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Abstract. We consider the following semi-linear elliptic equation
with critical exponent:

−∆u = K(x)u
n+2

n−2 , u > 0 in R
n,

where n ≥ 3, K > 0 is periodic in (x1, ..., xk) with 1 ≤ k < n−2

2
.

Under some natural conditions on K near a critical point, we prove
the existence of multi-bump solutions where the centers of bumps can
be placed in some lattices in R

k, including infinite lattices. We also
show that for k ≥ n−2

2
, no such solutions exist.

1. Introduction

We consider the following semi-linear elliptic equation with critical ex-
ponent:

(1.1) −∆u = K(x)u
n+2
n−2 , u > 0 in R

n.

Associated with (1.1) is the following energy functional

I(u) =
1

2
‖u‖2 − n− 2

2n

∫

K(x)(u+)
2n
n−2 , u ∈ D,

where u+ = max(u, 0) and D is the Hilbert space defined as the completion
of C∞

c (Rn) with respect to the scalar product 〈u, v〉 =
∫

Rn ∇u ·∇v and ‖ ·‖
denotes the norm of D. By the maximum principle, a non-zero critical
point of I(u) will give rise to a positive solution to equation (1.1).

When K ≡ 1, all solutions of (1.1) have been classified by Caffarelli-
Gidas-Spruck [14] and are given by:

σP,λ(x) = (n(n− 2))
n−2
4

(

λ

1 + λ2|x− P |2
)

n−2
2

,

for any λ > 0 and P ∈ R
n. See also Obata [42] and Gidas-Ni-Nirenberg

[27] when u has some natural decay as |x| → ∞.

When K is positive and periodic, Li proved that (1.1) has infinitely
many multi-bump solutions for n ≥ 3 in [32, 33, 34] by gluing approximate
solutions into genuine solutions with masses concentrating near isolated
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sets of maximum points of K. Similar results were obtained by Yan in
[51] if K(x) has a sequence of strict local maximum points tending to
infinity. When K is positive and periodic, Xu constructed in [52] multi-
bump solutions with mass concentrating near critical points ofK including
saddle points; see also [53]. When K(x) is a positive radial function with
a strict local maximum at |x| = r0 > 0 and satisfies

K(r) = K(r0)− c0|r − r0|m +O(|r − r0|m+θ),

for some constant c0 > 0, θ > 0 and m ∈ [2, n − 2) near |x| = r0,
Wei and Yan constructed in [49] solutions with a large number of bumps
concentrating near the sphere |x| = r0 for n ≥ 5.

In this paper, we construct multi-bump solutions of (1.1) near critical
points of K(x) and the bumps can be placed on arbitrarily many or even
infinitely many lower dimensional lattice points. Furthermore we show
that the dimensional restriction is optimal.

More precisely, we assume the following conditions on K(x):

(H1) 0 < infRn K ≤ supRn K < ∞;
(H2) K ∈ C1(Rn), K is 1-periodic in its first k variables;
(H3) 0 is a critical point of K satisfying: there exists some real number

β ∈ (n− 2, n) such that near 0,

(1.2) K(x) = K(0) +

n
∑

i=1

ai|xi|β +R(x),

where ai 6= 0,
∑n

i=1 ai < 0, and R(y) is C [β]−1,1 (up to [β] − 1
derivatives are Lipschitz functions, [β] denotes the integer part of

β) near 0 and satisfies
∑[β]

s=0 |∇sR(y)||y|−β+s = o(1) as y tends to
0. Here and following, ∇s denotes all possible partial derivatives
of order s.

Condition (H3) was used by Li in [34] for equation (1.1). Without loss
of generality, we may assume K(0) = 1. For any integer m ≥ 1 and integer
k ∈ [1, n], we define k-dimensional lattice

(1.3) Qm := { all the integer points in [0, m]k × {0} ⊂ R
n},

where 0 ∈ R
n−k. We call x = (x1, ..., xn) ∈ R

n an integer point if all
x1, ..., xn are integers.

The main results of this paper can be summarized as follows.

Main Theorem: For n ≥ 5, 1 ≤ k < n−2
2
, there exists l0 > 1 such that

for all l ≥ l0 and all m ≥ 1 (m can be +∞). There exists a C2 positive
solution uQlm

with bumps centered close to the lattice set Qlm (defined in
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(1.3)). Furthermore, this is optimal, i.e., if k ≥ n−2
2
, then no such solution

exists.

In the following we give more precise statements of the above theorem.

For any λ > 0, we define the transformation Sλ : u(x) → uλ(x) :=

λ−n−2
2 u(x

λ
). Then for a solution u of (1.1), uλ(x) satisfies

(1.4) −∆uλ(x) = Kλ(x)uλ(x)
n+2
n−2 , uλ > 0, x ∈ R

n.

Since K is 1-periodic in its first k variables, Kλ(x) := K(x
λ
) is λ-periodic

in its first k variables.

For any positive integer l, let

(1.5) λ = l
n−2

β−n+2 ,

where n − 2 < β < n. (Throughout this paper, l and λ will satisfy the
relation (1.5).)

We scale the lattice Qm as

(1.6) Xl,m = {λlx|x ∈ Qm}.

For convenience, we order the points in Xl,m as {X i}(m+1)k

i=1 .

For i = 1, ..., (m+ 1)k, let P i ∈ B 1
2
(X i) and Λi > 0. We use notations

P := {P i}(m+1)k

i=1 and Λ := {Λi}(m+1)k

i=1 . Then

Wm(x, P,Λ) =

(m+1)k
∑

i=1

σP i,Λi
(x)

is an approximate solution of (1.4) when l is much larger than maxi Λi.
When there is no confusion, we denote Wm(x, P,Λ) by Wm(x).

For a fixed lattice Xl,m and τ > 1, and for functions φ, f ∈ L∞(Rn), let

(1.7) ‖φ‖∗ = sup
y∈Rn



γ(y)

(m+1)k
∑

i=1

1

(1 + |y −X i|)n−2
2

+τ





−1

|φ(y)|,

and

(1.8) ‖f |∗∗ = sup
y∈Rn



γ(y)

(m+1)k
∑

i=1

1

(1 + |y −X i|)n+2
2

+τ





−1

|f(y)|,

where

(1.9) γ(y) = min

(

1,
(m+1)k

min
i=1

(
1 + |y −X i|

λ
)τ−1

)

.
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The above weighted norms depend on τ and the lattice Xl,m, since τ

and Xl,m are chosen. When there is no confusion, we just denote them as
above.

Remark 1.1. Without the function γ(y), the above weighted norms are
used by Wei-Yan in [49]. Similar weighted norms can be found in [18,
46, 47]. The reason for introducing γ(y) in the definition of the weighted
norms is crucial in our proofs. We shall comment more on this later.

We now state the first result.

Theorem 1. For n ≥ 5, 1 ≤ k < n−2
2

and m ≥ 1, assume that K satisfies

conditions (H1), (H2) and (H3). Then there exists a τ0(n, k) ∈ (k, n−2
2
],

such that for any τ satisfying k ≤ τ < τ0, there exist positive constants C1,
C2, C and an integer l0 depending only on K, n, β, τ , such that for any

integer l ≥ l0 and λ = l
n−2

β−n+2 , equation (1.1) has a positive C2 solution u

satisfying

‖Sλu−Wm‖∗ ≤ Cλτ−n+2
2 ,

with C1 < Λi < C2 for all i and max1≤i≤(m+1)k |P i −X i| → 0 as l → ∞,
uniformly in m.

If we allow the estimates to depend on m (e.g., the size of l0), then
m-bump solutions have been constructed by Xu in [52] for every 1 ≤
k ≤ n under the same assumption on K, see also [53]. As mentioned
earlier, Li constructed in [32, 33, 34] such m-bump solutions near isolated
sets of maximum points. The ansatz used in [32, 33, 34] is a variational
method as in [16, 17] of Coti Zelati-Rabinowitz and [48] of Séré which
glues approximate solutions into genuine solutions. On the other hand,
the method used in [52, 53] is gluing via implicit function theorem (or
a nonlinear Lyapunov-Schmidt technique), the same as that in our proof
of Theorem 1. Such Lyapunov-Schmidt reduction methods have been
developed and used by many aithors. We shall make some comments at
the end of this section.

The novelty and the main difficulty in the proof of Theorem 1 is that
all the estimates are independent of m and the results are optimal (see
Theorem 3 below). Thus we may construct multi-bump solutions on an
infinite lattice by letting m → ∞ while keeping l fixed (see Theorem 2
below). The new m-independent estimates are obtained by using the new
weighted norm ‖ · ‖∗ (defined at (1.7)) as compared to ‖ · ‖ of D used
in [52]. Roughly speaking, ‖ · ‖ norm adds up errors near each bump,
while ‖ · ‖∗ norm measures maximum of errors near each bump. The
reason for introducing γ(y) is to localize the estimate and to obtain better
decay estimates near each bump. This is crucially needed when we deal
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with the higher dimensional lattice case in which 2 ≤ k ≤ τ . As we
mentioned earlier, Wei-Yan [49] used a similar norm in which γ(y) ≡ 1.
They required that the number τ must be 1 + η̄ with η̄ > 0 being small.
Thus the norms used in [49] are only suitable for concentration on one
dimensional set (like circles as in [49]). Our norms work for any higher
dimensional concentration as long as the dimension k < n−2

2
(which is

optimal). This is one of major technical advances in this paper.

Let

Z
k := {all integer points in R

k × {0}}, where 0 ∈ R
n−k,

and, for an integer i ∈ [0, k],

R
k
i × {0} := {(x1, ..., xk, 0, ..., 0) ∈ R

n|x1, ..., xi ≥ 0}.

We often write R
k
i × {0} as R

k
i when there is no confusion. Note also

that Rk
0 = R

k. Consider infinite lattices

Y i ≡ Y k,i := Z
k ∩ R

k
i

and their scaled versions

X i
l = λlY i.

Define

W i
l =

∑

X∈Xi
l

σP (X),Λ(X),

where P (X) ∈ B 1
2
(X) and Λ(X) ∈ (C1, C2).

Theorem 2. For n ≥ 5, 1 ≤ k < n−2
2

and 0 ≤ i ≤ k, assume that K
satisfies conditions (H1), (H2) and (H3). Let τ , C1, C2, C and l0 be as

in Theorem 1. Then for any integer l ≥ l0 and λ = l
n−2

β−n+2 , equation (1.1)
has a positive C2 solution u satisfying

‖Sλu−W i
l ‖∗ ≤ Cλτ−n+2

2 ,

with Λ(X) ∈ (C1, C2) for all X ∈ X i
l and |P (X) − X| → 0 as l → ∞

uniformly in X.

Solutions u constructed in Theorem 2 have infinitely many bumps. In-
deed, u is close to σP (X),Λ(X) near every lattice point X ∈ X i

l .

Theorem 2 follows from Theorem 1 by a limiting argument as follows.
For l ≥ l0, let X

i
l be an infinite lattice as in Theorem 2. By Theorem 1, we

have solutions um of (1.1) for all m. For each m, we can find xm ∈ Xl,m,
such that Xl,m − xm is monotonically increasing in m and

∪∞
m=1(Xl,m − xm) = X i

l .
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Let

(Sλûm)(x) = (Sλum)(x+ xm).

Then ûm satisfies the same equation as um due to the periodicity of K.
See section 3 for details.

Remark 1.2. Theorem 2 shows a new phenomena that infinite-bump so-
lutions can be constructed for semilinear elliptic equations with critical
exponents. For subcritical exponent semilinear elliptic equations, infinite-
bump solutions were constructed by Coti Zelati and Rabinowitz in [16, 17]
and Séré in [48]. There are two main differences (and difficulties) be-
tween the subcritical exponent problem (treated in [16, 17]) and critical
exponent problem: first, there is an extra loss of compactness-the scaling
invariance parameter. Second, there is the difficulty of controlling the al-
gebraic decaying in an infinite lattice setting. (In [16, 17], the decay rate is
exponential.) As far as we know, this paper seems to be the first in obtain-
ing the existence of solutions for critical exponent problems with infinitely
many bumps.

In an unpublished note [36], Li showed that the conclusion of Theorem
1 and Theorem 2 are false if n ≥ 3 and k ≥ n − 2. More specifically, let
K be a positive C1 function which is periodic in each variable, satisfying,
for some constant β > n − 2, (∗)β condition for some positive constants
L1 and L2 in R

n:

|∇Ki| ≤ L1, in R
n,

and, if β ≥ 2, that K ∈ C
[β]−1,1
loc (Rn),

|∇sKi(y)| ≤ L2|∇Ki(y)|
β−s
β−1 , for all 2 ≤ s ≤ [β], ∀y ∈ R

n.

Then for n ≥ 3 and k ≥ n− 2, there is no C2 solution of (1.1) satisfying,
for some R, ǫ > 0 and 0 ≤ i ≤ k,

(1.10) inf
x∈Rk

i

sup
BR(x)

u ≥ ǫ.

(∗)β condition was introduced in [34]. If a positive C1 periodic function
K is of the form (1.2) near every critical point of K, then K satisfies (∗)β
in R

n. Also (∗)β1 implies (∗)β2 if β1 ≥ β2. If a function K in (1.1) satisfies
(∗)β for some β > n − 2, then solutions in any bounded region can only
have isolated simple blow up points, see [34].

Our next theorem improves this result to cover k ≥ n−2
2
, which is opti-

mal in view of Theorem 1 and Theorem 2.
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Theorem 3. For n ≥ 3 and k ≥ n−2
2
, let K be as above. Then there is no

C2 solution of (1.1) satisfying (1.10) for some R, ǫ > 0 and 0 ≤ i ≤ k.

Remark 1.3. The solutions constructed in Theorem 2 satisfy (1.10) for
some R, ǫ > 0 and 0 ≤ i ≤ k. Since the hypotheses on K in Theorem 3
are stronger than that in Theorem 2, the assumption k < n−2

2
in Theorem

2 is optimal.

We end the introduction with some remarks and history on the fi-
nite/infinite dimensional reduction method. The original finite dimen-
sional Liapunov-Schmidt reduction method was first introduced in a sem-
inal paper by Floer and Weinstein [24] in their construction of single bump
solutions to one dimensional nonlinear Schrodinger equations (Oh [43] gen-
eralized to high dimensional case). On the other hand, Bahri [5] and Bahri-
Coron [6] developed the reduction method for critical exponent problems.
In the last fifteen years, there are renewed efforts in refining the finite
dimensional reduction method by many authors. When combined with
variational methods, this reduction becomes ”localized energy method”.
For subcritical exponent problems, we refer to Ambrosetti-Malchiodi [1],
Gui-Wei [25], Malchiodi [39], Li-Nirenberg [37], Lin-Ni-Wei [38], Ao-Wei-
Zeng [2] and the references therein. The localized energy method in de-
generate setting is done by Byeon-Tanaka [12, 13]. For critical exponents,
we refer to Bahri-Li-Rey [8], Del Pino-Felmer-Musso [18], Rey-Wei [46, 47]
and Wei-Yan [49] and the references therein. Many new features of the
finite dimensional reduction are found. Our current work contributes to
this part of reduction method and gives an optimal treatment for critical
exponent problems. In recent years, there are new interests in extending
the finite dimensional reduction method to treat high dimensional concen-
tration phenomena. This is the infinite dimensional reduction method and
has become very useful in constructing high dimensional concentration so-
lutions. For compact manifold case, we refer to Del Pino-Kowalczyk-Wei
[20, 21] and Pacard-Ritore [45], and for noncompact manifolds, we refer
to Del Pino-Kowalczyk-Pacard-Wei [22], Del Pino-Kowalczyk-Wei [19] and
the references therein. A notable application of this infinite dimensional
reduction method is the construction of counterexample to De Giorgi’ s
Conjecture in large dimensions by M. del Pino, M. Kowalczyk and Wei
[19].

