is
onto and Fredholm for fixed p and thus this is a well-known result. See
[15]. Here as in [15], the maximal operator has no boundary conditions
and we work on the space L? for ¢ large. The unbounded interval is

£ 0.

a = —
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slightly different in that we only have a single solution decaying at oo
and this depends analytically on p, by similar arguments.

Suppose we have found a solution ¢’*! as linear combination of
¢! and @)™ which depends analytically on p. Namely, ¢/t1 =
at(p)l T + Bt (p)#lt! and o/t BT are analytic in p. At r;, we
want a’(p), ¥’ (p) depending analytically on p so that

a (p)#](5541) + U (D)#h(5541) = ¢ T (5541), (3.34)
a (p) (22) (1) (s541) + 7 (9) (22) 7 (#5) (sj51) = (227) "1 (™) (5541)
(3.35)

where the 2/ and z/™' comes from the scalings since we want the solu-
tion to be C! in the original variables.

By Cramer’s rule, a’ (p) and b’ (p) are analytic in p (since all the other
terms are). Thus ¢’ = o/ (p)¢] + b (p)¢y, is analytic in p. We eventually
find ¢'(0) is analytic in p and hence ¢'(0) = 0 holds for all p near p, or
p = pq is an isolated zero of ¢*(0) = 0. In other words, for this choice
of I, y(p) = —j(N — 2 + j) for p near py or v(p) # —j(N — 2 + j) for
all p near py, p # po. This is exactly what we claimed.

U
Finally, we consider the full problem (3.1)-(3.2), namely
Ap+plwlPl'¢=h inRY\ B (0),
$»=0 on0B,(0), lim ¢(z)=0.
|| =00
As in [12], we fix a small number ¢ > 0 and consider the norms
1lls = sup [z["*7|p(z)| + sup |z|¥ 7|V (z)| (3.36)
|z[>1 |z|>1
and
[1Pllen = sup |z|Y =7 |h(z)]. (3.37)
z|>

Then we have the following proposition whose proof is exactly the
same as that of Proposition 2.2 of [12].

Proposition 3.2. Assume that p satisfies condition (3.7). Then for
any h with ||k« < +oo, Problem (3.1)-(3.2) has a unique solution
¢ = T(h) with ||@||« < +oo. Besides, there exists a constant C(p) > 0
such that

IT(M)l+ < Cllh|en-
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Proposition 3.2 has a local version. Let () = 0 and Dy = %D.
For the following linear problem

Ap+puwP~'¢=h in Ds\ Bi(0), (3.38)
¢ =0 on 0B;(0) U 0Ds (3.39)

we have
Proposition 3.3. Assume that p satisfies condition (3.7). Then there
is a number 0y such that for all § < 6y and any h with ||h||.. < 400,

Problem (3.38)-(3.39) has a unique solution ¢ = Ts(h) with ||¢|. <
+o00. Besides, there exists a constant C(p,D) > 0 such that

IT5(M)ll« < ClR]|en-

4. PROOF OF THEOREM 1

Let Q@ = 0, and D; = §~'D. Without loss of generality, we also
assume that B3(0) C D and w(r) > 0 for r > r,,. Let us assume the
validity of condition of condition (3.7) or, equivalently, that p # p;
for all j, with p; the sequence in (3.8). Problem (1.3) is, after setting

v(z) = (5%11((533), equivalent to
Av+ [v]P"'v =0 in D5 \ B1(0), v=0 on dB;(0) U dD;s. (4.1)

Instead of considering (4.1), we modify the nonlinearity in the fol-
lowing way: let x(t) be a smooth cut-off function which equals one for
|t| < 2r,, and zero for |t| > 4r,,. Let

g(z,v) = [P tux(|z]) + v (1 — x(|z])), where vy = max(v,0) (4.2)
We now consider the following problem

Av+g(z,v)=0 inD;\ Bi(0), v=0 on 8B;(0) U dD;s. (4.3)

The rest of the proof of Theorem 1 is exactly the same as in [12].
For the reader’s convenience, we give a sketch here.

Let us consider the smooth cut-off function 7s, which equals 1 in
B(0,267!) and 0 outside B(0,36~!). We search for a solution v to
problem (4.3) of the form

v =nsw + d);
which is equivalent to the following problem for ¢:
A +plnswl6 = Ni(9) + No(@) + B in D5\ Bi(0),
¢» =0 on 0B;(0) U 0Ds )
where

_N1(¢) = g(ﬂf, sw + d)) - g(xa 7’]5’(1]) - g’ (33, 775’[U)d),



16 E. N. DANCER AND JUNCHENG WEI

Na(¢) = p(1 = nf ) wl"~!
and

E = —A(nsw) — g(z, nsw) = —A(nyw) — nf|w’ 'w.

