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where (322), = Y2 if N > 3; = 400 if N = 1,2.

Floer and Weinstein in [8] proved for small 2~ > 0 (and for p =3, N = 1)
the existence of a single-bump solution of (1.2) concentrating at each given
nondegenerate critical point of the potential function V, under the condition
that V is bounded. In [19] and [20], Oh generalized this result and obtained
for small h > 0 the existence of multi-bump solutions with » in (1.2) being
positive and concentrating at given finite collection of nondegenerate critical

points of V, under the condition N > 1,1 < p < ({£2); and V € (V),

(namely, either V =a or V(z) > a and (V — a)_% € Lip(RM)).

The existence of solutions of (1.2) and its various generalizations has long
been studied extensively (mostly by variational methods). The interested
reader may consult, in addition to the papers mentioned below, the survey
articles [15] and [17] and references therein. Most of the results provide
existence of solutions for arbitrary h > 0. Several papers deal with existence
of “ground states,” i.e., in case of (1.2), solutions with least “energy,”

%/RN(/# IVl + V?) do — ]ﬁ [ (1.4)
among all nontrivial H'(R") solutions of (1.2).

In [21], Rabinowitz showed that (1.2) has a positive ground state for “ev-
ery h > 07 if Himsup, o V(@) = sup,egpy V(z) or if liminf), . V(z) >
inf,cpv V(). See [2] and [3] for more results on existence and [23] on asymp-
totic behavior of ground state solutions.

There are many interesting results concerning higher energy solutions.
Del Pino and Felmer in [4] studied the case when V' (x) has a local minimum
point (may be degenerate) and constructed single-bump positive solutions.
Both Del Pino, Felmer [5] and Gui [9] glued the single bump positive solu-
tions and obtained multi-bump positive solutions at separate local minimum
points of V. Del Pino and Felmer in [6] were able to construct single-bump
positive solutions at any topologically nontrivial critical points of V(x). Re-
lated results are obtained by Ambrosetti, Badiale and Cingolani [1]; Li [14];
and Lu and the second author [16]. As far as we know, N. Thandi [22] ob-
tained the existence of infinite-bump solutions under some further hypothesis
on the potential function V.

In all the above papers multi-bump solutions are obtained at “separate”
local maximum or local minimum points of V. These bumps are well sepa-
rated, and hence the interactions of these bumps are neglected. (Here “in-
teraction” means the effect of one bump on other bumps. Mathematically, it
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can be computed as in Lemma 2.4 below.) The main purpose of this paper
is to study the effect of such interactions. We show that at a local maximum
point of V(z) the interactions can contribute to the existence of multi-bump
solutions while at a nondegenerate local minimum point of V' (x) multi-bump
solutions do not exist.

Our first result of this paper is the following.

Theorem 1.1. Assume that V(z) and p satisfy assumption (1.3). Let Py
be a local mazimum point of the potential V(x); i.e., there exists a bounded
open set I' such that

Py € L,V(Ry) = max V(z) > V(P),YP € I\{R}. (1.5)

Then for any positive integer K € 7Z, there exists hg > 0 such that for
any h < hg there exists a positive solution wuy, of (1.2) with the following
properties:

(1) The solution uy, has exactly K local mazimum points Q’f, e Q}}( and
Q? — Py as h — 0. Moreowver,
Q- Q C
% > V(PO)_%IOgﬁ — 00, Z#Ja ih,j=1,..., K
for some C >0, as h — 0.
min;_q1 \zfQ:j'\
(2) Thesolutionuy(x) < Ce™” R for some 8 >0, C > 0
and up(QY) — a, @ > 0,7 =1,...,K as h — 0; i.e., u, concentrates at

Qh,....Q".

Remark. In [14], Li proved that if V(z) has K (different) local maximum
points Q1,...,Qk,Q; # Q; for i # j, then for h sufficiently small there
exists a positive solution uy, of (1.2) such that uj has K local maximum
points Q}f,...,Qf;{ with Q" — Q;, i = 1,...,K, as h — 0. Since the K
bumps are separated in the limit, the interactions between bumps are of the
order e ~%/" for some constant 8y > 0, which are exponentially small and are
essentially neglected in [14]. Our theorem here is quite different from his.
In fact we construct multi-bump solutions at one local maximum point of
V. The distance between the bumps are of the order O(hlogh), and thus
the interactions between the bumps are of algebraic order O(h™) for some
m > 0, which can’t be neglected. So the interactions between bumps do play
a very important role. This is a new and interesting phenomenon. The next
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result shows that this phenomenon does not occur at a nondegenerate local
minimum point of V(x).

Theorem 1.2. Fiz any positive integer K > 1. Let Py be a local minimum
point of V(z) such that det(V2V (Py)) # 0. Then there is hg > 0 such

that for h < hg equation (1.2) cannot have a positive solution uy with the
following properties:

(1) The solution up, has exactly K local mazimum points QQL, QS, e ,Q}}(
h_Qh
andQ?HPo, lQ’hQJ| — o0 ash—0, wherei,j=1,.... K, i#j.
ming_y ., le—Qp|
(2) The solution uy,(z) < Ce™P e for some >0, C >0

anduh(Q?)Ha,a>0,izl,...,K as h — 0.

In the rest of this section, we briefly outline the proof of Theorem 1.1.
The main idea is to reduce the problem on H?(R") into a finite-dimensional
problem on the space of bumps. To this end, we use the classical Liapunov-
Schmidt reduction method (a similar method has been used in [10], [11],
[26], [27], etc.) We shall follow the ideas in [10].