Throughout the paper, we will use the superscript to stand for a se-
quence of points in R

n and the subscript to stand for numbers or the
coordinates of a point in R

n unless otherwise stated.
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The paper is organized as follows. In section 2, we carry out the
Lyapunov-Schmidt reduction. In section 3, we solve the finite dimen-
sional problems and prove Theorem 1 and Theorem 2. In section 4, we
prove Theorem 3. In Appendices, we prove some basic lemmas that will
be used throughout the paper.

Acknowledgments: The research of the first author is partially sup-
ported by an NSF grant, the research of the second author is partially
supported by a General Research Fund from RGC of Hong Kong.

2. Finite Dimensional Reduction

In this section, we perform a finite-dimensional reduction to the re-
scaled equation (1.4). Let λ and l be given at (1.5) and Kλ(x) = K(x

λ
).

Consider the following energy functional

Iλ(u) =
1

2
‖u‖2 − n− 2

2n

∫

Kλ(u
+)

2n
n−2 , u ∈ D.

Then any nonzero critical point of Iλ gives rise to a solution to (1.4). For
X i ∈ Xl,m, let P i ∈ B 1

2
(X i). For any positive constants C1 < C2, let

Λi ∈ (C1, C2) and denote σi = σP i,Λi
. For a small ρ > 0, let

Σ = {
∑

i

(1 + ǫi)σPi,Λi
|P i ∈ B 1

2
(X i),Λi ∈ (C1, C2), |ǫi| < ρ}.

Then Σ is a smooth (n + 2)(m + 1)k dimensional sub-manifold in D.
When l is large enough, according to Proposition 2 of Bahri-Coron [7],
every function in a small tubular neighborhood of Σ in D can be uniquely
parameterized as

u(x) =
∑

i

(1 + ǫi)σi(x) + φ(x) := W̄m(x) + φ(x),

where φ(x) is the unique minimizer of

min
w∈Σ

‖u− w‖.

In particular, φ ∈ E , a subspace of D defined as

E :=
{

φ ∈ D|〈Zi,j, φ〉 = 0, 〈σi, φ〉 = 0, i = 1, ..., (m+ 1)k, j = 1, ..., n+ 1
}

,

with Zi,j defined as

Zi,j =
∂σP i,Λi

∂P i
j

for 1 ≤ j ≤ n and Zi,n+1 =
∂σP i,Λi

∂Λi

,
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where P i
j means the j-th coordinate of P i. The size of the tubular neigh-

borhood is independent of l and m. Obviously, E depends on the choice
of P and Λ.

In the form u = W̄m + φ, Iλ(u) = Iλ(W̄m + φ) can be written as
(2.1)

J(P, ǫ,Λ, φ) =
1

2

∫

Rn

|∇(W̄m + φ)|2 − n− 2

2n

∫

Rn

Kλ(y)
(

(W̄m + φ)+
)

2n
n−2 ,

where W̄m ∈ Σ and φ ∈ E .
By definition, u = W̄m + φ is a critical point of Iλ if and only if

(2.2)
∂J

∂φ
(P, ǫ,Λ, φ) = 0,

(2.3)
∂J

∂ǫ
(P, ǫ,Λ, φ) = 0,

(2.4)
∂J

∂P
(P, ǫ,Λ, φ) = 0,

(2.5)
∂J

∂Λ
(P, ǫ,Λ, φ) = 0.

We will use Lyapunov-Schmidt reduction method to solve these equa-
tions. More specifically, for fixed P and Λ, we first solve (2.2) and (2.3),
finding solutions φ(P,Λ) and ǫ(P,Λ) which are C1 in P and Λ. Then
we use the Brouwer fixed point theorem to solve the finite dimensional
problems (2.4) and (2.5).

Let

(2.6) F (φ, ǫ) :=
∂J

∂φ
(P, ǫ,Λ, φ);

(2.7) Gi(φ, ǫ) :=
∂J

∂ǫi
(P, ǫ,Λ, φ), i = 1, ..., (m+ 1)k.

The explicit expressions for F and G are as follows

Gi(φ, ǫ) =
∑

j

(1 + ǫj)〈σi, σj〉 −
∫

Rn

Kλ

(

(W̄m + φ)+
)

n+2
n−2 σi,

F (φ, ǫ) = φ− PE(−∆)−1Kλ

(

(W̄m + φ)+
)

n+2
n−2 ,

where PE is the orthogonal projection of D onto E .
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For fixed (P,Λ), setting

(2.8) N(φ, ǫ) = (F,G)(φ, ǫ) : E × R
(m+1)k → E × R

(m+1)k

where G = (G1, ..., G(m+1)k). With the aid of the implicit function theo-
rem, we solve

(2.9) N(φ, ǫ) = 0.

We shall, as in [37], make use of the following form of the implicit function
theorem:

Lemma 2.1. (Brezis and Nirenberg) Let X , Y be Banach spaces, a > 0,
Ba = Ba(z0) = {z ∈ X : ‖z − z0‖ ≤ a}. Suppose that F is a C1 map of
Ba into Y,with F ′(z0) invertible, and satisfying, for some 0 < θ < 1,

‖F ′(z0)
−1F (z0)‖ ≤ (1− θ)a,

‖F ′(z0)
−1‖‖F ′(z)− F ′(z0)‖ ≤ θ ∀z ∈ Ba.

Then there is a unique solution in Ba of F (z) = 0.

Define

M = {u ∈ L∞(Rn)| ‖u‖∗ < ∞},

D̃ = {u ∈ L∞(Rn)| ‖u‖∗∗ < ∞}.

We will solve the equation N(φ, ǫ) = 0 under the weak sense in Banach
spaces with norms related to ‖ · ‖∗, defined at (1.7). Since σi, Zi,j ∈ M,
we define a subspace of M by

(2.10)
M̃ := {φ ∈ M|

∫

Rn φσ
n+2
n−2

i = 0,
∫

Rn φσ
4

n−2

i Zi,j = 0,

for all i = 1, ..., (m+ 1)k, j = 1, ..., n+ 1}.
For functions φ ∈ M, 〈φ, σi〉 (or 〈σi, φ〉) should be understood as−

∫

Rn φ∆σi

(Similar statement also works for Zi,j). Without introducing new symbols,

we still use PE to denote the orthogonal projection from M → M̃, which
can be defined as follows.

Let {f1, ..., f(n+2)(m+1)k} be an orthonormal basis of the span{{σi}, {Zi,j}}
obtained by Gram-Schmidt procedure. Then, for φ ∈ D,

PEφ = φ−∑(n+2)(m+1)k

i=1 〈φ, fi〉fi

= φ+
∑(n+2)(m+1)k

i=1

(∫

Rn φ∆fi
)

fi.
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Therefore, for any φ ∈ M, we define

PEφ = φ+
∑

i

(
∫

Rn

φ∆fi

)

fi.

Then PEφ ∈ M̃ for every φ ∈ M. It is clear that if φ ∈ D ∩M, then
the definitions are the same.

For any h ∈ D̃, we define (−∆)−1h as

(2.11) (−∆)−1h :=
1

n(n− 2)ωn

∫

Rn

h(z)

|y − z|n−2
dz

where ωn is the volume of a unit ball in R
n. It is not difficult to see that

(2.11) makes sense. Lemma A.7 in appendix A shows that (−∆)−1h ∈ M
and the proof of Lemma A.4 actually shows that PE(−∆)−1 is a well

defined map from M → M̃. Therefore, we can view N(φ, ǫ) as a map

from M̃ × R
(m+1)k → M̃ × R

(m+1)k . When (φ, ǫ) solves N(φ, ǫ) = 0 in

M̃ × R
(m+1)k , then (φ, ǫ) is automatically a solution to (2.8) in the weak

sense in the original spaces.

We will apply Lemma 2.1 to N at (0, 0) in the Banach spaces X = Y =

M̃ × R
(m+1)k , with norm

‖(φ, ǫ)‖ = max(‖φ‖∗, λτ−1|ǫ|),
where |ǫ| = maxi |ǫi|.

We have the following proposition.

Proposition 2.1. Under the assumptions of Theorem 1, when l ≥ l0,
equation (2.8) has a unique solution φ(P,Λ), ǫ(P,Λ) in M̃ × R

(m+1)k ,
with

‖(φ, ǫ)‖ ≤ C

λ
n+2
2

−τ
.

Furthermore φ(P,Λ) and ǫ(P,Λ) are C1 in P and Λ.

Proof. The proof will be carried out in several steps.

Step 1. We first show that, for some constant C > 0, independent of m
and l, we have the following crucial estimate for the error

(2.12) ‖N(0, 0)‖ ≤ C

λ
n+2
2

−τ
.

Observe that

F (0, 0) = −PE(−∆)−1KλW
n+2
n−2
m .
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In view of Lemma A.7 and the fact that 〈F (0, 0), σi〉 = 0 for all i, we
just need to estimate ‖lm‖∗∗, where the error becomes

(2.13) lm = KλW
n+2
n−2
m −

∑

i

σ
n+2
n−2

i .

Denote Ωi = {y ∈ R
n, |y − X i| ≤ |y − Xj|, for all j 6= i}, Bi =

Bλl(X
i), and Bi,m = Bmax(m

4
,1)λl(X

i). Certainly R
n = ∪iΩi.

For y ∈ Ωi, it holds that

|K(
y

λ
)W

n+2
n−2
m −

∑

i

σ
n+2
n−2

i | ≤ C|K(
y

λ
)−1|σ

n+2
n−2

i +C

(

Ŵ
n+2
n−2

m,i + σ
4

n−2

i Ŵm,i

)

+C
∑

j 6=i

σ
n+2
n−2

j ,

where Ŵm,i =
∑

j 6=i σj . We apply Lemma A.3 to estimate each term on

the right hand side of the above inequality. First we estimate Ŵ
n+2
n−2

m,i .

By Lemma A.3, if y ∈ Ωi ∩Bc
i ∩ Bi,m, we have

Ŵ
n+2
n−2

m,i ≤ C

(λl)
4

n−2 k

∑

j
1

(1+|y−xj |)n+2− 4
n−2 k

≤ C
∑

j
1

(1+|y−xj |)
n+2
2 +τ

1

(λl)
n+2
2 −τ

.

For y ∈ Ωi ∩ Bi we obtain

Ŵ
n+2
n−2

m,i ≤ C

(λl)n+2
≤















C

(λl)
n+2
2 −τ

∑

j
1

(1+|y−xj |)
n+2
2 +τ

, y ∈ Ωi ∩Bλ(x
i)c

(

1+|y−xi|
λ

)τ−1
∑

j
1

(1+|y−xj |)
n+2
2 +τ

λτ−1

(λl)
n
2
, y ∈ Bλ(x

i) ∩ Ωi.

If y ∈ Bc
i,m ∩ Ωi, by Lemma A.3, we have first

Ŵ
n+2
n−2

m,i ≤
(

∑

j

1

(1 + |y − xj |)n−2

)
n+2
n−2

(2.14) ≤ C
1

(1 + |y − xi|)n+2
m

n+2
n−2

k.

On the other hand

(2.15)
∑

j

1

(1 + |y − xj |)n ≥ C
1

(1 + |y − xi|)n (1 + C[
m

2
])k.
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It is not hard to see that when y ∈ Bc
i,m ∩ Ωi, there is a constant C

independent of m such that for n−2
2

> k,

(2.16)
1

(1 + |y − xi|)2m
n+2
n−2

k ≤ C
1

(λl)
4

n−2
k
(1 + C[

m

2
])k.

From (2.14), (2.15) and (2.16), we conclude that for y ∈ Bc
i,m ∩ Ωi

Ŵ
n+2
n−2

m,i ≤ C
∑

j

1

(1 + |y − xj |)n+2
2

+τ

1

(λl)
4

n−2
k
.

Combining the previous estimates together, we get

(2.17) ‖Ŵ
n+2
n−2

m,i ‖∗∗ ≤
C

(λl)
n+2
2

−τ
.

Similarly, we have

‖σ
4

n−2

i Ŵm,i‖∗∗, ‖
∑

j 6=i

σ
n+2
n−2

i ‖∗∗ ≤
C

(λl)
n+2
2

−τ
.

Now if y ∈ Ωi such that |y − xi| ≤ λ, we get

|K( y
λ
)− 1|σ

n+2
n−2

i ≤ C|y−xi|β
λβ

1
(1+|y−xi|)n+2

≤ C

λ
n+2
2 −τ

γ(y)
∑

j
1

(1+|y−xj |)
n+2
2 +τ

.

On the other hand, if y ∈ Ωi such that |y − xi| ≥ λ,

|K(
y

λ
)− 1|σ

n+2
n−2

i ≤ C

(1 + |y − xi|)n+2
≤ C

λ
n+2
2

−τ

∑

j

1

(1 + |y − xj |)n+2
2

+τ
.

Thus we obtain the estimate for ‖(Kλ − 1)σ
n+2
n−2

i ‖∗∗.
Combining the above inequalities, we get

‖lm‖∗∗ ≤
C

λ
n+2
2

−τ
,

and therefore by Lemma A.7,

‖F (0, 0)‖∗ ≤
C

λ
n+2
2

−τ
.

Next we estimate G(0, 0). For each i,

Gi(0, 0) =
∑

j

〈σi, σj〉 −
∫

Rn

KλW
n+2
n−2
m σi.
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It is easy to see that

W
n+2
n−2
m = σ

n+2
n−2

i + Cσ
4

n−2

i Ŵm,i + CŴ
n+2
n−2

m,i ,

where C is some bounded constant which may vary and doesn’t depend
on m. Using Lemma A.3, Lemma A.1 and Lemma A.2, integrating in Ωj

and combining them together, we deduce that for n ≥ 5
∫

Rn

Ŵm,iσ
n+2
n−2

i ,

∫

Rn

Ŵ
n+2
n−2

m,i σi ≤
C

(λl)n−2
≤ C

λ
n
2

.

Similarly, we obtain that for n ≥ 5

|〈σi, σi〉 −
∫

Rn

Kλσ
2n
n−2

i | ≤ C

λβ
≤ C

λ
n
2

,

|
∑

j 6=i

〈σj , σi〉| ≤
∑

j 6=i

C

|Xj −X i|n−2
≤ C

λ
n
2

.

Therefore we get that for each i,

|Gi(0, 0)| ≤
C

λ
n
2

.

Combining the estimates for F (0, 0) and Gi(0, 0) together, we obtain
(2.12).

Step 2. Next, we show that, for l large,

(2.18) ‖N ′(0, 0)−1‖ ≤ C.

We consider the equation

(2.19) N ′(0, 0)(φ̃, ǫ̃) = (v, η).

For the v component, the equation becomes
(2.20)

v = φ̃− n+ 2

n− 2
PE(−∆)−1KλW

4
n−2
m φ̃− n+ 2

n− 2
PE(−∆)−1KλW

4
n−2
m (

∑

i

ǫ̃iσi).