Note that ¢'(z, nsw) = plw[P~".
According to Proposition 3.3 we thus have a solution to (4.3) if ¢
solves the fixed point problem

¢ =T5(N1(¢) + Na(¢) + E) . (4.5)
Let us estimate E. We have, explicitly,
—E=n(n; " = 1w’ 'w + 2V15Vw + wAns
We clearly have, globally, |E(z)| < C§" and hence
|E || < CO7. (4.6)
Let us now estimate ||N1(@) + No(¢)||+:. We observe that
IN2()]lex = lp(1 = 0% )P @]l < C sup |2V~ |w(z)[P~*|¢(z)]

|lz|>6—1

< C6°||ll. (4.7)

To estimate Ni(¢), let us assume first p < 2. Then we estimate
2" INU(P)] < Cla|™ (@) < =Ml < Clall:

so that
IN1(9)]]+x < Cll9II7.
Let us assume now p > 2. In this case we have
IN(@)| < C([w]P~?¢” +[6[").
Now, we directly check that
|.’L"N_U’U)p_2¢2 < C|m‘(p—2)(2—N)—N+4+U||¢||§'
The exponent of |z| in the last expression is always negative. In fact,
this is obvious if N > 5, while if N = 3, 4 supercriticality implies p > 3.
On the other hand,
2N g < O la|NTTPNTEE g < | THH D g2

We conclude from these estimates that, for any p > 3£2,

INL(S)[]x < C (lIBIIE + IS - (4.8)

Let us consider now the operator

T(¢) = T5(N:(¢) + Na(9) + E)
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defined in the region

B={¢eC'(D;\Bi(0) / 4]l <42 }.

Using estimates (4.6), (4.8), we immediately get that 7 (B) C B, pro-
vided that ¢ is sufficiently small. We observe that, in the bounded
domain Ds \ B;(0),
T = (A +plwf)™

maps boundedly C? into C*®, hence compactly into C*. It follows that
the map 7T is actually compact on the closed, bounded subset of C*
given by B. The existence of a fixed point of 7 on B thus follows from
Schauder’s theorem.

This yields a solution to (4.3). Note that for our solution v = Psw+¢,
we have v > 0 for 1.5r,, < |z| < 5ry, since v = w + ¢ and ||¢||. < C6z.
Thus, v actually satisfies Av+vf. = 0 for |z| > 2r,, and Av+|v[P~ v =0
for |z| < 2r,,. By Maximum Principle applied to v on Ds\ By, , we have
that v > 0 in D; \ Bo,,,. In summary, v satisfies (4.1). Furthermore,
since v > 0 for |z| > 2r,and v = w + ¢ for |z| < 27, we deduce that
v has exactly m + 1 nodal domains. This concludes the proof of the
theorem. ]
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Appendix: Proof of (3.14)

In this appendix, we use the so-called localized energy method to
prove (3.14). For background on the localized energy method, we refer
to the survey article [23]. In particular, we follow the steps in [20].

By a rescaling, (3.13) becomes the following nonlinear problem:

u —u4e Yuflu=0u>0fory>0,u(0)=u(+oo)=0 (4.9)
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where € = ¢;(p — 1)a,p = p. + cge for some ¢1,¢o > 0. Note that
a—0,e > 0asp— p,.
Associated with (4.9) is the following energy functional:

1 ) 1
Tl =5 [ (WPt = [ euptue B®) - @10)
2 Jr, p+1Jgr,
The localized energy method consists of four steps:
Step 1: Choose good approximate functions

Let w be the unique solution of

w' —w+wP =0,w(0) = maﬁicw(y), w(£oo0) =0 (4.11)
ye

Let ¢t > 0. We define
wy = w(y —t) — p(t)B(y) (4.12)

where G(y) = e¥, p(t) = w(t). Then w, € H} (R, ).
Let t = (t4, ..., t;n). We define a configuration space:

bl

A = {t = (tl, ...,tN)
3)

tm <m(1+mPn)log Lty > (1—n)eloge,
ty—tj—1 > (1 - n)elog%,j =2,...,m
(4.1
where 1) € (0, go==r) is a fixed number.
For t € A, we define

m

we =Y (=1) ;. (4.14)

=1

Let
Slul =u" —u+ e Yu[f u.

m m
5t 4 3 - o,
j=1 j=2

Then, similar to the computations in Lemma 2.2 and Lemma 2.3 of
[20], we obtain

Note that

S[we] = O(e272) (4.15)
and
m N N
Jlw] = A(e) +Z(AO+€U)€tj_tj_l + Bye Z t; +Z(Co+€”)e_tj +0(e)
Jj=1 J=1 j=1
(4.16)

where A(e) is some function of € only, Ay, By, Co > 0 and o is a small
positive number in (0, 1).
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Step 2: Nonlinear Liapunov-Schmidt reduction
Similar to the proof of Proposition 4.2 of [20], there exists a unique
(@et, €1, ..y Cm) such that

Slwe + et] = Y cjw' (y — 1) (4.17)
j=1
and we also have
ol Lm(ms) < Cezt. (4.18)

Step 3: Reduction to finite dimensional space.
We set

K:e(t) = J[wt + ¢5,t] A —= R

Then if t¢ = (t§,...,t5,) is a critical point of K., the corresponding
function ue = wyge + P ¢ is a critical point for J[u] and hence a solution
o0 (4.9). So it is enough to find a critical point of ..

An easy computation shows that

K. (t) = Jws] + O(e). (4.19)

Step 4: A minimization procedure
We consider the following minimization problem:

min /Cc(t). (4.20)

teA

By choosing ¢; = jlog %, we obtain an upper bound for

minkC,(t) < A(e) + TP D

1
vy 5 B()G lOg Z + 0(6) (421)

On the other hand, if t € A, then we have either ¢; = (1 —n)log <,
ort;—tj_1=(1—n)logl, or ty =m(l+m3n)logi. In any case, we
shall derive that

m(m + 1)

Ko(t) > A + (7

1
+ n)Byelog — (4.22)
€
which contradicts with (4.21). This shows that the above minimiza-
tion problem (4.20) has a solution t¢ = (¢,...,t5,) € A. Thus u, =
Yo (1) w(y — 15) + dee is a solution to (4.9) with exactly m ze-
roes. By uniqueness, (3.14) is proved. O
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