Without loss of generality, we can assume that Py in Theorem 1.1 is
the origin and that V(F) = 1. Since we are looking for positive solutions,
equation (1.2) becomes

R*Au — V(z)u+u? =0, u>0, z € RV, (1.6)

(Recall that V (z) satisfies (1.3) and p is subcritical.)
To introduce the main idea of the proofs of Theorems 1.1, we need to
give some necessary notations and definitions first.
Let w be the unique solution of the following problem:
Aw —w+wP =0 in RN
w >0, w(0) = max, ¢y w(y) (1.7)
w(y) — 0 as |y| — oo.

The solution of (1.7) is radial ([12]) and unique ([13]). Moreover, w is radially
symmetric, decreasing and

, . o w'(y)
lim w(y elv! Y e A >0, lim ——=-1 1.8
s ey lyl—o0 w(y) 49

for some constant A\g > 0. Let

1 1 1
I(w) = 5/ |Vw|? + 5/ w? — —— wP Tt
RN RN p+ 1 RN
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be the ground energy of w.
1
Note that for fixed a > 0, w,(y) := aP—_lw(a%y) is the unique solution of
the following problem:
Av—av+vP=0in RN
v >0, v(0) = max,cpy v(y) (1.9)

v(y) — 0 as |y| — oo.

Associated with problem (1.2) is the following energy functional:
1
Jn(u) = h—N(—/ (R*|Vul® + Vu?) — / F(u)),
2 JrN RN

where F(u) = [ f(s)ds, f(s) = |s|P~'s and u € &, where the space £ is
defined by

E=Au: /RN(h2|Vu|2 + Vu?) < o0} (1.10)

(The factor h~* comes from scaling.) Let I' be as in Theorem 1.1 and ¢y > 0
be a small number. Set

|P, — P
h
kil=1,... K, k;él}.

Ah:{P:(Pl,...,PK)EFX---XF,w( )<Coh,

Let x(z) be a cut-off function such that x(z) = 1 for x such that d(z,T) < 1
and x(z) = 0 for x such that d(z,I") > 1.
Fix P= (P, P,,...,Px) € A,. We set
. r—FB .
wp,(x) = wy(p,)( ); wp, () = wp,(z)x(2)- (1.11)

h
Since we look for solutions of (1.6) of the K-bump type Zfil wp,, we set

K

U(CE) = pri + (I)hyp.
i=1

However, since the linearized operator at Zfi 1 wp,; is not uniformly invertible
with respect to h, we introduce the approximate kernel
owp,

Knp = span{h ci=1,...,K, j=1,...,N} c H*(R")
’ OP,
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and the approximate cokernel

Chp = span {h Owp 1K j=1,...,N} c L*RM),
P’
where P ; is the j-th component of P, i =1,..., K.

We first solve for &, p in ICﬁP up to Cﬁp by using the Liapunov-Schmidt
reduction method. (This method has been used by [8], [16], [19], [20] and
[14].) Then we show that ®,p is C' in P. After that, we define a new
function

K
My(P) = Ju(> wp, +Pnp): Ay — R (1.12)
=1

We compute M}, and obtain the following asymptotic behavior:

K

My(P) = (c+o()V(P —Y (d+o - Pl) (1.13)

i=1 kil

L

w2

for some positive constants ¢, d, where o(1) means |o(1)| — 0 as h — 0.

We maximize M (P) over Aj. Condition (1.5) ensures that M,(P) at-
tains its maximum inside Ay, say P" € A;. Then the corresponding function
up = Zfil wph + @y, pr is a solution of (1.6). We show that uj, has the prop-
erties of Theorem 1.1.

Theorem 1.2 is proved by asymptotic analysis.

This paper is organized as follows. In Section 2, we state some prelimi-
nary estimates leading to (1.13). Section 3 contains the standard Liapunov-
Schmidt procedure. In Section 4, we apply a maximizing procedure to solve
the reduced problem and thus complete the proof of Theorem 1.1 in Section
5. Section 6 contains the proof of Theorem 1.2: We first obtain a system of
equations on the locations of the bumps, and then we reach a contradiction
by using the fact that V has a nondegenerate local minimum at Fy. Finally
we make some remarks on possible generalizations of Theorems 1.1 and 1.2
to more general problems.

Throughout this paper, the constant C' denotes various generic constants
independent of h. O(A) means |O(A)| < C|A| and o(a) means |o(a)|/|a|] — 0
as h — 0. We will always denote by 0 < § < 1 a very small number and
f(u) = [ulP~tu. “>°” always means summation from 1 to K.
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2. Preliminary analysis. In this section, we first compute some in-
tegrals which will be useful in later sections. Then we obtain the energy
expansion of K-bumps in Ay,.

First we state a useful lemma about the interactions of two w’s.

Lemma 2.1 ((Lemma 2.1 of [2])). Let ¢ € C(RN) N L=(RYN), ¢ € C(RY)
be radially symmetric and satisfy for some a >0, >0, v € R

o(z) explalz)ll? — 70 as [a] - o
| @l explalal)(1 + laf’) < .
Then

explolylul’ [ oa+p)s()de =0 [ b(a)exp—ary) do asly] - ox.

Using Lemma 2.1 and the decay estimate (1.8), we then have the follow-
ing estimate.

Lemma 2.2. For h sufficiently small and P = (Py, ..., Pg) € Ay, we have

P-P. .
W [ de = G+ o)u(P D), i £
RN

where Ay, is defined in Section 1, wp, is defined by (1.11) and

v = / wP (y)e ¥idy > 0. (2.1)
RN

Another direct application of Lemma 2.1 is the following useful corollary.