For each i-th component, we have
(2.21)

ηi = −n + 2

n− 2

∫

Rn

KλW
4

n−2
m σiφ̃+

∑

j

ǫ̃j

(

〈σi, σj〉 −
n+ 2

n− 2

∫

Rn

KλW
4

n−2
m σiσj

)

.
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Since 〈v, σi〉 = 0, 〈φ̃, σi〉 = 0 for all i, in (2.20), we can replaceKλW
4

n−2
m (

∑

i ǫ̃iσi)

by l̃m := KλW
4

n−2
m (

∑

i ǫ̃iσi)−
∑

i ǫ̃iσ
n+2
n−2

i . Then we get

(2.22)

φ̃(y) = v(y) + n+2
n(n−2)2ωn

∫

Rn
1

|z−y|n−2Kλ(z)W
4

n−2
m (z)φ̃(z)dz

+ 1
n(n−2)ωn

∫

Rn

l̃m(z)
|y−z|n−2dz +

∑

i,j ci,jZi,j(y) +
∑

i biσi(y)

= I + II + v +
∑

i,j ci,jZi,j(y) +
∑

i biσi(y).

For II, similar to the estimate of lm, we have

‖l̃m‖∗∗ ≤
C|ǫ̃|

λ
n+2
2

−τ
.

To estimate ci,j, we multiply σ
4

n−2
s Zs,t on both side of (2.22). Modifying

the proof of Lemma A.7, we infer that

|ci,j|, |bi| ≤
(

C‖l̃m‖∗∗ +
C

λ
n
2

‖φ̃‖∗
)

1

λτ−1
.

Applying Lemma A.8, we obtain that, for l large,

(2.23) ‖φ̃‖∗ ≤ C(‖v‖∗ +
|ǫ̃|

λ
n+2
2

−τ
).

To estimate (2.21), from Lemma A.6, we have

|
∫

Rn

KλW
4

n−2
m σiφ̃| ≤

C‖φ̃‖∗
λ

n−2
2

+τ
.

For j 6= i, using Lemma A.1, we obtain

|〈σi, σj〉 −
n+ 2

n− 2

∫

Rn

KλW
4

n−2
m σjσi| ≤

C

|X i −Xj|n−2
2

,

and it is easy to get that for l large but independent of m,

〈σi, σi〉 −
n + 2

n− 2

∫

Rn

W
4

n−2
m σ2

i ≤ − 2

n− 2
〈σi, σi〉 ≤ −C.

Therefore, we obtain that

(2.24) |ǫ̃i| ≤ C

(

|η|+ ‖φ̃‖∗
λ

n−2
2

+τ
+

|ǫ̃|
(λl)

n−2
2

)

.

Estimates (2.23) and (2.24) yield

(2.25) ‖(φ̃, ǫ̃)‖ ≤ C

(

‖(v, η)‖+ ‖(φ̃, ǫ̃)‖
λ

n−2
2

)

,
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therefore (2.18) follows when l is chosen large (independent of m).

Step 3. Next we estimate N ′(φ, ǫ) − N ′(0, 0) when ‖(φ, ǫ)‖ ≤ 1
2
. We

compute the term

(N ′(φ, ǫ)−N ′(0, 0))(v, η) = (ṽ, η̃).

For the ṽ component, it holds
(2.26)

ṽ = −n+ 2

n− 2
PE(−∆)−1

(

Kλ(v +
∑

i

ηiσi){
(

(W̄m + φ)+
)

4
n−2 −W

4
n−2
m }

)

,

and for the i-th component, we have

(2.27) η̃i = −n + 2

n− 2

∫

Rn

Kλσi(v +
∑

j

ηjσj){
(

(W̄m + φ)+
)

4
n−2 −W

4
n−2
m }.

We first consider the term

‖Kλv{
(

(W̄m + φ)+
)

4
n−2 −W

4
n−2
m }‖∗∗.

Set ǫWm =
∑

i ǫiσi and Ω+ := {x ∈ R
n|u(x) ≥ 0} and Ω− = Ωc

+. Define

χΩ−(x) =







1 if x ∈ Ω−

0 if x ∈ Ω+.

Then we get

(2.28)
(

(W̄m + φ)+
)

4
n−2−W

4
n−2
m = (W̄m+φ)

4
n−2−W

4
n−2
m +χΩ− |W̄m+φ| 4

n−2 .

Since ǫ is small, there holds
(2.29)

|(W̄m + φ)
4

n−2 −W
4

n−2
m | ≤ C











W
4

n−2
−1

m |ǫWm + φ|, if Wm ≥ |φ|,

|φ| 4
n−2 , if |φ| ≥ Wm,

|φ| 4
n−2 |v| ≤ ‖φ‖

4
n−2
∗ ‖v‖∗

(

∑

j

γ(y)

(1 + |y − xj |)n−2
2

+τ

)
n+2
n−2

.

Similar to the estimate of ‖lm‖∗∗, we use Lemma A.3. If y ∈ Bi ∩ Ωi,

(

∑

j

γ(y)

(1 + |y − xj |)n−2
2

+τ

)
n+2
n−2

≤ C
∑

j

γ(y)

(1 + |y − xj |)n+2
2

+τ
.
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If y ∈ Bc
i ∩ Bi,m ∩ Ωi, we obtain that

(

∑

j
γ(y)

(1+|y−xj |)
n−2
2 +τ

)
n+2
n−2

≤ C
∑

j
1

(1+|y−xj |)
n+2
2 +τ+ 4

n−2 (τ−k)

1

(λl)
4

n−2k

≤ C
∑

j
1

(1+|y−xj |)
n+2
2 +τ

1

(λl)
4

n−2k
,

as τ ≥ k.
If y ∈ Bc

i,m ∩ Ωi, we have first

(

∑

j

1

(1 + |y − xj |)n−2
2

+τ

)
n+2
n−2

≤ C
1

(1 + |y − xi|)n+2
2

+n+2
n−2

τ
m

n+2
n−2

k.

On the other hand
∑

j

1

(1 + |y − xj |)n+2
2

+τ
≥ C

1

(1 + |y − xi|)n+2
2

+τ
(1 + C[

m

2
])k.

It is not hard to see that when y ∈ Bc
i,m ∩ Ωi, there is a constant C

independent of m such that for τ ≥ k,

1

(1 + |y − xi|) 4
n−2

τ
m

n+2
n−2

k ≤ C
1

(λl)
4

n−2
k
(1 + C[

m

2
])k

which gives

(

∑

j

γ(y)

(1 + |y − xj |)n−2
2

+τ

)
n+2
n−2

≤ C
∑

j

1

(1 + |y − xj |)n+2
2

+τ

1

(λl)
4

n−2
k

when y ∈ Bc
i,m ∩ Ωi. Therefore, we obtain that

‖χΩ−|W̄m + φ| 4
n−2 v‖∗∗, ‖φ 4

n−2 v‖∗∗ ≤ C‖φ‖
4

n−2
∗ ‖v‖∗.

When Wm > |φ| and for n ≥ 5,

‖W
4

n−2
−1

m |ǫWm + φ|v‖∗∗ ≤ ‖W
2

n−2
m φ

2
n−2v‖∗∗ + |ǫ|‖W

4
n−2
m v‖∗∗

≤ C(‖v‖∗‖φ‖
2

n−2
∗ + |ǫ|‖v‖∗).

Combining the above estimates, we deduce that

‖Kλv{
(

(W̄m + φ)+
)

4
n−2 −W

4
n−2
m }‖∗∗ ≤ C‖v‖∗(‖φ‖

2
n−2
∗ + ‖φ‖

4
n−2
∗ + |ǫ|).
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Similarly, we have

‖Kλ(
∑

j

ηjσj){
(

(W̄m + φ)+
)

4
n−2−W

4
n−2
m }‖∗∗ ≤ C|η|(|ǫ|+‖φ‖∗+|ǫ| 4

n−2+‖φ‖
4

n−2
∗ ).

Hence by Lemma A.7, we have
(2.30)

‖ṽ‖∗ ≤ C‖v‖∗(‖φ‖
2

n−2
∗ + |ǫ|) + C|η|(|ǫ|+ ‖φ‖∗ + |ǫ| 4

n−2 + ‖φ‖
4

n−2
∗ )

≤ C‖(v, η)‖(‖φ‖
2

n−2
∗ + |ǫ|+ ‖φ‖∗

λτ−1 +
|ǫ|

4
n−2

λτ−1 + ‖φ‖
4

n−2
∗

λτ−1 ).

Next we estimate (2.27). It is not hard to see that from Lemma A.1,
Lemma A.2 and Lemma A.3, we can deduce that

|
∫

Rn Kλσi(ηWm){
(

(W̄m + φ)+
)

4
n−2 −W

4
n−2
m }|

≤ C|η|(|ǫ|+ |ǫ| 4
n−2 + ‖φ‖

4
n−2
∗ + ‖φ‖∗),

(

(W̄m + φ)+
)

4
n−2 −W

4
n−2
m = (W̄m + φ)

4
n−2 −W

4
n−2
m + χΩ− |W̄m + φ| 4

n−2 .

Simple computations give

|
∫

Rn KλσivW
4

n−2
m |

≤
∫

Rn

C‖v‖∗
(1+|y−Xi|)n−2

∑

j
γ(y)

(1+|y−Xj |)
n−2
2 +τ

(

∑

j
1

(1+|y−Xj |)n−2

) 4
n−2

≤ C‖v‖∗
λτ−1

∑

j

∫

Ωj∩Bj

1
(1+|y−Xi|)n−2

1

(1+|y−Xj |)
n
2 +4

+ C‖v‖∗
(λl)

4k
n−2

∫

∪s(Ωs∩Bc
s)

1
(1+|y−Xi|)n−2

∑

j
1

(1+|y−Xj |)
n−2
2 +4+τ− 4k

n−2

≤ C‖v‖∗
λτ−1 .

Similarly we obtain

|
∫

Rn

KλσivW
4

n−2
−1

m φ| ≤ C‖v‖∗‖φ‖∗
λ2τ−2

,

and

|
∫

Rn

Kλσiv|φ|
4

n−2 | ≤ C
‖v‖∗
λτ−1

(‖φ‖∗
λτ−1

)
4

n−2

.

In view of (2.29) and the above estimates, we obtain that
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|
∫

Rn Kλσiv{
(

(W̄m + φ)+
) 4

n−2 −W
4

n−2
m }|

≤ C‖v‖∗
λτ−1 (|ǫ|+ ‖φ‖∗

λτ−1 +
(

‖φ‖∗
λτ−1

)
4

n−2
).

Therefore we have

(2.31)

λτ−1|η̃| ≤ C‖v‖∗(|ǫ|+ ‖φ‖∗
λτ−1 +

(

‖φ‖∗
λτ−1

) 4
n−2

)

+C|η|λτ−1(|ǫ|+ |ǫ| 4
n−2 + ‖φ‖

4
n−2
∗ + ‖φ‖∗)

≤ C‖(v, η)‖(|ǫ|+ |ǫ| 4
n−2 + ‖φ‖

4
n−2
∗ + ‖φ‖∗).

Thus by (2.30) and (2.31), we obtain

‖(ṽ, η̃)‖ ≤ C‖(v, η)‖(|ǫ|+ |ǫ| 4
n−2 + ‖φ‖

2
n−2
∗ + ‖φ‖

4
n−2
∗ + ‖φ‖∗),

which yields that

(2.32) ‖N ′(φ, ǫ)−N ′(0, 0)‖ ≤ C(|ǫ|+ |ǫ| 4
n−2 + ‖φ‖

2
n−2
∗ + ‖φ‖

4
n−2
∗ + ‖φ‖∗).

Step 4. Set θ = 1
2
and a = C

λ
n+2
2 −τ

with C so large that ‖N ′(0, 0)−1N(0, 0)‖ ≤
(1− θ)a. For ‖(φ, ǫ)‖ ≤ a, it follows from our estimate (2.32) that

‖N ′(0, 0)−1‖‖N ′(φ, ǫ)−N ′(0, 0)‖ ≤ Ca
2

n−2 < θ

for λ large. The condition of Lemma 2.1 is satisfied and the existence and
uniqueness of φ(P,Λ) and ǫ(P,Λ) follow from the lemma. The C1 depen-
dence follows from (2.18), (2.32)and the fact that N has C1 dependence
on P , ǫ, Λ and φ. �

3. Solving a finite dimensional problem

In this section, we will choose the positive constants C1, C2 and integer
l0 and solve (2.4) and (2.5) for some P i ∈ B 1

2
(X i) and Λi ∈ (C1, C2) when

l ≥ l0.
To this end, we need some preliminary computations.

Lemma 3.1.

(3.1) (1 + ǫi)
−1 ∂J

∂P i
j

= −
∫

Rn

Kλσ
n+2
n−2

i Zi,j + o(
1

λβ
).
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Proof. The left hand side of (3.1) equals

(1 + ǫi)
−1 ∂J

∂P i
j
=
∑

s 6=i(1 + ǫs)〈 ∂σi

∂P i
j
, σs〉

−
∫

Rn Kλ ((Wm + ǫWm + φ)+)
n+2
n−2 Zi,j

=
∑

s 6=i(1 + ǫs)〈 ∂σi

∂P i
j
, σs〉 −

∫

Rn Kλ (Wm + ǫWm + φ)
n+2
n−2 Zi,j

−
∫

Ω−
Kλ|Wm + ǫWm + φ|n+2

n−2Zi,j.

BY Proposition 2.1, |ǫ| is small. Therefore in Ω−, |φ| ≥ Wm

2
. From

Lemma A.5 and the estimates in Lemma A.11, we deduce that

|
∫

Ω−
Kλ|Wm + ǫWm + φ|n+2

n−2Zi,j| ≤ C
∫

|φ|≥Wm
2

|φ|n+2
n−2 |Zi,j|

≤ C‖φ‖
n+2
n−2
∗

1

(λl)
n
2 +τ

n+2
n−2

≤ C

λ
n+

2(n+2)
n−2

.

Lemma 3.1 now follows from Lemma A.11 and Proposition 2.1. �

Lemma 3.2.

(3.2)

(1 + ǫi)
−1 ∂J

∂Λi
=
∑

j 6=i〈 ∂σi

∂Λi
, σj〉

−
∫

Rn Kλ

(

∑

k σ
n+2
n−2

k + n+2
n−2

σ
4

n−2

i

∑

j 6=i σj

)

Zi,n+1 + o( 1
λβ ).

Proof. As before the left hand side equals

(1 + ǫi)
−1 ∂J

∂Λi
=
∑

j 6=i(1 + ǫj)〈 ∂σi

∂Λi
, σj〉

−
∫

Rn Kλ

(

(W̄m + φ|)+
)

n+2
n−2 Zi,n+1

=
∑

j 6=i(1 + ǫj)〈 ∂σi

∂Λi
, σj〉 −

∫

Rn Kλ|W̄m + φ| 4
n−2 (W̄m + φ)Zi,n+1

−
∫

Ω−
Kλ|W̄m + φ|n+2

n−2Zi,n+1,

where
∫

Rn Kλ|W̄m + φ| 4
n−2 (W̄m + φ)Zi,n+1 =

∫

Rn KλW
n+2
n−2
m Zi,n+1

+n+2
n−2

∫

Rn KλW
4

n−2
m (ǫWm + φ)Zi,n+1

+O(1)
∫

|φ|≥Wm
|φ|n+2

n−2 |Zi,n+1|+O(1)
∫

|φ|≤Wm
W

6−n
n−2
m |ǫWm + φ|2|Zi,n+1|.
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Here O(1) means a number uniformly bounded independent of m or l.