Corollary 2.3. Let 81 > 1, B2 > 1 be two positive numbers. Then we have

— min s, Bi—F; . .
R I e F S N )

where § > 0 is any small number. In particular, if 81 > B2 we can take
0 =0.

The next lemma is the main result in this section.
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Lemma 2.4. For any P = (P, ..., Px) € Ay, where Ay, is defined in Sec-
tion 1, and h sufficiently small, we have

K K il N
(Y wr) = > VR)FI I(w)

1

2

g P—P S 2
—(z o) Y w(=5—)+O0MhY_|[VV(P)|+h*) (23)
i,1=1,i#l i=1

where 7 is defined by (2.1).

P;,—P,
zh l)

Remark. Roughly speaking, w( measures the interaction between

the bump at F; and the bump at Fj.

Proof. We shall only prove the case when K = 1,2. The other cases are
similar. By (1.11) and (1.8), wp, := wV(PZ.)(m_hPi) is exponentially decaying
outside any neighborhood Bs(F;) of P;, where § > 0 is a small fixed number.
Thus we obtain

r— P
h

wp, = 1p, + O™ h) = wy () (=) + Oe h).

First for K =1, if we set P; + hy = x, then we have

Iwn) =h=(5 [ (Vun@P + Vb @) - — [ wi@)
1

1 s
2 2 +1 _9
=5 [ (Tuvimy P+ VP o)~ — [l o)
1 2 2 1 +1
"2 /RN(W“’V(PI)' HVIP)wy ) = o0 /RN W)

+ [ VP k) = V(PO g +0le)

p+l_ N
p—1

—V(P)r "2 I(w) + O(e &)+ O(R|VV(PL))),

V(z) = V(P) =0(lz — A|[VV(P)]) = O(hly|[VV(P1)])

and [pn [ylw?(y) dy < oo.
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Next we consider the case when K = 2. We first obtain for ¢ # j
hN/ (prinpj + V($)wpiij)
RN

=h N[ VwPiVﬁ)Pj-i-/ Vip,ip, +O(e™ )]
RN RN

_3
N /RN Wy (py Wy (Ry) + /RN(V(”““) = V(B))wy(pywy(py) + Oe™h)

Pi —P' _9J

= (7 + o()w(~ 1) + ORIV (By)]) + O(e ™)

by Lemma 2.2, where « is defined by (2.1). Let Q; := {y € RN : |hy —
P1| < 1T_6|P1 —P2|}, QQ = {y € RN . |hy —P2| < 17_6|P1 —P2|} and
Qg = RN\(Ql U QQ). Then

W [ lwm -+ wm) = - < on [l )
3 3

= IR o(w(P1;P2))

by (1.8), if we choose d such that (p+ 1)(1 — &) > 2 (note that P € Ay).
On €27, we have

BN /Q ((wp, +wp,)P* — wlt — wih)
1

=(p+ 1)h_N/Q wh wp, + b A O(wll’;;l + wﬁ’{&wg‘s)
1 Pl B P2) 1
h
by Lemma 2.2 and Corollary 2.3. Similarly, on €23 we have

= (v +1) +o(1))uw(

Pl_PZ)
)

= /Q ((wpy + w7 — wl — W) = ((p+ 1) + o(1))uo
2
Hence

Jh(wp1 + wP2) = ‘]h(wP1) + Jh(wP2) + h_N/N(valva2 + VwP1wP2)
R
1

_ _ - 3—N p+1 _ o+l p+l
gt [ (=)
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= v v B ) + oo P )
+ O(R|VV(P)| + h|VV(P)|) — 2(y + 0(1)>w(P1 ; PQ)

— V(PP E V(PP 2| I(w)
—(v+ o(l))w(P1 — PQ) + O(R|VV(P))| + h|VV (P))).

Lemma 2.4 is thus proved.

3. Liapunov-Schmidt reduction. In this section, we solve problem
(1.2) with an appropriate kernel and cokernel, respectively. Since the pro-
cedure has now become standard, we shall only give a sketch of the proof.
For more details, please see [20] and [14].

We first introduce some notations. Let Sp(u) = Au — V(hy)u + f(u),
where f(u) = |u[P~tu, for u € H?(RN) N &. Then solving equatlon (1.2) is
equivalent to solving S (u) = 0,u € H*(RN)NE. Fix P = (P, ..., Pk) € Ay,.
To study (1.2) we first consider the linearized operator

K
Ly, : ®(2) = AD(2) = V(h2)®(2) + f/(O_wp,)0(2)
i=1

H2(RN)N & — L*(RN). 1t is easy to see (integration by parts) that the
cokernel of Lj, coincides with its kernel. Choose the approximate cokernel
and kernel as

Chp—span{h Pilj=1,...,K,j=1,...,N} c L*(RM),

apz y

IChp:span{h Pi|i: 1,...,K,j=1,...,N} c H¥R").
’ OPi

owp, . . .
Remark. Note that h 81;?; satisfies the following equation:

oV
Bo(w) -~ V(PY) + ool o)~ Oy =0,y € RY,
J
and hence it is easy to see that
owp, dwy (p,)(y) s
nl = B L OV (P wy ey + e huyey). (3.1)

0P, 0y,
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Let m, p denote the projection from L?(RY) onto Cjtp. Our goal in this
section is to show that the equation

K
Th,P © Sh(pri +P)=0
=1

has a unique solution ® = &, p € Kip if h is small enough. Moreover ®;, p
is Cl inP = (Pl,.. .,PK).

As a preparation, in the following proposition we show the invertibility
of the corresponding linearized operator. The proofs are standard and thus
are omitted. See [19] and [20]. (Note that here A;, depends on h. But the
same proof goes through since we have that |P; — Pj|/h — 400, i # j, as
h — 0, where P = (Py,...,Pg) € Ap.)