Recall that |Zi,n+1| ≤ C
(1+|y−P i|)n−2 . When λ is large, by Lemma A.5,

if |φ| ≥ Wm, then y ∈ (∪j(Bj ∩ Ωj))
c := Ω. By Lemma A.1 and similar

argument as in Lemma A.11, we deduce that

|
∫

Ω−

Kλ|W̄m + φ|n+2
n−2Zi,n+1| ≤ C

∫

Ω

|φ|n+2
n−2 |Zi,n+1| ≤

C

λn−1+
2(n+2)
n−2

.

∫

|φ|≤Wm

W
6−n
n−2
m |ǫWm + φ|2|Zi,n+1| ≤ C(

‖φ‖2∗
λ2τ−2

+ |ǫ|2) ≤ C

λn
.

Since 〈φ, Zi,n+1〉 = 0, by Lemma A.6,
∫

Rn

KλW
4

n−2
m φZi,n+1 =

∫

Rn

(Kλ − 1)σ
4

n−2

i φZi,n+1 + o(
1

λn
) ≤ C

λn
.

Similarly

∫

Rn KλW
4

n−2
m ǫWmZi,n+1

=
∫

Rn(Kλ − 1)ǫiσ
n+2
n−2

i Zi,n+1 +
C|ǫ|

(λl)n−2 ≤ o( 1
λn ).

In the region y ∈ Ωj ∩ Bc
j

W
n+2
n−2
m (y) ≤ C

(λl)
4

n−2
k

∑

s

1

(1 + |y −Xs|)n+2− 4
n−2

k
.

Therefore by Lemma A.1 we have that for all n ≥ 5

|
∫

∪j(Ωj∩Bc
j )
Kλ(y)W

n+2
n−2
m Zi,n+1dy| ≤

C

(λl)
4

n−2 k

∫

∪j(Ωj∩Bc
j )

∑

s
1

(1+|y−Xs|)n+2− 4
n−2 k

1
(1+|y−Xi|)n−2dy

≤ C

(λl)
4

n−2k

∑

s 6=i
1

|Xi−Xs|
n−2
2

1

(λl)
n+2
2 − 4

n−2 k
+ C

(λl)n

≤ C
(λl)n

For y ∈ Ωj ∩ Bj , we have

|W
n+2
n−2
m − σ

n+2
n−2

j − n+2
n−2

σ
4

n−2

j Ŵm,j|

≤ CŴ 2
m,jσ

4
n−2

−1

j ≤ Ŵ
n

n−2

m,j σ
n

n−2
−1

j .
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We can show for j 6= i,
∫

Ωj∩Bj
Kλ(y)W

n+2
n−2
m Zi,n+1dy =

∫

Ωj∩Bj
Kλ(y)σ

n+2
n−2

j Zi,n+1dy

+ C
(λl)2|Xi−Xj |n−2 =

∫

Rn Kλ(y)σ
n+2
n−2

j Zi,n+1dy +
C

(λl)2|Xi−Xj |n−3 .

When j = i,
∫

Ωi∩Bi
Kλ(y)W

n+2
n−2
m Zi,n+1dy

=
∫

Ωi∩Bi
Kλ(y)

(

σ
n+2
n−2

i + n+2
n−2

σ
4

n−2

i

∑

j 6=i σj

)

Zi,jdy +
C

(λl)n−1

=
∫

Rn Kλ(y)

(

σ
n+2
n−2

i + n+2
n−2

σ
4

n−2

i

∑

j 6=i σj

)

Zi,n+1dy +
C

(λl)n−1 .

Together with

|
∑

j 6=i

ǫj〈
∂σi

∂Λi

, σj〉 ≤
C|ǫ|

(λl)n−2
| = o(

1

λβ
),

we can easily deduce the estimate (3.2).
�

By the estimates in [5],
∫

Rn

σ
n+2
n−2

j

∂σi

∂λi

= C4
∂ǫij

∂λi

+
1

λi

O(ǫ
n

n−2

ij log ǫ−1
ij )

where C4 = (n(n− 2))
n
2
∫

Rn
1

(1+|y|2)
n+2
2
dy and

ǫij =

(

λi

λj

+
λj

λi

+ λiλj|P i − P j|2
)−n−2

2

, for i 6= j.

Using Lemma 3.1 and Lemma A.9, we infer that (2.4) is equivalent to

(3.3) Dn,βaj
1

Λβ−2
i λβ

(P i
j −X i

j) = O(
|P i −X i|2

λβ
) + o(

1

λβ
),

for all i = 1, ..., (m+ 1)k and j = 1, ..., n.

By Lemma 3.2, Lemma A.10, Lemma A.12 and Lemma A.13, we can
derive that (2.5) is equivalent to

(3.4)
∑

j 6=i

(n− 2)C4AijΛj

2(ΛiΛj)
n
2 (λl)n−2

− C3

Λβ+1
i λβ

= o(
1

λβ
) +O(

|P i −X i|β−1

λβ
).
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In the above, A := {Aij} is a (m+ 1)k × (m+ 1)k matrix associated to
the lattice Xl,m(or X1,m), given as follows

A = (Aij) =











0 if i = j

(

λl
|Xi−Xj |

)n−2

if i 6= j.

If we take bi = Λ
−n−2

2
i , then we see that (2.5) is equivalent to

(3.5)
∑

j 6=i

Aijbj −
(

2C3

(n− 2)C4
+ o(1) +O(

|P i −X i|β−1

λ
)

)

b
2β
n−2

−1

i = 0.

Now we consider the functional F : R
(m+1)k

+ → R defined by

(3.6) F (b) =
1

2
btAb− C3

βC4

∑

i

b
2β
n−2

i , for b = (b1, ..., b(m+1)k).

Since C3 > 0 and β > n− 2, the maximum of F will give a solution to
the system

Fi(b) =
∑

j 6=i

Aijbj −
2C3

(n− 2)C4
b

2β
n−2

−1

i = 0, i = 1, ..., (m+ 1)k.

Let B̄m = (b̄1, ..., b̄(m+1)k) be a solution to the above system.

Lemma 3.3. There exist positive constants C5 < C6 independent of m,
such that C5 ≤ |b̄i| ≤ C6 for all i = 1, ..., (m+ 1)k.

Proof. For each Fi, for any integer m ≥ 1, without loss of generality, we
can assume that b̄1 ≤ b̄i ≤ b̄2 for all i = 1, ..., (m+1)k. From the equation
F2(B̄m) = 0, summing in j, we can get

b̄
2β
n−2

−1

2 ≤ Cmax
j 6=i

b̄j ≤ Cb̄2,

where C = (n−2)C4

2C3

∑

j 6=iAij and
∑

j 6=iAij can be controlled by
∫

Rk

dy

1+|y|n−2 .

Similarly from the equation F1(B̄m) = 0, summing in j, we deduce that

b̄
2β
n−2

−1

1 ≥ (n− 2)C4

2C3

∑

j 6=i

Aij b̄1 ≥
(n− 2)C4

2C3
b̄1.

From the above two inequalities, we conclude that C5 ≤ b̄i ≤ C6 for all
i = 1, ..., (m+ 1)k. �
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By the form of F and using the fact that 2 < 2β
n−2

< 4, we see that the

Hessian matrix at B̄m D2F (B̄m) is negative definite (this ensures that B̄m

is unique). We will show that the inverse matrix of D2F (B̄m) is uniformly
bounded independent of m when l is large enough.

Take X = (x1, ..., x(m+1)k) in R
(m+1)k ,

(

D2(F (B̄m))X
)

i
=
∑

j 6=i

Aijxj − (
2β

n− 2
− 1)

2C3

(n− 2)C4

b̄
2β

n−2
−2

i xi.

Consider the i with largest |xi

b̄i
| (from Lemma 3.3, |xi| ≥ C|X|). By the

equation Fi(B̄m) = 0, as 2β > 2(n− 2), we obtain

|( 2β
n−2

− 1) 2C3

(n−2)C4
b̄

2β
n−2

−2

i xi| ≥ | 2C3

(n−2)C4
b̄

2β
n−2

−1

i
xi

b̄i
|

≥ |∑j 6=iAij b̄j | × |xi

b̄i
| ≥∑j 6=iAij|xj | ≥ |∑j 6=iAijxj |.

This implies that

|
(

D2(F (B̄m))X
)

i
| ≥ |( 2β

n−2
− 1) 2C3

(n−2)C4
b̄

2β
n−2

−2

i xi| − |∑j 6=iAijxj |

≥ |xi

b̄i
|( 2β

n−2
− 1) 2C3

(n−2)C4
b̄

2β
n−2

−2

i b̄i − |xi

b̄i
|(∑j 6=iAij b̄j),

= ( 2β
n−2

− 2) 2C3

(n−2)C4
b̄

2β
n−2

−1

i |xi

b̄i
| (by Fi(B̄m) = 0)

≥ C|X| (by Lemma 3.3),

where C only depends on C3, C4, C5, C6. Hence we get

|D2F (B̄m)X| ≥ C|X|.
Similarly, we can also show that

|D2F (B̄m)X| ≤ C|X|.

Thus we obtain that |
(

D2F (B̄m)
)−1

X| ≤ C|X| for all X ∈ R
(m+1)k

with maximum norm | · |.
Proof of Theorem 1. By (3.3), (2.4) is equivalent to

(3.7) P i −X i = O(|P i −X i|2) + o(1), for all i,

From (3.5) if we let t = b− B̄m ∈ R
(m+1)k , then (2.5) is equivalent to

(3.8) D2F (B̄m)t = O(|t|2) + o(1) +O(max |P i −X i|2).



MULTI-BUMP SOLUTIONS ON LATTICES 25

For R(m+1)k×(n+1), equipped with maximum norm, we can choose a C >

0 large but independent of m and l. When l is large enough, (3.7) and
(3.8) define a continuous map from

B := BCo(1)(X
1)× ...×BCo(1)(X

(m+1)k)× BCo(1)(B̄m) → B.

By Brouwer fixed point theorem, we can solve equations (3.7) and (3.8)

near (X1, ..., X(m+1)k , Bm) with

|P i −X i| = o(1), |b− Bm| = o(1).

Therefore we have solved ∂J
∂Λi

= 0, ∂J
∂P i

j
= 0 with

(3.9) |Λ− B
− 2

n−2
m | = o(1), |P i −X i| = o(1),

when λ large enough.

By Lemma 3.3, we can now choose positive constants C1 < C2 which
only depend on C5 and C6 and are independent of m and l. Then we can
take integer l0 large enough such that the (P,Λ) given in (3.9) satisfies
P i ∈ B 1

2
(X i) and Λi ∈ (C1, C2) for all i and l ≥ l0. Therefore a solution

to equation (1.4) is guaranteed. �

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let {um} denote the solutions of (1.1 given by
Theorem 1 with l ≥ l0 large and fixed. For each m, we can find xm ∈ Xl,m,
such that

∪∞
m=1(Xl,m − xm) = X i

l .

Let
(Sλûm)(x) = (Sλum)(x+ xm).

Then ûm satisfies the same equation as um due to the periodicity of K.
We will show that there exists some constant C(l), independent of m, such
that

(3.10) ûm(x) ≤ C(l), ∀ x ∈ R
n.

Once we have (3.10), we then deduce, by elliptic estimates, that for any
R > 1, there exists some constant C2(l), independent of m, such that

(3.11) ‖ûm‖C3(BR) ≤ C2(l), ∀ m = 1, 2, 3, ...

This implies that we can pass to a subsequence {ûmi
} such that

ûmi
→ u in C2

loc(R
n)

for some non-negative function u ∈ C2(Rn). Clearly u satisfies

−∆u = K(x)u
n+2
n−2

+ , in R
n.
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By the form of u given by Theorem 1, u can not be identically zero,
provided that l is large (but independent of m). In fact from the form
of u given by Theorem 1, u is clearly bounded from below in B1(0) by
a positive constant independent of m. Therefore, by strong maximum
principle, u > 0 in R

n.

It remains to prove (3.10). This follows from the form of Sλum (given
by Theorem 1). In fact by the estimates on ‖φ‖∗, when k < n−2

2
,

‖φ‖L∞(Rn) ≤ ‖φ‖∗
∑

i

1

(1 + |x−X i|)n−2
2

+τ
≤ C‖φ‖∗.

where C doesn’t depend on m. For the same reason, we also have

‖
∑

Xi∈Xl,m

σP i,Λi
‖L∞(Rn) ≤ C,

where C doesn’t depend on m.

Thus it follows from the form of solution given by Theorem 1, that

‖Sλum‖L∞(Rn) ≤ C.

By the form of Sλ, we get ‖um‖L∞(Rn) ≤ Cλ
n−2
2 = Cl

(n−2)2

2(β−n+2) , (3.10) is
thus established. �

4. Proof of Theorem 3

We first give a lemma which is used in the proof of Theorem 3.

Lemma 4.1. For n ≥ 3, 0 < α < 1, let f ∈ Cα
loc(R

n) be nonnegative
outside a compact set of Rn. Assume that u ∈ C2(Rn) satisfies

−∆u = f in R
n,

and
lim inf
|x|→∞

u(x) > −∞.

Then, for some constant a ≥ min(0, lim inf |x|→∞ u(x)),

u(x) =
1

n(n− 2)ωn

∫

Rn

f(x̃)dx̃

|x− x̃|n−2
+ a, ∀x ∈ R

n,

where ωn is the volume of a unit ball in R
n.

Proof. By adding −min(0, lim inf |x|→∞ u(x)) to u, we may assume, with-
out loss of generality, that lim inf |x|→∞ u(x) ≥ 0.

Let

ui(x) =
1

n(n− 2)ωn

∫

Bi

f(x̃)dx̃

|x− x̃|n−2
, i = 1, 2, 3, ....
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We know that

(4.1) ∆(u− ui) = 0 in Bi,

and, using the fact that f is nonnegative outside a compact set,

ui ≤ ui+1, ∆(u− ui) ≤ 0, in R
n for large i.

Clearly

lim inf
|x|→∞

(u− ui)(x) ≥ 0.

Thus, by the maximum principle,

u− ui ≥ 0 in R
n for large i.

Using the Fatou’s Lemma, we obtain

1

n(n− 2)ωn

∫

Rn

f(x̃)dx̃

|x− x̃|n−2
≤ lim

i→∞
ui(x) ≤ u(x).

Now, by the Lebesgue dominated convergence theorem,

lim
i→∞

ui(x) =
1

n(n− 2)ωn

∫

Rn

f(x̃)dx̃

|x− x̃|n−2
≤ u(x), ∀x ∈ R

n.

For every R > 0,

∆(u− ui) = 0 in B2R, ∀i > 2R.

We know that {u − ui}, for large i, is a non-increasing sequence of non-
negative harmonic functions in B2R. In particular, {u − ui} is uniformly
bounded in B2R. By the interior derivative estimates of harmonic func-
tions, the convergence of {u− ui} is C2 in B2R. Thus {u− ui} converges
to some function ξ in C2

loc(R
n). The entire nonnegative harmonic function

ξ is a constant, denoted by a. Lemma 4.1 is established. �

Proof of Theorem 3. We prove it by contradiction. Let u be a C2 solu-
tion of (1.1) satisfying (1.10) for some R, ǫ > 0 and 0 ≤ i ≤ k. We divide
the proof into three steps.

Step 1. For any a > 0, we have

sup{u(x)|x ∈ R
n, dist(x,Rk

i ) < a} < ∞.