E’roposition 3.1. Let thf = 7rh7pol~/h. Then there exist positive constants
h such that for all h € (0,h) and P = (Py,..., Px) € Ay the map

Lyp =mppo ih : Ktp — C}f’p
18 both injective and surjective. Moreover

[ Lnp®| L2(rry = Cl P m2(rr) (3.2)
for all ® € IC,iP.

We are now in a position to solve the equation

K
Th,P O Sh(z wp, + ‘P) =0,9 ¢ ]C,JL"P (33)
=1

Note that simple computations show that

3

K
Su(D_wp, + ®) = Li(®) + Npp(®) + > M p, (3.4)
i=1 j=1

where
K K , K

Npp(®) = fOO wp, + @) = fO wp) = (D we)®
i=1 i=1 i=1

K

K
Mé,P = Z(V —V(P))wp,, Mi%,P = f(z wp,) — Z f(wp,)

i=1 i=1 =1
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K

Mip = [Awp, — V(P)wp, + f(wp,)].
i=1

Before we move on, we need the following error estimates.

Lemma 3.2. For h sufficiently small, we have

|Nyp(@)] < Clo['t7
K

ML pll 2 vy < C(R S IVV(B))
=1
IMZ pl L2y < C83 T2

s
M pllr2(ryy < Ce n,

where

P P
o =min(l,p — 1) — 6,6, = maxyw(— 1),
i#£] h

(3.9)

Proof. It is easy to derive (3.5) from the mean value theorem. Inequality
(3.8) follows from the definition and (1.8). For (3.6), we note that V(z) —
V(P,) = V(P + hy) = V(P;) = O(hVV(P,)[[y]) and [px [y[Pw?(y) < oc.

It remains to prove (3.7). To this end, we divide the domain RY into
(K+1) parts: Let RN = U0, where Q; := {y : |hy—P)| < % miny |Py—

Pl},i=1,...,K, Qi1 = RN\ UL, Q.
We now estimate M ,%P in each domain. In Qg1, we have

MRy | < Clwp + -+ wp )P < O(e™ 3 a mimkt = Rl).

4o
Hence ||M§7P|\L2(QK+1) <0(6,% ). In Qi =1,...,K, we have

| M} p| < Z |f (wp)we,| + O(Z lwp,['+).
J#i J#i
Note that in €2;, 1 =1,..., K, we have wp; < wp, for j # i, and hence

e /Q |f (wp)wp,* < ChY /Q Wi wd, < 5770
2 2
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if p > 2, by Corollary 2.3. When 1 < p < 2, we have

_ ' _ Up—1)42—p—8  p+s —5
Ol R el A A L
Q2 Qo

by Corollary 2.3 (here we need 2 — p — ¢ > 0). Hence we obtain

1M pllz2 o, <0(5 Bl

Combining the estimates for ¢ = 1,..., K 4+ 1, we obtain (3.7). O
Next we solve (3.3). Since Ly, p| Kt 18 invertible (call the inverse L, )

we can rewrite (3.3) as
3
¢ = - hP‘”ThP Z hPOWhP)NhP( ) = Grp(®), (3.10)
=1

where the operator Gy, p is defined by the last equation for ® € H?(RY).
We are going to show that the operator G, p is a contraction on

By ={® € H*(RY) : ||| g2(pn) < n}

140

if n=Cop(6,2 + h2£1 IVV(P;)|) and Cy > 0 is large enough. In fact, we
have

3
||Gh,P(‘I’)HH2(RN) SC(HWh,P © Nh,P(‘I’)HH(RN) + ||7Th,P © (Z M;jz,P)||L2(RN))
j=1
Lie K
< Clelmn +8,% +hY [VV(P)]) <n,
i=1

where C' > 0 is independent of 1 > 0, dj, is defined by (3.9) and ¢(n) — 0 as
n — 0. If we choose Cj large enough, then Gy, p is a map from By, to By, .
Similarly we can show

1Ghp(®) — Grp (¥ 2(rr) < Cen)||® — ¥l 2(rm),

where ¢(n) — 0 as n — 0. Therefore G, p is a contraction on By, ,. The
existence of a fixed point ® = &, p now follows from the contraction mapping
principle, and hence @, p is a solution of (3.10).
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Because of the fact that
3

@52l z2(rn) < C(INwp(@np)llr2ay) + | Y M pllz2ry)
j=1

140

K
<C(C82 +h Y |VV(P)] + )l ®npllrz(ry)),
i=1
we have
Lio K
(1= Cec)|®npll g2y < C6,% +h > |VV(P)).
i=1
We have thus proved the following;:

Lemma 3.3. There exists h > 0 such that for any 0 < h < h and P € Ay,
there exists a unique ®pp € Kip satisfying Sh(zilil wp, + Ppp) € Citp
and

Lio K
1 @npllz2(rvy < C8,% +Ch Y [VV(B). (3.11)
i=1
Finally we show that @, p is actually smooth in P.
Lemma 3.4. Let &, p be defined by Lemma 3.3. Then ®pp € C! inP.