Suppose not, by making a translation according to the periods of K, we
may assume that there exists |xj | ≤ a+1, such that uj, the corresponding
translations of u, satisfies











−∆uj = Ku
n+2
n−2

j , uj > 0 in R
n,

uj(xj) → ∞
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and

(4.2) inf
x∈Rk

i

sup
BR(x)

uj ≥ ǫ.

By Theorem 1.2 in [15], there exists a positive constant C(K, a) such
that

∫

B2a(0)

|∇uj|2 + u
2n
n−2

j ≤ C(K, a).

By Proposition B.1, {uj}, after passing to a subsequence, only has iso-
lated simple blow up points in R

n. Let S be the set of blow up points in
R

n. We know that S 6= ∅. Proposition 4.2 of [34], applied to translations
of {uj}, shows that there exists a δ > 0, such that

inf
x,y∈S,x 6=y

|x− y| ≥ δ.

Passing to a subsequence and replacing xj by some nearby points if
necessary, we may assume that xj → x̄ ∈ S is an isolated simple blow up
point. Thus by Proposition 2.3 in [34], that

uj(xj)uj → h C2
loc(R

n \ S),
where h is a positive harmonic function on R

n \ S and has a singularity
at each point in S. By the proof of Theorem 4.2 in [34], S can not have
more than one point, so S = {x̄}, and uj → 0 uniformly on any compact
subset of Rn \ {x̄}. This contradicts (4.2).
Step 2. For any a > 0,

inf{u(x)|x ∈ R
n, dist(x,Rk

i ) < a} > 0.

By step 1,
sup

dist(x,Rk
i )<2a

u(x) = C(a) < ∞.

Since
−∆u = Ku

n+2
n−2 =

(

Ku
4

n−2

)

u,

and |Ku
4

n−2 | ≤ (supK)C(a)
4

n−2 if dist(x,Rk
i ) < 2a, We apply the Harnack

inequality to obtain

sup
Ba(x)

u ≤ C(a, supK) inf
Ba(x)

u, ∀x ∈ R
k
i .

We may assume without loss of generality that a ≥ R. Then, in view
of (1.10), we have

sup
Ba(x)

u ≥ ǫ, ∀x ∈ R
k
i .

Step 2 is established.
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Taking a = 1 in step 2, we have, for some positive constant b,

(4.3) u(x) ≥ b, ∀x such that dist(x,Rk
i ) < 1.

Step 3. When k ≥ n−2
2
, (1.1) has no C2 solution satisfying (4.3).

By Lemma 4.1,

(4.4) u(x) =
1

n(n− 2)ωn

∫

Rn

K(x̃)u
n+2
n−2 (x̃)

|x− x̃|n−2
dx̃+ a, ∀x ∈ R

n,

where a ≥ 0. We will show that a = 0.
Since u > 0 in R

n and infK > 0, (4.4) implies

u(x) ≥ (infK)a
n+2
n−2

n(n− 2)ωn

∫

Rn

dx̃

|x− x̃|n−2
,

therefore a = 0, since
∫

Rn
dx̃

|x−x̃|n−2 = ∞.

From (4.4) with a = 0 and (4.3), we have, for some constant C > 1,

(4.5) u(x) ≥ 1

C

∫

dist(x̃,Rk
i )<1

dx̃

|x− x̃|n−2
, ∀x ∈ R

n.

If k ≥ n− 2, the right hand side of the above is ∞, which is impossible.
Now we treat the remaining case: n−2

2
≤ k < n − 2. For convenience,

we write R
n = R

k × R
n−k. For any x ∈ R

n, x = (y, z) ∈ R
k × R

n−k and
u(x) = u(y, z). We show that, for some constant C > 1,

(4.6) u(y, z) ≥ 1

C(1 + |z|)n−2−k
, ∀(y, z) ∈ R

k
i × R

n−k.

By (4.5),

u(y, z) ≥ 1
C

∫

Rk
i

∫

|z̃|≤1
dỹdz̃

|(y,z)−(ỹ,z̃)|n−2 ,

≥ 1
C

∫

Rk
i

dξ

(1+|ξ|2)
n−2
2

∫

|z̃|≤1
dz̃

|z−z̃|n−k−2 ,

≥ 1
2iC

∫

Rk

dξ

(1+|ξ|2)
n−2
2

∫

|z̃|≤1
dz̃

|z−z̃|n−k−2 ,

≥ ωn−k

2iC(|z|+1)n−2−k

∫

Rk

dξ

(1+|ξ|2)
n−2
2

≥ 1
C(1+|z|)n−2−k .

Here we have made a change of variables ξ = ỹ−y

|z̃−z| and have used the

fact that for every fixed z̃ − z 6= 0 and y ∈ R
k
i , the set

{ ỹ − y

|z̃ − z| |ỹ ∈ R
k
i } ⊃ R

k
i .
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Let v be the spherical average of u defined by

v(x) = v(|x|) = v(r) =
1

|∂Br(0)|

∫

∂Br(0)

udS,

then by Jensen’s inequality,

−∆v ≥ (infK)v
n+2
n−2 , in R

n.

By some elementary argument, see e. g. [14], we have, for some constant
C > 0,

(4.7) v(x) ≤ C

(1 + |x|)n−2
2

, for any x ∈ R
n.

For k > n−2
2
, we obtain (r = |x|), using (4.6) and (4.7),

C

(1+r)
n−2
2

≥ v(r) = 1
|∂Br(0)|

∫

∂Br(0)
udS

≥ 1
Crn−1

∫ r

0
da
∫

{|y|=a}∩Rk
i ,|z|=

√
r2−a2

u(y, z)

≥ 1
2iCrn−1

∫ r

0
1

(1+
√
r2−a2)n−2−k

ak−1(
√
r2 − a2)n−k−1da

≥ 1
C

∫ 1

0
sk−1(

√
1−s2)n−k−1

(1+r
√
1−s2)n−2−k

ds

≥ 1
Crn−2−k

∫ 1

0
sk−1(

√
1−s2)n−k−1

(1+
√
1−s2)n−2−k

ds, for r ≥ 1

≥ 1
C(1+r)n−2−k , for r ≥ 1.

Sending r to ∞ leads to a contradiction.

For k = n−2
2

and 0 ≤ i ≤ k = n−2
2
, we derive from (4.4) (notice that

a = 0) and (4.6) that, for any (y, z) ∈ R
k
i × R

n−k,

(4.8)

u(y, z) ≥ 1
C

∫

Rk
i ×Rn−k

dỹdz̃

|(y,z)−(ỹ,z̃)|n−2(1+|z̃|)(n−2−k)n+2
n−2

≥ 1
C

∫

Rk
i

dξ

(1+|ξ|2)
n−2
2

∫

Rn−k
dz̃

|z̃−z|n−k−2(1+|z̃|)(n−2−k) n+2
n−2

≥ max(1,log |z|)
C(1+|z|)

n−2
2

by Lemma A.2.
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By (4.7) and (4.8), we obtain when k = n−2
2

and 0 ≤ i ≤ k,

1

(1+r)
n−2
2

≥ v(r) = 1
|∂Br(0)|

∫

∂Br(0)
udS

≥ 1
Crn−1

∫ r

0
da
∫

{|y|=a}∩Rk
i ,|z|=

√
r2−a2

u(y, z)

≥ 1
2iCrn−1

∫ r

0
max(1,log r

√
1−a2)

(1+
√
r2−a2)

n−2
2

a
n−2
2

−1(
√
r2 − a2)

n
4 da

≥ 1
C

∫ 1

0
max(1,log r

√
1−s2)

(1+r
√
1−s2)

n−2
2

s
n−2
2

−1(
√
1− s2)

n
4 ds

≥ 1
C

∫ 1
2
0

log
√

3r
2

(1+r
√
1−s2)

n−2
2
s

n−2
2

−1(
√
1− s2)

n
4 ds, for r ≥ 10

≥ log r
2

(1+r)
n−2
2
, for r ≥ 10.

We also arrive at a contradiction when r → ∞. Thus Theorem 3 is
proved. �

From the proof of Theorem 3, it is easy to see that when k < n−2
2
,

0 ≤ i ≤ k and K has a positive lower bound, (1.1) does not admit a
solution u satisfying

lim
|z|→∞

(1 + |z|)n−2
2 u(y, z) = ∞, uniformly in y ∈ R

k
i .

In some sense, n−2
2

is a threshold value for the decay power of solutions
of (1.1).

Lemma 4.2. Let 1 ≤ k < n−2
2
, suppose that K ≥ 0, but not identically

equal zero and K is bounded from above. Let u be a positive solution of
(1.1). Assume, for some constants τ > 0, that

(4.9) sup
(y,z)∈Rn

(1 + |z|)n−2
2

+τu(y, z) < ∞.

Then

(4.10) sup
(y,z)∈Rn

(1 + |z|)n−2−ku(y, z) < ∞.

Proof. When τ ≥ n−2
2

− k, (4.10) is obvious. Now we consider the case

0 < τ < n−2
2

− k. By (4.4) (notice that a = 0) and (4.9), we obtain that
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for some constant C > 0,

u(y, z) ≤ C
∫

Rk

∫

Rn−k
1

|(y,z)−(ỹ,z̃)|n−2
1

(1+|z̃|)
n−2
2 +n+2

n−2 τ+2
dỹdz̃,

≤ C
∫

Rn−k
1

|z−z̃|n−k−2
1

(1+|z̃|)
n−2
2 +n+2

n−2 τ+2
dz̃.

Therefore if n−2
2

+ n+2
n−2

τ 6= n− k − 2, applying the first part of Lemma
A.2, we have

u(y, z) ≤ C

(1 + |z|)min(n−k−2,n−2
2

+n+2
n−2

τ)
.

If n−2
2

+ n+2
n−2

τ > n − k − 2, we are done. Therefore we only need to

consider the case n−2
2

+ n+2
n−2

τ < n − k − 2 if they are not equal. In this
case, we get

u(y, z) ≤ C

(1 + |z|)n−2
2

+n+2
n−2

τ
.

Let τ1 = n+2
n−2

τ and τi =
n+2
n−2

τi−1. Obviously, {τi} is an increasing se-

quence and hence we can iterate till we get n−2
2

+ n+2
n−2

τi ≥ n − k − 2. If
n−2
2

+ n+2
n−2

τi > n− k − 2, then we are done. If n−2
2

+ n+2
n−2

τi = n− k − 2, i.

e., τi = (n−2
2

− k)n−2
n+2

, we can apply the second part of Lemma A.2 to get

(4.11) u(y, z) ≤ C
max(1, log |z|)
(1 + |z|)n−k−2

, ∀(y, z) ∈ R
n.

Choose any τi+1 ∈ (τi,
n−2
2

− k), then n−2
2

+ n+2
n−2

τi+1 ≥ n − k − 2. By
(4.11), we have

u(y, z) ≤ C

(1 + |z|)n−2
2

+τi+1
.

Since n−2
2

+ n+2
n−2

τi+1 > n − k − 2, by one more iteration, we get the
conclusion. �

Remark 4.1. We easily see from the proof of Theorem 1 and Lemma 4.2
that solutions constructed in Theorem 1 and Theorem 2 satisfy (4.10).

In the following, for every k ∈ [1, n−2
2
), we give examples of positive

smooth function K such that there is a solution u of (1.1) satisfying (1.10)
for some R, ǫ > 0 and all i ∈ [0, k].

Let (y, z) ∈ R
k × R

n−k and u(y, z) = v(z) = 1

(1+|z|2)
n−2
4
. Direct calcula-

tion shows that

−∆u(y, z) = −∆zv(z) =
n− 2

2

(

n− 2

2
− k +

n− 2

2(1 + |z|2)

)

u(y, z)
n+2
n−2 .
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Moreover u decays like 1

(1+|z|)
n−2
2
. HereK(y, z) = n−2

2

(

n−2
2

− k + n−2
2(1+|z|2)

)

which is periodic in y.

5. Appendix A

In this section, we present the proof of some technical lemmas.
For xi xj , y ∈ R

n, define

gij(y) =
1

(1 + |y − xi|)α(1 + |y − xj |)β
where xi 6= xj and α > 0 and β > 0 are two constants.

We first prove a lemma which slightly improves the Lemma B.1 in [49].

Lemma A.1. For any constant τ ∈ [0,min(α, β)], we have

gij(y) ≤
2τ

(1 + |xi − xj|)τ
(

1

(1 + |y − xi|)α+β−τ
+

1

(1 + |y − xj|)α+β−τ

)

.

Proof. Let d = |xi − xj |. If y ∈ B d
2
(xi), then

|y − xj | ≥
d

2
, |y − xj | ≥ |y − xi|,

which implies

gij(y) ≤
1

(1 + 1
2
d)τ

1

(1 + |y − xi|)α+β−τ
, y ∈ B 1

2
d(xi).

Similarly, we have

gij(y) ≤
1

(1 + 1
2
d)τ

1

(1 + |y − xj |)α+β−τ
, y ∈ B 1

2
d(xj).

Now we consider y ∈ R
n\
(

B 1
2
d(xi) ∪ B 1

2
d(xj)

)

. Then we have |y−xi| ≥
d, |y − xj | ≥ d. We may also assume that |y − xi| ≥ |y − xj |. This yields
that

gij(y) ≤
1

(1 + d)τ
1

(1 + |y − xj|)α+β−τ
.

The result of the Lemma follows easily from above inequalities. �

Lemma A.2. [49] For any constant 0 < τ with τ 6= n− 2, there exists a
constant C = C(n, τ) > 1 such that

1

C(1 + |y|)min(τ,n−2)
≤
∫

Rn

1

|y − z|n−2(1 + |z|)2+τ
dz ≤ C

(1 + |y|)min(τ,n−2)
.
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When τ = n− 2, there exists a constant C = C(n) > 1 such that

max(1, log |y|)
C(1 + |y|)n−2

≤
∫

Rn

1

|y − z|n−2(1 + |z|)ndz ≤ Cmax(1, log |y|)
(1 + |y|)n−2

.

Proof. This follows from a simple modification of the proof of Lemma B.2
in [49]. So we omit the details. �

Recall that for Xl,m = {X i}(m+1)k

i=1 , Ωi = {y ∈ R
n, such that |y−X i| ≤

|y −Xj|, for all j 6= i}, Bi = Bλl(X
i) and Bi,m = Bmax(m

4
,1)λl(X

i).

The following lemma provides basic estimates and will be used fre-
quently in the sequel.

Lemma A.3. For any θ > k, there exists a constant C(θ, k, n) > 1 inde-
pendent of m, such that if y ∈ Bi ∩ Ωi,

(A1)
1

(1 + |y −X i|)θ ≤
∑

j

1

(1 + |y −Xj |)θ ≤ C

(1 + |y −X i|)θ ;

If y ∈ Bc
i ∩Bi,m ∩ Ωi,

(A2)
1

C(1 + |y −X i|)θ−k(λl)k
≤
∑

j

1

(1 + |y −Xj|)θ ≤ C

(1 + |y −X i|)θ−k(λl)k
;

and if y ∈ Bc
i,m ∩ Ωi,

(A3)
mk

C(1 + |y −X i|)θ ≤
∑

j

1

(1 + |y −Xj|)θ ≤ Cmk

(1 + |y −X i|)θ ≤ C

(1 + |y −X i|)θ−k(λl)k
.

Proof. For any y ∈ Ωi, since y is closest to X i, by triangle inequality, we
have

3|y −Xj| ≥ |y −X i|+ |X i −Xj| ≥ |y −Xj|.
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Hence

(A4)

∑

j
1

(1+|y−Xj |)θ ≤ C
(1+|y−Xi|)θ

∑

j
1

(

1+
|Xi−Xj |

(1+|y−Xi|)

)θ

≤ C
(1+|y−Xi|)θ

(

1 +
∫

[−m−1,m+1]k
1

(

1+ λl

1+|y−Xi| |z|
)θ dz

)

≤ C
(1+|y−Xi|)θ

(

1 + (1+|y−Xi|)k
(λl)k

∫

|z|≤ (m+1)λl

(1+|y−Xi|)

1
(1+|z|)θ dz

)

≤ C
(1+|y−Xi|)θ

(

1 + (1+|y−Xi|)k
(λl)k

)

, if θ > k.

If y ∈ Bi ∩ Ωi, the inequalities in (A1) can be easily obtained from the
above.

If y ∈ Bc
i ∩ Ωi, we have

(A5)

∑

j
1

(1+|y−Xj |)θ ≥ C
(1+|y−Xi|)θ

∑

j
1

(

1+
|Xi−Xj |

(1+|y−Xi|)

)θ

≥ C
(1+|y−Xi|)θ

(

1 + 2−k
∫

[0,[m
2
]+1]k\[0,1]k

1
(1+ λl

(1+|y−Xi|) |z|)
θ
dz

)

≥ C
(1+|y−Xi|)θ

(

1 + (1+|y−Xi|)k
(λl)k

∫

λl

(1+|y−Xi|)≤|z|≤ ([m2 ]+1)λl

(1+|y−Xi|)

1
(1+|z|)θ dz

)

,

where the constant 2−k is due to the reason that for any point Xj ∈ Xl,m,
the integral region always contains a quadrant of [0, [m

2
] + 1]k \ [0, 1]k if it

is not empty.
Now when y ∈ Bc

i ∩ Bi,m ∩ Ωi, we may assume that m ≥ 8, since

1 < [m
4
] ≤ [m

2
]+1

2
, we have

∫

λl

(1+|y−Xi|)≤|z|≤ (m2 ]+1)λl

(1+|y−Xi|)

1

(1 + |z|)θ dz ≥
∫

1≤|z|≤2

1

(1 + |z|)θ dz > 0.

The inequalities in (A2) follows easily from above observation and (A4).
When y ∈ Bc

i,m ∩ Ωi, since
λl

1+|y−Xi| ≤ 4
m
, we have

∫

[0,[m
2
]+1]k\[0,1]k

1

(1 + λl
(1+|y−Xi|) |z|)θ

dz ≥
∫

[0,[m
2
]+1]k\[0,1]k

1

(1 + 4
m
|z|)θ dz ≥ Cmk.

Then the inequalities in (A3) follows from (A4) and (A5). �
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Lemma A.4. Suppose that n ≥ 5, 1 ≤ k < n−2
2

and 0 < C1 < C2 <

∞. We can find a positive constant τ0 = τ0(n, k) ∈ (k, n−2
2
], such that

for any k ≤ τ < τ0, there exist constants θ = θ(τ, n, k) > 0 and C =
C(C1, C2, k, n), such that

∫

Rn
1

|y−z|n−2W
4

n−2
m γ(z)

∑

j
1

(1+|z−Xj |)
n−2
2 +τ

dz ≤

Cγ(y)
∑

j
1

(1+|y−Xj |)
n−2
2 +τ+θ

+ C

(λl)
4k

n−2
γ(y)

∑

j
1

(1+|y−Xj |)
n−2
2 +τ

.

Proof. Since n ≥ 5 and k < n−2
2
, using Lemma A.3, we obtain that for

z ∈ Bi ∩ Ωi,

W
4

n−2
m

∑

j

1

(1 + |z −Xj|)n−2
2

+τ
≤ C

1

(1 + |z −X i|)n+2
2

+2+τ

and for z ∈ Bc
i ∩ Ωi ∩Bi,m

W
4

n−2
m

∑

j

1

(1 + |z −Xj|)n−2
2

+τ
≤ C

1

(λl)
4

n−2
k

∑

j

1

(1 + |z −Xj |)n−2
2

+4+τ− 4
n−2

k
.

For z ∈ Bc
i,m ∩ Ωi, we also have

W
4

n−2
m

∑

j

1

(1 + |z −Xj |)n−2
2

+τ
≤ C

mk+ 4
n−2

k

(1 + |z −X i|)n−2
2

+τ+4

≤ C
1

(λl)
4

n−2
k

∑

j

1

(1 + |z −Xj|)n−2
2

+4+τ− 4
n−2

k
.

Now we compute
∫

Ωs∩Bs

1
|y−z|n−2W

4
n−2
m γ(z)

∑

j
1

(1+|z−Xj |)
n−2
2 +τ

dz ≤

∫

Ωs∩Bs

1
|y−z|n−2

(

1+|z−Xs|
λ

)τ−1
C

(1+|z−Xs|)2+
n+2
2 +τ

dz

≤ Cλ1−τ

(1+|y−Xs|)min(n−2
2 +2+1,n−2)

≤
(

1+|y−Xs|
λ

)τ−1
C

(1+|y−Xs|)
n−2
2 +τ+θ

where 0 < θ < min(2, n−2
2

− 1) := θ1.
Similarly we also have

∫

Ωs∩Bs

1
|y−z|n−2W

4
n−2
m γ(z)

∑

j
1

(1+|z−Xj |)
n−2
2 +τ

dz ≤

∫

Ωs∩Bs

1
|y−z|n−2

1

(1+|z−Xs|)2+
n+2
2 +τ

dz ≤ C

(1+|y−Xs|)
n−2
2 +τ+θ

,
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for 0 < θ < min(2, n−2
2

− τ)) := θ2.
If y ∈ Ωi ∩ Bi for some i, from the above two inequalities, taking a

θ ∈ (0,min(θ1, θ2)), we have

∫

∪sΩs∩Bs

1
|y−z|n−2W

4
n−2
m γ(z)

∑

j
1

(1+|z−Xj |)
n−2
2 +τ

dz ≤ Cγ(y)

(1+|y−Xi|)
n−2
2 +τ+θ

+Cmin

(

1
λτ−1

∑

s 6=i
1

(1+|y−Xs|)
n−2
2 +θ+1

,
∑

s 6=i
1

(1+|y−Xs|)
n−2
2 +τ+θ

)

≤ Cγ(y)

(1+|y−Xi|)
n−2
2 +τ+θ

, by Lemma A.3

≤ Cγ(y)
∑

j
1

(1+|y−Xj |)
n−2
2 +τ+θ

.

If y ∈ ∪i(Ωi ∩ Bc
i ), then γ(y) = 1 and it is easy to see that

∫

∪s(Ωs∩Bs)
1

|y−z|n−2W
4

n−2
m γ(z)

∑

j
1

(1+|z−Xj |)
n−2
2 +τ

dz

≤ C

(λl)
4k

n−2

∫

Rn
1

|y−z|n−2

∑

j
1

(1+|z−Xj |)
n−2
2 +τ+4− 4k

n−2

≤∑j
C

(1+|y−Xj |)
n−2
2 +τ+θ

,

where 0 < θ < min(2− 4k
n−2

, n−2
2

− τ) := θ3.

Thus we get

∫

∪i(Ωi∩Bi)
1

|y−z|n−2W
4

n−2
m γ(z)

∑

j
1

(1+|z−Xj |)
n−2
2 +τ

dz ≤

Cγ(y)
∑

j
1

(1+|y−Xj |)
n−2
2 +τ+θ

,

for all 0 < θ < min(θ1, θ2, θ3).
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When z ∈ Ωi ∩ Bc
i , we estimate as follows: if y ∈ ∪i(Ωi ∩ Bc

i ), i.e.,
γ(y) = 1, we have

∫

∪i(Ωi∩Bc
i )

1
|y−z|n−2W

4
n−2
m γ(z)

∑

j
1

(1+|z−Xj |)
n−2
2 +τ

dz

≤ C 1

(λl)
4

n−2k

∫

Rn
1

|y−z|n−2

∑

j
1

(1+|z−Xj |)4+
n−2
2 +τ− 4

n−2k
dz

≤ C
∑

j
1

(1+|y−Xj |)min(n−2
2 +2+τ− 4

n−2 k,n−2)

1

(λl)
4

n−2 k

≤ C











∑

j
1

(1+|y−Xj |)
n−2
2 +τ

1

(λl)
4k

n−2
, when n ≥ 6

∑

j
1

(1+|y−Xj |)n−2
1

(λl)
4k

n−2
, when n = 5, k = 1,

≤ Cγ(y)
∑

j
1

(1+|y−Xj |)
n−2
2 +τ

1

(λl)
4k

n−2
.

Here in the case n ≥ 6, we need n−2
2

+ 2 + τ − 4
n−2

k < n − 2 which

gives τ < n−2
2

− 2 + 4
n−2

k = τ0. Notice that when k < n−2
2
, k < τ0 <

n−2
2
.

Therefore the set for τ is not empty when n ≥ 6. When n = 5, k = 1
since k < n−2

2
. In this case n − 2 < n−2

2
+ 2 + τ − 4

n−2
k and we can just

choose k ≤ τ < τ0 =
n−2
2
.

When y ∈ Ωi ∩Bi for some i,

∫

∪j(Ωj∩Bc
j )

1
|y−z|n−2W

4
n−2
m γ(z)

∑

s
1

(1+|z−Xs|)
n−2
2 +τ

dz

≤ C 1

(λl)
4

n−2 k

∫

Rn
1

|y−z|n−2
1

λτ−1

∑

j
1

(1+|z−Xs|)4+
n−2
2 +1− 4

n−2 k
dz

≤ C 1
λτ−1

∑

j
1

(1+|y−Xj |)min(n−2
2 +2+1− 4

n−2k,n−2)

1

(λl)
4

n−2 k

≤ C
λτ−1

1

(1+|y−Xi|)min(n−2
2 +2+1− 4

n−2k,n−2)

1

(λl)
4

n−2 k
, due to y ∈ Ωi ∩ Bi

≤ C

(λl)
4k

n−2















γ(y)

(1+|y−Xi|)
n−2
2 +τ

, if n− 2 > n−2
2

+ 3− 4
n−2

γ(y)
(1+|y−Xi|)n−2+τ−1 ≤ γ(y)

(1+|y−Xi|)
n−2
2 +τ

if n− 2 < n−2
2

+ 3− 4
n−2

≤ Cγ(y)
∑

j
1

(1+|y−Xj |)
n−2
2 +τ

1

(λl)
4

n−2k
.
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When n−2
2

+2+1− 4
n−2

k = n−2, the log |y| term from applying Lemma

A.2 will be harmless as long as we choose τ < τ0 ≤ n−2
2
. The fact that

2 > 4k
n−2

is also used in the above. Combining the above together, for
0 < θ < min(θ1, θ2, θ3), we conclude that

∫

Rn
1

|y−z|n−2W
4

n−2
m γ(z)

∑

j
1

(1+|z−Xj |)
n−2
2 +τ

dz ≤

∑

j
Cγ(y)

(1+|y−Xj |)
n−2
2 +θ+τ

+ Cγ(y)

(λl)
4

n−2k

∑

j
1

(1+|y−Xj |)
n−2
2 +τ

.

�

Lemma A.5. Assume n ≥ 4 and 0 < τ < n+2
2
. If ‖φ‖∗ ≤ C

λ
n+2
2 −τ

, then

for any c > 0, there exists a constant λ0 = λ0(n, k, τ, C, c) > 0, such that
for any λ > λ0, φ(y) ≤ cWm(y) in ∪i(Bi ∩ Ωi).

Proof. We prove by contradiction. Without loss of generality, we may
assume that φ(y) ≥ cWm(y) for some y ∈ B1 ∩ Ω1. Note that γ(y) ≤ 1.
By Lemma A.3, we have

φ(y) ≥ cC
∑

j
1

(1+|y−Xj |)n−2 ≥ C 1
(1+|y−X1|)n−2

≥ C 1

(1+|y−X1|)
n−2
2 +τ

1

(1+|y−X1|)
n−2
2 −τ

≥ Cγ(y)
∑

j
1

(1+|y−Xj |)
n−2
2 +τ

1

(1+|y−X1|)
n−2
2 −τ

.

When n ≥ 4 and 0 < τ < n−2
2
, we have

C

λ
n+2
2

−τ
≥ ‖φ‖∗ ≥

1

(λl)
n−2
2

−τ
.

This gives a contradiction when λ is large. In the case n ≥ 4 and
n+2
2

> τ ≥ n−2
2
, noting the fact that

1

(1 + |y −X1|)n−2
2

−τ
≥ 1, ∀y ∈ B1,

we get C

λ
n+2
2 −τ

≥ ‖φ‖∗ ≥ C, which is impossible when λ large. �

Lemma A.6. For any φ ∈ M̃, we have, for some C > 0, independent of
m and l,

|
∫

Rn

Kλ(z)W
4

n−2
m φZs,tdz| ≤

C‖φ‖∗
λ

n−2
2

+τ
,
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and

|
∫

Rn

Kλ(z)W
4

n−2
m φσidz| ≤

C‖φ‖∗
λ

n−2
2

+τ
.

Proof. By the orthogonality condition

∫

Rn Kλ(z)W
4

n−2
m φZs,tdz =

∫

Rn(Kλ(z)− 1)σ
4

n−2
s Zs,tφdz

+O(1)|
∫

Rn Ŵ
4

n−2
m,s Zs,tφdz|+O(1)|

∫

Rn Ŵmσ
4

n−2
−1

s Zs,tφdz|.

Using Lemma A.3 and the proof of Lemma A.4 in Ωi with i 6= s, we get

|
∫

Ωi∩Bi
Ŵ

4
n−2
m,s Zs,tφdz| ≤ C‖φ‖∗

∫

Ωi∩Bi

∑

j
γ(z)

(1+|z−Xj |)
n−2
2 +τ

1
(1+|z−Xs|)n−2×

(

∑

k 6=s
1

(1+|z−Xk|)n−2

)
4

n−2
dz

≤ C‖φ‖∗
λτ−1

∫

Ωi∩Bi

1

(1+|z−Xi|)
n−2
2 +5

1
(1+|z−Xs|)n−2dz

≤ C‖φ‖∗
λτ−1|Xi−Xs|

n
2
.

When z ∈ ∪i(Ωi ∩Bc
i ), we use the same idea as in the proof for Lemma

A.4 to get

|
∫

∪i(Ωi∩Bc
i )
Ŵ

4
n−2
m,s Zs,tφdz|

≤ C‖φ‖∗
(λl)

4
n−2k

∫

∪i(Ωi∩Bc
i )

∑

j
1

(1+|z−Xj |)
n−2
2 +τ+4− 4

n−2 k

1
(1+|z−Xs|)n−2dz

≤ C‖φ‖∗
(λl)

4
n−2k

(

∑

j 6=s
1

(1+|Xj−Xs|)min(n−2, n−2
2 +τ+2− 4

n−2 k)
+ 1

(λl)
2+n−2

2 +τ− 4
n−2 k

)

≤ C‖φ‖∗
λτ−1(λl)

n
2
.

For i = s, note that for any z ∈ Ωs, taking Xj be the closest point in
Xl,m to Xs (there are at most 2k such kind of points in Xl,m), we have

Ŵ
4

n−2
m,s ≤ C

(1 + |z −Xj|)4− 4
n−2

k(λl)
4

n−2
k
.