Proof. Recall that ®;, p is a solution of the equation

K
Th,P © Sh(z wp; + q)h,P) =0 (3.12)
i=1
such that
®pp € Kip. (3.13)

Notice that it is easy to see that the functions wp, and 82wpi/ (OP; ;0P 1)
are C'! in P. This implies that the projection Th,p 18 C!in P.
Applying 9/0P; j to (3.12) gives

i 5 ow od
P; h,P
TP © DSh( wp, + (I)h,P) ( t 4+ ’ ) (314)
2 9P, oP,

i=1 i
ompp
oPp; ;

K
0 Sh(> wp, + Cpp) =0,
i—1
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where

K

K
DSh(Z wp; + (I)h7p) =A-V+ f/(z wp; + ‘Ph’p).
=1 =1

o .
We decompose 57+ into two parts:
2V

0 o 0
TRE = (Gh2),+ (52),

where (a;;.f':’f)l € Kn,p and (%i%f)g € ’Cﬁ,P'

. o . . . .
We can easily see that (p=>)1 is continuous in P since
2V}

/ by p WP _ 0 k=1, N
RN

’ 8Pk-,l
and hence
0d;, p awpk aQUJPk
’ L e
RN 3Pi’j 3Pk71 RN 8PZ'J3PM

where i, j, k,l are indices running from 1 to K.
Now we can write equation (3.14) as

K 0Py p
hp © DSK(Y wp, + Ppp) | (55—)2
2 (Gp2))

K K w 0, p
—l—’/Th’pODSh( E wpi—i-(bh’p)( aPPZ —|—( 8P'7' )1> (3.15)
i=1 i=1 W tJ

ompp

K
S .+ P =0.
P, ° h(z wp, + Pp.p)

i=1

As in the proof of Proposition 3.1 we can show that the operator m;,p o
DSh(Zfil wp, + Py, p) is invertible from IC,fP to C#P. Then we can take

the inverse of m, p o DSh(Zfil wp, + $5,p) in the above equation, and the

inverse is continuous in P.

wp. (aq)h’P

. . . N .0
Since 75, (5221 € Kpp are continuous in P € Ay, and so is 5P
6PZ j ? QPZJ )

, ap,; Ve
conclude that (0%, p/(0P; ;))2 is also continuous in P. This is the same as
the C! dependence of ¢y, p in P. The proof is finished. [l



16 KANG XIAOSONG AND JUNCHENG WEI

4. A maximizing procedure. In this section, we study a maximizing
problem. Fix P € Aj. Let ®;, p be the solution given by Lemma 3.3. We
define a new functional

K
Mh(P) = Jh(z Wp; + ‘I)h’p) : Kh — R. (4.1)
i=1

We first have the following asymptotic expansion of M} (P).
Lemma 4.1. For P € A},, we have

My(P) =Y V(P)rt 2 I(w) (4.2)

,(l+o(1))zw(P‘“;Pl +OhZ\VV )|+ h?).
k#l =1

Proof. For any P € A, we have
K
My(P) = Ju(Y_ we) + gne(@np) + O(|®hpll31 vy);
i=1

where

9np(Pnp) =h~ N/NZ Vwp, Vo, p + Vwp,®pp) / ZwP Py, p]
R

K K

:h—N/RN[Z(V V(P ))UJP.L(I)hPWL(Zf(uAJPi)

=1 1=1

— £ wp,))Opp + O™ | @ p))]

'MN

@
Il
—

(V =V(P)@rlr2am)|9npll 2(r)

p}

K

K
+ HlZf — (> _r)
i=1

hZWV )| + e h +51t9),

) + Ce_%
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By Lemma 2.4 and Lemma 3.3, we obtain (4.2). O
From Lemma 4.1, we have the following:

Proposition 4.2. For h sufficiently small, the following mazximizing prob-
lem,

max{M,(P) : P € A}, (4.3)
has a solution P" € Ay,.

Proof. Since Jh(Zfil wp, + @, p) is continuous in P, the maximizing prob-
lem has a solution. Let Mj,(P") be the maximum of J;,, where P" € Ay,.

We claim that P* € A;. We prove this by energy comparison. We
first obtain a lower bound for M (P"). Let us choose P} = Py + hAX;
where X;, j = 1,..., K are the K vortices of K-polygon centered at 0 with
|X; — Xj| =1 for i # j. Then certainly P]Q € I'. Moreover, w(w) =
w(h=Y4) = o(h%2) < coh for hsmall. So PV = (P, ..., PY) € Aj,. We have
by Taylor’s expansion

V(PY) = V(0) + O(h*?),|VV(PY)| = O(h**), i=1,...,K.
Hence by (4.2) we obtain

M,(P") = max My(P) > M,(P%) > KI(w) — Ch3/2,
h

which implies that (by Lemma 4.1)

K
S V(BN R I(w) (4.4)
=1
Ph _ Ph K
— (3 +0(1) Y w1y O Y [VV (D) 2 Ki(w) - OW*.
k£l i=1

From (4.4), we can deduce that P" € Aj. In fact, suppose not; then by the
definition of A there are two possibilities. Either one of the Pl-h is on OI.

In this case, we have by condition (1.5) (noting that V(P!*) < V(0) — p for
some 3 > 0 if P € I)

K
S V(PR I(w) < KI(w) — po
i=1
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h_ ph
for some o > 0, which is impossible by (4.4). Or w(%) = ¢ph for some
h_ ph
k # 1. In this case w(P’c th ) = coh and

X ptl_N Ph v
SV e 1) (Lron) Yt < k1) - 2 + oot
i=1 i#]

which is impossible by (4.4). Hence P" € Ay, which completes the proof of
Proposition 4.2. [l

Remark. From the proof of Proposition 4.2 and (4.2) we can obtain
V(P}") — max V(P) = V(P}') = V(R = o(1),
€
ph _ ph
S ) = ofh), Vi#

w(

which means that P/ — Py = o(1), | P = P}'|/h > log & for some C' > 0.