By Lemma A.1 we also get

|
∫

Ωs∩Bs

Ŵ
4

n−2
m,s Zs,tφdz| ≤

C‖φ‖∗
(λl)

n
2 λτ−1

.
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Hence we deduce that

|
∫

Rn

Ŵ
4

n−2
m,s Zs,tφdz| ≤

C‖φ‖∗
(λl)

n
2 λτ−1

for all n ≥ 5 and k ≤ τ < τ0.

Similarly we have

|
∫

Rn Ŵm,sσ
4

n−2
−1

s Zs,tφdz| ≤ C
∫

Rn Ŵm,sσ
4

n−2
s |φ|dz

≤ C‖φ‖∗
(λl)

n
2 λτ−1

.

|
∫

Rn(Kλ(z)− 1)σ
4

n−2
s Zs,tφdz|

≤ C‖φ‖∗
∫

Rn |Kλ(z)− 1| γ(z)
(1+|z−Xs|)n+2

∑

j
1

(1+|z−Xj |)
n−2
2 +τ

dz.

It is easy to see by Lemma A.1 and the relations between X i that

|
∫

Rn

|Kλ(z)− 1|γ(z)
(1 + |z −Xs|)n+2

∑

j 6=s

1

(1 + |z −Xj|)n−2
2

+τ
dz| ≤ C

(λl)
n−2
2

+τ
.

So we only need to estimate the integral when j = s. Let Ω = {z ∈
R

n||z −Xs| ≤ λ. By Lemma A.3 and integrating, it is not hard to get
∫

Ω
|Kλ(z)− 1| γ(z)

(1+|z−Xs|)n+2
1

(1+|z−Xs|)
n−2
2 +τ

dz

≤ C
λβ+τ−1

∫

Ω
|z−Xs|β+τ−1

(1+|z−Xs|)n+2+n−2
2 +τ

dz

≤ C











1

λ
n+2
2 +τ

if β > n
2
+ 2,

1
λβ+τ−1 ≤ 1

λ
n−2
2 +τ

if β ≤ n
2
+ 2,

∫

Ωc |Kλ(z)− 1| γ(z)
(1+|z−Xs|)n+2

1

(1+|z−Xs|)
n−2
2 +τ

dz

≤ C
∫

Ωc
1

(1+|z−Xs|)n+2+n−2
2 +τ

dz

≤ C

λ
n+2
2 +τ

.

since β > n− 2 > n
2
when n ≥ 5.

Therefore the first inequality can be derived easily and the second one
can be proved similarly. �
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Lemma A.7. Under the assumption of Lemma A.4, for any h ∈ D̃ and

φ ∈ M̃, let φ̃ = PE(−∆)−1(h +KλW
4

n−2
m φ), then there exist an integer l0

and a constant C > 0, depending only on K, n, β, τ , C1 and C2, such
that for any l ≥ l0, we have

‖φ̃‖∗ ≤ C(‖h‖∗∗ + ‖φ‖∗).

Proof. By assumption on φ, φ satisfies the equation

φ̃(y) =
1

n(n− 2)ωn

∫

Rn

h+KλW
4

n−2
m φ

|y − z|n−2
dz +

∑

i,j

ci,jZi,j +
∑

i

biσi,

for some constants ci,j, bi.

We first claim that, for some constant C, independent of m and l,

(A6) |ci,j|, |bi| ≤
(

C‖h‖∗∗ +
C

λ
n
2

‖φ‖∗
)

1

λτ−1
.

In fact, multiplying σ
4

n−2
s Zs,t on both side of the equation and integrat-

ing, we get

(A7)
∑

i,j

ci,j〈Zi,j, Zs,t〉 =
∫

Rn

(

−h−KλW
4

n−2
m φ−

∑

j

biσ
n+2
n−2

i

)

Zs,tdz,

|
∫

Rn h(z)Zs,tdz| ≤ C‖h‖∗∗
∫

Rn
1

(1+|z−Xs|)n−2γ(z)
∑

j
1

(1+|z−Xj |)
n+2
2 +τ

dz

≤ C‖h‖∗∗
(

∫

Rn

γ(z)

(1+|z−Xs|)n−2+n+2
2 +τ

dz

+
∑

j 6=s

∫

Rn

γ(z)
(1+|z−Xs|)n−2

1

(1+|z−Xj |)
n+2
2 +τ

dz

)

,

where
∫

Rn

γ(z)

(1+|z−Xs|)n−2+n+2
2 +τ

dz ≤
∫

Bs

1
λτ−1

1

(1+|z−Xs|)n−2+n+2
2 +1

dz

+
∫

Bc
s

1

(1+|z−Xs|)n−2+n+2
2 +τ

dz

≤ C
λτ−1 +

C

(λl)
n−2
2 +τ

≤ C
λτ−1 ,
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and
∑

j 6=s

∫

Rn

γ(z)
(1+|z−Xs|)n−2

1

(1+|z−Xj |)
n+2
2 +τ

dz

≤ 1
λτ−1

∑

j 6=s

∫

Rn
1

(1+|z−Xs|)n−2−τ+1
1

(1+|z−Xj |)
n+2
2 +τ

dz

≤ 1
λτ−1

∑

j 6=s
1

|Xs−Xj |
n−2
2
(
∫

Rn
1

(1+|z−Xj |)n+1 +
1

(1+|z−Xs|)n+1dz)

≤ C
λτ−1 .

Here we have used the fact that
∑

j 6=s
1

|Xj−Xs|
n−2
2

converges when 1 ≤
k < n−2

2
. Thus we have derived

|
∫

Rn

h(z)Zs,tdz| ≤
C

λτ−1
‖h‖∗∗.

By Lemma A.6,

|
∫

Rn

Kλ(z)W
4

n−2
m φZs,tdz| ≤

C‖φ‖∗
λ

n−2
2

+τ
,

By Lemma A.1 and symmetry of σi, it is easy to check that,

〈Zi,j, Zs,t〉 = 0 if i = s and j 6= t;

〈Zi,j, Zi,j〉 = C;

and

|〈Zi,j, Zs,t〉| ≤
C

|X i −Xs|n−2
, if i 6= s,

∫

Rn

σ
n+2
n−2

i Zs,t = 0, if i = s;

and

|
∫

Rn

σ
n+2
n−2

i Zs,t| ≤
C

|X i −Xs|n−2
, if i 6= s.

Notice that the left hand of equation (A7) can be viewed as a linear
system with variables ci,j of (m + 1)k(n + 1) dimension and coefficient
matrix of (m+ 1)k(n + 1)× (m+ 1)k(n + 1) with entry 〈Zi,j, Zs,t〉. If we
denote G = (〈Zi,j, Zs,t〉) =

(

a
s,t
i,j

)

be this matrix and let X = (xs,t) be in

R
(m+1)k(n+1) with maximum norm denotes as |X| = maxs,t |xs,t|, then

C|xi,j|+ c(n+1)
(λl)n−2 |X| ≥ |∑s,t a

s,t
i,jxs,t|

= |Cxi,j +
∑

(s,t)6=(i,j) a
s,t
i,jxs,t| ≥ C|xi,j| − c(n+1)

(λl)n−2 |X|,
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where c is controlled by
∫

Rk
1

1+|z|n−2dz and doesn’t depend on m. This

implies that

2C|X| ≥ |GX| ≥ C

2
|X|

with C independent of m when λ is large enough. Therefore, we obtain
that

|ci,j| ≤
(

C‖h‖∗∗ +
C

λ
n
2

‖φ‖∗
)

1

λτ−1
+ Cmax |bi|

1

(λl)n−2
.

where C is a constant that doesn’t depend on m and l.
Similar estimates for bi can be obtained in the same way as ci,j, we skip

the detail. Thus we prove (A6).

It follows from Lemma A.2,

|
∫

Rn
1

|y−z|n−2h(z)dz| ≤ C‖h‖∗∗
∫

Rn

γ(z)
|y−z|n−2

∑

j
1

(1+|z−Xj |)
n+2
2 +τ

dz

≤ C‖h‖∗∗γ(y)
∑

j
1

(1+|y−Xj |)
n−2
2 +τ

,

and

|
∫

Rn
1

|y−z|n−2σ
4

n−2

i Zi,jdz|

≤ C
∫

Rn
1

|y−z|n−2
1

(1+|z−Xi|)n+2dz ≤ C

(1+|y−Xi|)
n−2
2 +τ

, ∀k ≤ τ < τ0.

Similarly,

|
∫

Rn

1

|y − z|n−2
σ

n+2
n−2

i dz| ≤ C

(1 + |y −X i|)n−2
2

+τ

when k ≤ τ < τ0.
This, combined with Lemma A.4 and (A6), gives the conclusion. The

proof of Lemma is thus completed. �

Lemma A.8. Under the same assumption of Lemma A.4, there exist an
integer l0 and a constant C ≥ 1, depending only on K, n, β, τ , C1 and
C2, such that for any φ ∈ Ẽ, we have

(A8) ‖φ− n + 2

n− 2
PE(−∆)−1

(

KλW
4

n−2
m φ

)

‖∗ ≥
‖φ‖∗
C

.

Proof. (A8) is equivalent to

(A9)
φ(y) = h+ n+2

n(n−2)2ωn

∫

Rn
1

|z−y|n−2Kλ(z)W
4

n−2
m (z)φ(z)dz

+
∑

i biσi +
∑

i,j ci,jZi,j,
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for some h ∈ Ẽ and constants bi, ci,j. Then by Lemma A.4 and the proof
of Lemma A.7, we get

(A10)

(

γ(y)
∑

Xi∈Xl,m

1

(1+|y−Xi|)
n−2
2 +τ

)−1

|φ(y) ≤ ‖h‖∗ + C‖φ‖∗
λ

n−2
2 +τ

+C‖φ‖∗
(

1

(λl)
4k

n−2
+

∑

Xj∈Xl,m

1

(1+|y−Xj|)
n−2
2 +τ+θ

∑

Xj∈Xl,m

1

(1+|y−Xj|)
n−2
2 +τ

)

.

We show that ‖φ‖∗ ≤ C‖h‖∗ for l large enough. If not, we can find
sequences l → ∞, ml ≥ 1, Λi,l ∈ [C1, C2], P

i,l ∈ B 1
2
(X i), bi,l, ci,j,l and φl

with ‖φl‖∗ = 1, such that (A9) is satisfied for ‖hl‖∗ → 0. We may assume
that ‖φl‖∗ = 1. Therefore for some yl ∈ R

n, we obtain from (A10) that

(A11) 1 = ‖φl‖∗ ≤ C



‖hl‖∗ +

∑

Xj∈Xl,m

1

(1+|yl−Xj |)
n−2
2 +τ+θ

∑

Xj∈Xl,m

1

(1+|yl−Xj |)
n−2
2 +τ



 .

Then there is a R > 0 independent of m, such that for some i(l),
yl ∈ BR(X

i(l)) for all l large. (If yl is far away from all X i, the right side
of (A11) is approaching zero as l → ∞.) Hence we get that

max
BR(xi(l))

|λτ−1φl(y)| ≥ a > 0.

From the proof of Lemma A.3, for any fixed R > 0, it is easy to see that
Wm(x− P i(l)) → σ0,Λ for some Λ ∈ [C1, C2] in BR as l → ∞ independent
of m. Multiplying λτ−1 on both side of the equation (A9) and using the
estimates (A6) for bi,l and ci,j,l and the fact that ‖hl‖∗ → 0, we can see

that φ̃l(y) := λτ−1φ(y − P i(l)) converges uniformly in any compact set to

a non-zero solution φ̃ of

(A12) −∆φ̃− n+ 2

n− 2
σ

4
n−2

0,Λ φ̃ = 0

for some Λ ∈ [C1, C2]. We will show that φ̃ is perpendicular to the kernel

of (A12) and therefore φ̃ = 0, which is a contradiction.

For this purpose, by Lemma A.3, we get

λτ−1φ(y) ≤ Φ(y) = C











1

(1+|y−Xj |)
n−2
2 +1

y ∈ Bj ∩ Ωj

λτ−1

(λl)k
1

(1+|y−Xj |)
n−2
2 +τ−k

y ∈ Bc
j ∩ Ωj .
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Since

σi(y), | ∂σi

∂P i
j

(y)|, | ∂σi

∂Λi

(y)| ≤ C

(1 + |y −X i|)n−2
,

from dominated convergence theorem and the fact that 〈Φ, σi〉 = 0, 〈Φ, ∂σi

∂P i
j
〉 =

0 and 〈Φ, ∂σi

∂Λi
〉 = 0, we obtain

〈φ̃, σ0,Λ〉, 〈φ̃, ∂σ0,Λ

∂xj

〉, 〈φ̃, ∂σ0,Λ

∂Λ
〉 = 0.

Therefore we have proved the conclusion. �

Lemma A.9. For j = 1, ..., n, i = 1, ..., (m+1)k, 0 < C1 ≤ Λi ≤ C2 < ∞
and P i ∈ B 1

2
(X i), we have

∫

Rn Kλ(y)σ
n+2
n−2

i
∂σi

∂P i
j
=

Dn,βaj

Λβ−2
i λβ

(P i
j −X i

j)

+O( |P
i−Xi|2
λβ ) + o( 1

λβ ).

where Dn,β = (n(n− 2))
n
2 (n− 2)β

∫

Rn

|xj |β
(1+|x|2)n+1dx. oλ(1) only depends on

the condition of function R( y
λ
) near X i and o(1) → 0 as l → ∞ (or same

as λ → ∞) (see the remark 5.1 below).
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Proof. Let δ = λ
β−n
2n . We have

∫

Rn Kλ(y)σ
n+2
n−2

i
∂σi

∂P i
j
= (n− 2)

∫

Rn Kλ(y)σ
2n
n−2

i

Λ2
i (yj−P i

j)

1+Λ2
i |y−P i|2dy

= (n− 2)
∫

|y−Xi|≤δλ
Kλ(y)σ

2n
n−2

i
Λ2
i (yj−P i

j)

1+Λ2
i |y−P i|2dy +O( 1

(δλ)n+1 )

= n−2
λβ

∫

|y−Xi|≤δλ

(
∑

h ah|yh −X i
h|β + o(1)|y −X i|β

)

×σ
2n
n−2

i
Λ2
i (yj−P i

j)

1+Λ2
i |y−P i|2dy +O( 1

(δλ)n+1 )

= n−2
λβ

∫

|y−Xi|≤δλ

∑

h ah|yh −X i
h|βσ

2n
n−2

i

Λ2
i (yj−P i

j)

1+Λ2
i |y−P i|2dy

+o( 1
λβ ) + o( |P

i−Xi|β
λβ )

= (n(n− 2))
n
2
n−2
λβ

∫

Rn

∑

h ah(|xh|β + β|xh|β−2xh(P
i −X i)h

+O(|P i −X i|2))× Λn
i

(1+Λ2
i |x|2)n

Λ2
i xj

(1+Λ2
i |x|2)

dx+ o( 1
λβ ) + o( |P

i−Xi|β
λβ )

= (n(n− 2))
n
2
(n−2)βaj

Λβ−2
i λβ

∫

Rn

|xj |β
(1+|x|2)n+1 (P

i
j −X i

j)

+o( 1
λβ ) +O( |P

i−Xi|2
λβ ) + o( |P

i−Xi|β
λβ ).

If we let Dn,β = (n(n − 2))
n
2 (n − 2)

∫

Rn

|xj |β
(1+|x|2)n+1dx, we complete the

proof. �

Remark 5.1. The oλ(1) only depends on the condition of R( y
λ
) near X i,

the estimates doesn’t depend on Pi as long as |Pi − X i| ≤ 1
2
. If we know

more, say |∇R(x) ≤ C|x|β−1+s near 0 for some small s > 0, then oλ(1) =
C
λs .

Lemma A.10.
∫

Rn Kλ(y)σ
n+2
n−2

i
∂σi

∂Λi
= C3

Λβ+1
i λβ

+O( |P
i−Xi|β−1

λβ ) + o( 1
λβ ).

where o(1) is the same as in Lemma A.9 and

C3 = −β[n(n− 2)]
n
2 (n− 2)

2n
(
∑

i

ai)

∫

Rn

|y1|β
(1 + |y|2)dy > 0.



48 Y.Y. LI, J. WEI, AND H. XU

Proof. Observe that

∫

Kλ(y)σ
n+2
n−2

i
∂σi

∂Λi
= n−2

2n
∂

∂Λi

∫

Kλ(y)σ
2n
n−2

i

= − 1
Λi

[n(n−2)]
n
2 (n−2)

2n

∫

|y|≤δλ
(∇K( y

λΛi
+ P i

λ
) · y

λΛi
) 1
(1+|y|2)ndy +O( 1

(δλ)n
)

= − β

Λi

[n(n−2)]
n
2 (n−2)

2n

∫

Rn

∑

ah
|yh|β
(Λiλ)β

1
(1+|y|2)ndy+

+o( 1
λβ ) +O( |P

i−Xi|β−1

λβ )

= C3

Λβ+1
i

λβ
+ o( 1

λβ ) +O( |P
i−Xi|β−1

λβ ).

�

Lemma A.11. For j = 1, ..., n, we have

∫

Rn Kλ(y)(W̄m + φ)
n+2
n−2Zi,jdy =

∫

Rn Kλ(y)σ
n+2
n−2

i Zi,jdy

+C

(

|ǫ|2 + ‖φ‖
n+2
n−2
∗

1

(λl)
n
2 +τ

n+2
n−2

+ ‖φ‖2∗ 1
λ2τ−2 +

1
λβ+1 + o( 1

λn )

)

.

Proof. We begin with

|(W̄m + φ)
n+2
n−2 −W

n+2
n−2
m − n+2

n−2
W

4
n−2
m (ǫWm + φ)|

≤ C











|φ+ ǫWm|
n+2
n−2 , if |φ| ≥ Wm;

W
6−n
n−2
m |ǫWm + φ|2, if |φ| ≤ Wm.

By Lemma A.5, when λ is large, if |φ| ≥ Wm, then y ∈ (∪j(Bj ∩ Ωj))
c :=

Ω. So
∫

Rn Kλ(y)(W̄m + φ)
n+2
n−2Zi,jdy

=
∫

Rn Kλ(y)

(

W
n+2
n−2
m + n+2

n−2
W

4
n−2
m (ǫWm + φ)

)

Zi,jdy

+O(1)
∫

Ω
|φ+ ǫWm|

n+2
n−2 |Zi,j|+O(1)

∫

Rn W
6−n
n−2
m |ǫWm + φ|2|Zi,j|.

By Lemma A.1, Lemma A.2 and similar argument as in the proof of
Lemma A.4, we get easily that
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∫

Ω
|φ+ ǫWm|

n+2
n−2 |Zi,j| ≤ C

∫

Ω
|φ|n+2

n−2 |Zi,j|dy

≤ C‖φ‖
n+2
n−2
∗

(λl)
4

n−2 k

∫

Ω

∑

j
1

(1+|z−Xj |)
n+2
2 +n+2

n−2 τ− 4
n−2 k

1
(1+|z−Xi|)n−1dz

≤ C‖φ‖
n+2
n−2
∗

(λl)
n
2 +τ

n+2
n−2

, by Lemma A.1.

Using Lemma A.1, Lemma A.2 and Lemma A.3, we can infer that

∫

Rn W
6−n
n−2
m |ǫWm + φ|2|Zi,j|dy ≤

C
∫

Rn

(

|ǫ|2W
n+2
n−2
m +W

6−n
n−2
m |φ|2

)

|Zi,j|dy

≤ C

(

|ǫ|2 +
(

‖φ‖∗
λτ−1

)2
)

.

|W
4

n−2
m − σ

4
n−2

i | ≤ C











Ŵ
4

n−2

m,i , if Ŵm,i > σi;

σ
4

n−2
−1

i Ŵm,i, if Ŵm,i ≤ σi.

By Lemma A.3, we know that Ŵm,i ≤ σi in Bi (we may need to shrink

the ball a little bit) and Ŵm,i ≥ σi in each Bj with j 6= i. Since 〈φ, Zi,j〉 =
0, we can get,

∫

Rn Kλ(y)W
4

n−2
m φZi,jdy =

∫

Rn Kλ(y)σ
4

n−2

i φZi,jdy + o(1) 1
λn

=
∫

Rn(Kλ(y)− 1)σ
4

n−2

i φZi,jdy + o( 1
λn )

≤ C
λβ+1 + o( 1

λn ).

Similarly

∫

Rn Kλ(y)W
4

n−2
m ǫWmZi,jdy =

∫

Rn(Kλ(y)− 1)ǫiσ
n+2
n−2

i Zi,jdy

+ C|ǫ|
(λl)n−2 ≤ o( 1

λn ).
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For n ≥ 5 it holds that

|W
n+2
n−2
m − σ

n+2
n−2

i − n+2
n−2

σ
4

n−2

i Ŵm,i|

≤ C











Ŵ
n+2
n−2

m,i , if Ŵm,i ≥ σi;

Ŵ 2
m,iσ

4
n−2

−1

i ≤ Ŵ
n

n−2

m,i σ
n

n−2
−1

i , when Ŵm,i ≤ σi.

Using Lemma A.1, we deduce that
∫

Rn

|Kλ(y)Ŵ
n+2
n−2

m,i Zi,j|dy ≤ C

(λl)n−1
,

and
∫

Rn

|Kλ(y)Ŵ
n

n−2

m,i σ
n

n−1
−1

i Zi,j|dy ≤ C

(λl)n−1
.

For s 6= i, by change of variable for s 6= i,

n+2
n−2

∫

Rn Kλ(y)σ
4

n−2

i σsZi,jdy = ∂
∂P i

j

∫

Rn Kλ(y)σ
n+2
n−2

i σsdy

= ∂
∂P i

j

∫

Rn K( t+P i

λ
)σ

n+2
n−2

0,Λi
σP s−P i,Λs

dt

= 1
λ

∫

Rn

∂K( t+Pi

λ
)

∂tj
σ

n+2
n−2

0,Λi
σP s−P i,Λs

dt−
∫

Rn K( t+P i

λ
)σ

n+2
n−2

0,Λi

∂σ
Ps−Pi,Λs

∂P s
j

dt.

From the above, using Lemma A.1, it is easy to see that

|
∫

Rn

Kλ(y)σ
4

n−2

i Ŵm,iZi,jdy| ≤
C

λ(λl)n−2
+

C

(λl)n−1
.

Similarly

|
∑

s 6=i

(1 + ǫs)〈
∂σi

∂P i
j

, σs〉| ≤
C(1 + |ǫ|)
(λl)n−1

.

The above estimates give the conclusion. �

Lemma A.12. For some constant C > 0 independent of i, j and m,

|
∫

Rn

Kλ(x)σ
n+2
n−2

i

∂σj

∂Λj

dx−
∫

Rn

σ
n+2
n−2

i

∂σj

∂Λj

| ≤ C

|P i − P j|n−2λ2
.

Proof. Take a δ > 0 small, such that |K(x) − 1| ≤ c|x|β for some c > 0
and x ∈ Bδ(0). Since K(X i) = 1, we get

∫

Rn Kλ(x)σ
n+2
n−2

i
∂σj

∂Λj
dx =

∫

Rn σ
n+2
n−2

i
∂σj

∂Λj
+

∫

Bδλ(Xi)∪Bδλ(Xj)∪(Bc
δλ

(Xi)∩Bc
δλ

(Xj))
(Kλ(x)− 1)σ

n+2
n−2

i
∂σj

∂Λj
dx,
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and also

|
∫

Bδλ(Xi)
(Kλ(x)− 1)σ

n+2
n−2

i
∂σj

∂Λj
dx| ≤ C

∫

Bδλ(Xi)
|x−Xi|β

λβ σ
n+2
n−2

i σjdx

≤ C
∫

Bδλ(0)
( |x|

β

λβ + |P i−Xi|β
λβ ) 1

(1+|x|2)
n+2
2

1

(1+|x−P j+P i|2)
n−2
2
dx

≤ C
|P i−P j |n−2

∫

Bδλ(0)
( |x|

β

λβ + |P i−Xi|β
λβ ) 1

(1+|x|2)
n+2
2
dx

≤ C
|P i−P j |n−2 (

1
λ2 +

1
λβ ) ≤ C

|P i−P j |n−2λ2 .

Similarly,

|
∫

Bδλ(Xj )
(Kλ(x)− 1)σ

n+2
n−2

i
∂σj

∂Λj
dx|

≤ C
|P i−P j |n+2 (λ

2 + λ3−β) ≤ C
|P i−P j |n−2λ2 .

Lastly,

(A13)

|
∫

Bc
δλ

(Xi)∩Bc
δλ

(Xj)
(Kλ(x)− 1)σ

n+2
n−2

i
∂σj

∂Λj
dx|

≤ C
∫

Bc
δλ

(Xi)∩Bc
δλ

(Xj )
σ

n+2
n−2

i σjdx

≤ C
∫

Bc
δλ

(0)∩Bc
δλ

(Xj−Xi)
1

(1+|x|2)
n+2
2 (1+|x−P j+P i|2)

n−2
2
dx

Let z = P j − P i and 2d = |z|. To estimate (A13), we will use the
method used by Wei-Yan in [49]. Since d > δλ when l is large, we can
split

Bc
δλ(0) ∩ Bc

δλ(X
j −X i) = A1 ∪ A2 ∪ A3,

where A1 = Bd(0) \ Bδλ(0), A2 = Bd(X
j − X i) \ Bδλ(X

j − X i) and
A3 = Bc

d(0) ∩ Bc
d(X

j −X i).

∫

A1

1

(1+|x|2)
n+2
2 (1+|x−z|2)

n−2
2
dx ≤ C

dn−2

∫

A1

1

(1+|x|2)
n+2
2
dx

≤ C
|P i−P j |n−2λ2 .

Similarly it holds that
∫

A2

1

(1 + |x|2)n+2
2 (1 + |x− z|2)n−2

2

dx ≤ C

|P i − P j|n .

On A3, from [49],

1

(1 + |x|2)n+2
2 (1 + |x− z|2)n−2

2

≤ C

|x|n−2(1 + |x|)n+2
≤ C

|x|2n ,
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therefore, we infer that
∫

A3

1

(1 + |x|2)n+2
2 (1 + |x− z|2)n−2

2

dx ≤ C

|P i − P j|n ,

which gives

|
∫

Bc
δλ

(Xi)∩Bc
δλ

(Xj)

(Kλ(x)− 1)σ
n+2
n−2

i

∂σj

∂Λj

dx| ≤ C

|P i − P j|n−2λ2
.

The conclusion of Lemma follows easily. �

Lemma A.13. For some constant C > 0 independent of i, j, m,

|
∫

Rn

Kλ(x)σ
4

n−2

j σi

∂σj

∂Λj

dx− n− 2

n+ 2

∫

Rn

σ
n+2
n−2

i

∂σj

∂Λj

dx| ≤ C

|P i − P j|n−2λ2
.

Proof.

∫

Rn Kλ(x)σ
4

n−2

j σi
∂σj

∂Λj
dx = n−2

n+2

∫

Rn Kλ(x)
∂σ

n+2
n−2
j

∂Λj
σidx

= n−2
n+2

∫

Rn

∂σ
n+2
n−2
j

∂Λj
σidx+ n−2

n+2

∫

Rn(Kλ(x)− 1)
∂σ

n+2
n−2
j

∂Λj
σidx

= n−2
n+2

∫

Rn σ
n+2
n−2

i
∂σj

∂Λj
dx+ n−2

n+2

∫

Rn(Kλ(x)− 1)
∂σ

n+2
n−2
j

∂Λj
σidx.

The second error term in the above can be similarly estimated as in
Lemma A.12 and the proof is thus completed. �

6. Appendix B

We recall some results proved in [34], in a form convenient for our
application.

Let {Ki} be a sequence of functions satisfying, for some constant A ≥ 1,

(B1)
1

A
≤ Ki ≤ A, in B2 ∀i.

where B2 is the ball in R
n of radius 2 centered at the origin.

For β > n−2, recall that {Ki} satisfies (∗)β for some positive constants
L1 and L2 (independent of i) in B2 if {Ki} ⊂ C [β]−1,1(B2) satisfies

|∇Ki| ≤ L1, in B2,

and, if β ≥ 2, that

|∇sKi(y)| ≤ L2|∇Ki(y)|
β−s
β−1 , for all 2 ≤ s ≤ [β], y ∈ B2.
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Remark 6.1. Conditions (H1), (H2) and (H3) guarantee that K satis-
fies (∗)β in a neighborhood of 0.

Proposition B.1. For n ≥ 3, A ≥ 1, L1, L2 > 0 and β > n − 2, let
{Ki} be a sequence of functions satisfying (B1) and (∗)β for L1 and L2.
Let {ui} be a sequence of C2 solutions of

−∆ui = Kiu
n+2
n−2

i , ui > 0, B2,

satisfying, for some constant a independent of i,

‖ui‖
L

2n
n−2 (B2)

≤ a < ∞, ∀i.

Then, after passing to a subsequence, {ui} either stays bounded in B1, or
has only isolated simple blow up points in B1.

See Definition 0.3 in [34] for the definition of isolated simple blow up
points.

Proof. It is easy to see, using the equation of ui, that

‖∇ui‖L2(B 3
2
) ≤ C(n,A, a) := Ca.

Let δ0 > 0 be the small constant given in Proposition 2.1 in [32], and fix
a positive integer k such that

C2
a + a

2n
n−2 ≤ δ0k,

For rl = 1 + l−1
2k

, 1 ≤ l ≤ k + 1, let

Al = {x|rl ≤ |x| ≤ rl+1}, 1 ≤ l ≤ k.

Since
∑k

l=1

∫

Al
(|∇ui|2 + u

n+2
n−2

i ) ≤
∫

B 3
2

(|∇ui|2 + u
n+2
n−2

i ) ≤ C2
a + a

2n
n−2 ≤ δ0k,

there exist some 1 ≤ l ≤ k and a subsequence of {ui} (still denoted as
{ui}) such that

∫

Al

(|∇ui|2 + u
n+2
n−2

i ) ≤ δ0, ∀i.

It follows from Proposition 2.1 in [32] that

‖ui‖L∞(Âl)
≤ C(δ0, n, A, a),

where Âl = {x|rl+ 1
8k

< |x| < rl+1− 1
8k
}. Using this estimate, we work on

the ball Brl+1− 1
8k
. Then the proofs of Proposition 4.1, Proposition 4.2 and

Theorem 4.2 in [34] apply, in view of the fact that {ui} stays bounded in

the shell Âl. We obtain the conclusion. �
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