5. Proof of Theorem 1.1. In this section, we apply results in Section
3 and Section 4 to prove Theorem 1.1.
Proof of Theorem 1.1. By Lemma 3.3 and Lemma 3.4, there exists hg
such that for h < hg we have a C' map which, to any P € Ay, associates
Sy Py, Pk € ICiP such that

K

8wp
h(z wp, + Py p. Pe) = Z i 5 . (5.1)
=1 k=1, Ki=1,.N kol

for some constants ay; € REN. By Proposition 4.2, we have P* € A,
achieving the maximum of the maximization problem in Proposition 4.2.
Let & = &), pr and uy, = PO wpn + @ pr pr. Then we have

Dp,|p—pnMp(P") =0, i=1,... K, j=1,..,N.

Hence, we have

(wp, + @ o(wp, + @
/ [VUhV & R 7PK) |P~; P-L-h + VUh ( & h7Pl7---7PK) ‘P¢=P

ap,, ap,,;
O(wp, + q)h,Pl,...,PK)
P,

’

= |unlPun lp=pn] =0
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fori=1,...,K and j =1,...,N. Therefore, we obtain

owpn O(w P
Ph ( prt h,Plh,...,P;g)

> aw
P, h
k=1, . Ki=l,..N rN 0Py oP!

—0,  (5.2)

Vi=1,...,K,j=1,...,N. Since <I>h7P1hW’PI;} € Kk, we have that

h7ph7

BN dwpn 0Py, ph _ ph _ N 82/U)Pih o

rN OP! oPh. - N QP gph Pl Pl

! b RN OF 1005,

0w pn

=l s5namn 2| @n pr,. poll L2 (ry
T

1 1o PP — P! K B

= 0(a (O w ™ (F =)+l Yo VV(P)) = o(h™?)
i#] i=1

by Lemma 3.3. Note that

=N Owpp dwpn { W2 [an (55)2 +o(h™?) if i = k,j =1

RN 8P£l 8Pl.’}j | o(h™?) otherwise.

Thus, equation (5.2) becomes a system of homogeneous equations for ag;,
and the matrix of the system is nonsingular since it is diagonally dominant.
Soa =0,k=1,...,K,l=1,...,N. Hence, uj, = Zfil wphn +<I>h7P{L7___,PI;}
is a critical point of Jj, and wuy(z) satisfies (1.2). It remains to prove that
up > 0.

Multiplying equation (1.2) by u; = min(us;,0) and integrating by parts,
we have

[ 90 )P+ v b)) = [ G (.
RN N

R

By Sobolev’s imbedding theorem we obtain either [px (u; (hy))P™ > C or
u, = 0. By our construction, we have that

/ (a5, (h) P+ = o(1).
RN

Hence u; = 0;i.e., up > 0. It is easy to see that by the Maximum Principle
up, > 01in RN. Moreover Jj,(up,) — KI(w) and uy, has only K local maximum
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points Q. ..., Q?{. By the structure of uj, we see that (up to a permutation)
QF — Pl = o(h). Since P! — Py = o(1), we obtain that Q" — Py = o(1) and

h_Qh

V(Q" — V(Py) as h — 0. Moreover, M(M) < 2¢ph, which implies
h_ h

that s thl > log ¢ 7 for i # j. This proves Theorem 1.1. O

6. Proof of Theorem 1.2, In this section, we prove Theorem 1.2. Let
Py be a local minimum point of V() such that det(V2V (Py)) # 0. Without
loss of generality, we may assume that Py = 0 and V(FPy) = 1. Let K > 1
be an integer.

Suppose Theorem 1.2 is not true. Namely there exists a sequence of
solutions wuy, such that for A sufficiently small

(i) up, has only K local maximum points Q%, ..., Q% with Q" — 0 and
|Q£L—Q§’|/h—>ooash—>0, Vi,j=1,...,K,i# j, and
min;_q1 |m7QZ:’\
(i) up, < Ce™" Rt ,un(QF) — a > 0 for some a > 0, 8> 0,
Vi=1,..., K.
Recall that
. x—Qf .
() = wy g (T wgp () = dgp(0x(@). (6.1)

To avoid clumsy notations, in this section we use w; to denote wyn and w;
1
to denote wgn. Furthermore, we set
3

Q- @}

v =hy, & =w(———"), i#], %zrggjxé?j, and  (6.2)

K
= wi(hy) + 6n(y)-

i=1

It is easy to see that ¢, satisfies

K K K
Aon = Von+ (w0 + 30/@) - Vywit (L w63

sz+¢h sz —-D szp 1¢h

|Mx

=

+ > (A (w; — 1by) — V(QU) (wi — 1) + w? — (1)”] = 0.
=1
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Then we have

Lemma 6.1. For h sufficiently small, we have
| (V6 +Veh) = 002 +5177), (6.4

where o = min(1,p — 1) = §, 6 > 0 is small and oy, is defined by (6.2).

From Lemma 6.1, we deduce the following important result on the loca-
tion of the K-bumps.

Lemma 6.2. For h sufficiently small, we have

h h
I |gl 9 i o1l + 8% = (6.5)
J l#14 l 7' l#14

fori=1,...,K, j=1...,N, where c > 0 is a positive number and b;
means the j-th component of a vector b € RN .

We postpone the proofs of Lemma 6.1 and Lemma 6.2 until the end of
this section. Let us now use them to prove Theorem 1.2.
Proof of Theorem 1.2. Without loss of generality, suppose |Q§L — Q’QL| =
minz; |Q£l — Q?| :=dp. So 87, = max;£; 5% = Op.

We first claim that d;, = O(h). In fact, suppose not. Consider a subset
Sy of {Q%, ..., Q};(} such that Qﬁ; € S;, if and only if QZ = Q} or there exists
QZ1""’Q711 such that limy g |Q2j m|/dh =1,5=2,...,1. It is easy
to see that there is a point, say Q? € Sp, and a hyperplane H such that
Q" € H, and all the other points of S}, belong to the same halfspace of RV
divided by H. We divide (6.5) by d; (noting that % — 0); then we have

R e e
on. r — o) = oW 3 ). (66
c%; o | r - Qﬂ) i z;«éi,%‘:esh h ( QF — Qf |) o). (6.6)

But there is [ # i such that lim,_, 0% /5, > 0 (since QF € Sp), and all Q;L,
§ # i, lie in the same halfspace of RN divided by H; this is impossible by
(6.6)! So &, = O(h). Next we choose a point Qp of {QF,...,Q%} such
that d(0, Qo) = max;—;__1 d(0, Qh) . Without loss of generality we can
suppose Qo = QF. Through a rotation, we can suppose Q% = (—1,,0,...,0);
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i.e., the direction from Q? to 0 is the positive x1-axis. It is easy to check for
other points Q?, j#1, (Q;‘ - QM1 >o0.
From (6.5) with ¢ =1, j = 1, we have

Ql Qh 5h
— + ” —L_FLY) +o(l, + —) =0.
"o 2 ol h
We now claim that
4]
Ih =O0(ly). (6.7)
If (6.7) holds, then we have
Qh
V11 lh + CZ )1lh + O(Zh)

l#l |Ql 1|

which is impossible since V11(0) +¢3_, hlh(lga g%)l > V11(0) > 0. The-
orem 1.2 is thus proved.

It remains to prove (6.7). If % # O(ly), then I, = o(%2),|Qp| = o(%2).
As before, there is a point, say QZ’ € Sy, and a hyperplane H such that
Q? € H, and all the other points of S, belong to the same halfspace of RV

divided by H. Going back to (6.5) we obtain

Q — Q!
S QLQ o (6.8)
; |Ql z‘ h

But there exists [ # i such that limy_,q %Zi =1 and for all th, limy, g |th —

th| Jdn = 1; Ql Qh are vectors lying on the same halfspace. It is impossible

by (6.8). Hence 5,? = O(lp). The proof is completed. O
Finally in this section, we prove Lemma 6.1 and Lemma 6.2. We first

prove Lemma 6.2, assuming that Lemma 6.1 holds.

Proof of Lemma 6.2. We only prove the case for i = 1. The other cases

are similar. Multiplying both sides of (6.3) by 5 awl (here we set hy+ Q" = z),
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we have

owy

K
_ pe1, 0wt hy Owy
LJM%‘%%M;M)¢Q%+AJW%)VWww

h w1 8wl
/ 2 V(@i yj+/RN ZZ_: Zw dy;

z#l
/ sz+¢iz sz -Dp szp 1¢ 8w1
=1
~ D 871.)1
¢;§Z V(@i — ) +uf — (@152

=Lh+DLb+I3+14+I5+1=0

where the I;’s, i = 1,...,6 are defined in the last equality.
We now compute each term. First for I;, we have by using the equation

ow
for Tyjl
ow ow
I :/RN(V(Q?) ¢h—1+p sz - )W;%
811]1
=Oo(|(V(Q}) - V)a—y]\lm (e | Pl 2 (ry)
K 1, Ow
_ 1 o
HO S wi)Pt - ) |\L2(RN)||¢h||L2(RN>) =O(h* +> _(51)'*)
.: i#l
since
ow ow
V@) = V)G ey < CF [ WG < Cn,
RN Yj
K 871)1 1+
IO wi)P™" = wh™ ) ||L2 (rvy SCY (o) 2.
i=1 i£1

(For the proof of the last inequality, please see the proof of Lemma 3.2.)
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For I, we obtain

= hy - % = fa_v ow 2

I /RN(V(Ql) V)wr By, /RN( r (@M hypw — 9, L+ 0(h?)
ov o

= _ha—xj(Q,f)/ (i oy, +O(h2)

0 2 N
= —h o @V@DFT E 1 0(2)
J

'yl:/ y-wa—w:/ y-wwlﬁ:i/ ww/|y\<0
rv” 0y Jrv Tyl N gy

For I3, we have

B3 | @ -viwgh

_ h h Ow; Q?— ?
;/RN (@) = V(@) + () Gt + B

where

w -
=3 [ v - viehue e+ L

oy 9y,
RUCIRGIELI s ; <)
— oty +owmall [ G+ E )
%
— o QL) + (Y o)

i#1

since V(Q!) — V(Q1) = o(1), [pw w32 (= + E7%) = O(8%) and

Qr—qQt. 15, QL —QF
| Feugar e+ S = o s(F )

by Lemma 2.1.
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For Iy, weset B:={y € RN : |hy — Q" < (1 —5)%} On B,

we have

Jul - Yo G= [ St gt o

i=1 i#1
_1 0w Q- Q@
_ 1 1 i h
=p [ Sw 8—%w<y+7>+o<zéu>
1#1 1#1
Qr Qh
Qr—qp oy wly+ g
= Zw(lT)P pr fw \?JJ|W 2511
i1 R w( i#1
Qh

>d9—|—0 25

1#1

il RN |6]=1

—72Z5u |gh Ql j Zdlz
i#1 i#l

where

" /7 /(9 *
Yo = p/ wP™lw / O1e Y1dO = p/ wPlw %o <0
RN |o|=1 RN or

and u) is the unique solution of the following problem:
Av—v=0,0v0)=1,v>0 v=ov(y|), y e R". (6.9)

(Hence %LTS > 0. See Lemma 4.7 in [18].) Outside B, we have

K

R Y R

=1 i#1
For I, we have
15| < Cﬂﬁbhﬂi%RN) < C(Z 5lz HU = 2512
i#1 i#1
Finally, due to the exponential decay of w; — w;, we have

Is=0(e %) = o} dl).

i#1
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Combining the estimates for I;, i = 1,...,6, we have
oV 2 _N Qr — QP
—hF(QIf)V(Q}f)”*1 2y 472y O3 + o(hQY +> 1) =0
x] i#1 |QZ - Q1| i#1
(6.10)
for j =1,..., N, which proves (6.5) for i = 1 with ¢ = % > 0. O

Proof of Lemma 6.1. We follow closely the arguments of the proof of
Lemma A in [25] with slight changes.

Set ¢, = gbh/iz where h = h+ Z#Z(él}’])HTa All we need to prove is that

[ V6 v = o)

To this end, we note that q~5h satisfies

3 B K R | E X
A =V, +P(;wi)pl¢h +5 ZZ;(V(Q?) = V)w; + Z[(; w;)? — ;wﬂ
; sz + hon)” sz —p Z P Lhon)
+i§:m(wi — ;) — V(P;)(wi — ;) + wf —@f] = 0 in RV,
h =1
Since

FV(QD) — Vywil < Clyhu(y) € L(RY) A L (RY), and

K K
1 2/ pN oo/ PN
Wzl R
G#£i\Yij i )

(see the proof of Lemma 3.2), we have that op satisfies

K
A —Vén +p(>_wi)’ " én +o(1)ép + Fy = 0 in RV, (6.11)
=1
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where ||Fp|[poo(pry < O, | Fpl[r2rvy < C. By elliptic regularity theory, all
we need to prove is that Hq~5h||Loo(RN) = O(1). (In fact, multiplying (6.11) by
<;~Sh and integrating by parts we have

[ V@R + (v +o()it) < 0

since F), € L*(RY) and (z Lw)Ple LQ(RN) )
Suppose not. Let |¢p(yn)| = max, e gv |n(y)|. By the equation (6.11)
for ¢y, (since V(x) satlsﬁes (1.3) and w decays at +00), it is easy to see

that y, € U BR( ) for some R > 0 independent of h. Wlthout loss of

generality, we can assume that y, € BR( ) Set ¢h( ) = % Then
||¢h||H1(RN) <, H(;Sh||Loo (rvy < 1. As h — 0, the limit of ¢h( ) (by taking
a subsequence) exists and is denoted by ¢o(y). Moreover ¢, — ¢o(y) in
CL (RN), where ¢q(y) satisfies

loc
Ado — ¢o +puw’ Ty =0, ¢o € H(RN).

It is well known that (see Lemma 6.5 of [18]) ¢o(y) = Z;V 1G5 a“’ for some

constants aj, j = 1,..., N. On the other hand, since

(Z _ uh~_~2ifil Wi
" h|on(yn)

we have that

A el v G e B VBRI DORIL
h hlén(yn)| hlon(yn))|

(by (1.8)), and hence chh( 0) — 0 as h — 0. Since Va—“]’( ) i1, N,
are linearly independent, we have a; =0, j = , N, and hence ¢o(0 )
But ¢, () = 1, where g, = yj, — QT’f and |yh\ < R (since yp, € BR(Th))’

which is a contradiction to the fact that ¢, (7n) — ¢o(3n) — 0. Lemma 6.1 is
thus proved. [l
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7. Concluding remarks. In this section, we make some remarks on
possible generalizations of Theorems 1.1 and 1.2.

1. If V has K local maximum points, then we can glue the multiple
peaks together. In fact we can prove the following more general theorem.

Theorem 7.1. Let P;, j = 1,...,K, be a local maximum point of the po-
tential V(x); i.e., there exists an bounded open set I'; such that

P ely, V(B)= II}:_E%XV(CL') > V(P),VP € I';)\{P;}.
zel’;
Then for any positive integer K € 7, there exists hg > 0 such that for any
h < hg there exists a solution uy, of (1.6) with the following properties:

(1) up, has evactly K local mazimum points QF,...,Q% and Q" — P,

h_gh
|Qith|—>oo,i7éj, i,j=1,....,K, as h — 0, and

(2)
w(0), 7

min;_1 g le—Q7

up(z) < Ce ™’ K for some 3> 0,C > 0 and up(QF) —
=1,...,K, as h — 0; i.e., u, concentrates at Q’f, . ..,Qf}(.

Note. We can allow P, = P; for i # j. By taking I'; = I', P, = P,
i=1,..., K, we obtain Theorem 1.1.

The proof of the above theorem is very similar to that of Theorem
1.1. In fact, we just need to take A, = {P = (P;,...,Pg) € I'; x --- x
Ik, w(@) < coh, k,l=1,...,K, k # 1}, where ¢y is a small number
and I'; is given in Theorem 7.1.

2. It is possible to generalize Theorem 1.1 to more general nonlinearities.

In particular, Theorem 1.1 still holds for the following problem:
R:Au + f(z,u) =0, z € RY, (7.1)

where f(z,u) = —V(z)u + K(z)u? — Q(z)u?, where V(z), K(z),Q(z) > 0
and 1 < ¢g<p< (%)4_ We note that single-bump solutions with such
nonlinearities have been treated in [24] and [28]. In this case, the role of
V(x) is replaced by the parametrized energy which was introduced in [24].
3. Theorems 1.1 and 7.1 still hold if we replace the domain RN by
any smooth domain (bounded or unbounded) Q C RY and if we impose a
Dirichlet condition on the boundary. The proofs are essentially the same.

We omit the details. Theorem 1.2 can also be generalized accordingly.
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